Cloud-Based Architectures for Auto-Scalable Web Geoportals towards the Cloudification of the GeoVITe Swiss Academic Geoportal
Abstract
:1. Introduction
2. Multi-Perspective Review of Architecturally-Relevant Aspects for Geoportals
2.1. The Use Case of the Swiss Academic Geoportal GeoVITe
2.2. Geoportal Functional Requirements
2.3. Non-Functional Architectural Requirements and Constraints
2.4. The GeoVITe Traditional Geoportal Architecture
3. Generic Cloud-Based Architectures for Geoportals
3.1. Cloudification of Geoportals
3.2. Essential Cloud-Based Architecture for Geoportals
3.3. Serverless Cloud-Based Architecture for Geoportals
4. Discussion
4.1. Security Concerns and the Use of Private Clouds
4.2. Discussion of Cost-Effectiveness in Cloud-Based Architectures for Geoportals
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mell, P.; Grance, T. The NIST definition of cloud computing. United States Natl. Inst. Stand. Technol. 2011. [Google Scholar] [CrossRef]
- Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y.; Bambacus, M.; Fay, D. Spatial cloud computing: How can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011, 4, 305–329. [Google Scholar] [CrossRef]
- Xia, J.; Yang, C.; Liu, K.; Gui, Z.; Li, Z.; Huang, Q.; Li, R. Adopting cloud computing to optimize spatial web portals for better performance to support Digital Earth and other global geospatial initiatives. Int. J. Digit. Earth 2015, 8, 451–475. [Google Scholar] [CrossRef]
- Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing Cloud Computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2017, 61, 120–128. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Liu, K.; Hu, F.; Jin, B. Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data. ISPRS Int. J. Geo Inf. 2016, 5, 173. [Google Scholar] [CrossRef]
- Amazon AWS. Available online: https://aws.amazon.com/about-aws/ (accessed on 15 May 2017).
- Swiss Academy of Engineering Sciences. White Paper Cloud Computing. Available online: http://www.cloud-finder.ch/fileadmin/Dateien/PDF/News/2012-11-06_SATW_White_Paper_Cloud_Computing_EN_1_.pdf (accessed on 12 June 2017).
- Amazon Web Services. Case Study: Swisstopo. Available online: https://aws.amazon.com/solutions/case-studies/swisstopo/ (accessed on 15 May 2017).
- Müller, M.; Bernard, L.; Kadner, D. Moving code—Sharing geoprocessing logic on the Web. ISPRS J. Photogramm. Remote Sens. 2013, 83, 193–203. [Google Scholar] [CrossRef]
- O’Doherty, P. Cloud Computing: Future Belongs to “GIS as a Service”. Geospatial World. 2010. Available online: https://www.geospatialworld.net/article/cloud-computing-future-belongs-to-gis-as-a-service/ (accessed on 12 June 2017).
- Kerski, J.J. Geo-awareness, Geo-enablement, Geotechnologies, Citizen Science, and Storytelling: Geography on the World Stage. Geogr. Compass 2015, 9, 14–26. [Google Scholar] [CrossRef]
- Schnase, J.L.; Duffy, D.Q.; Tamkin, G.S.; Nadeau, D.; Thompson, J.H.; Grieg, C.M.; McInerney, M.A.; Webster, W.P. MERRA Analytic Services: Meeting the Big Data challenges of climate science through cloud-enabled Climate Analytics-as-a-Service. Comput. Environ. Urban Syst. 2017, 61, 198–211. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.; Jin, B.; Yu, M.; Liu, K.; Sun, M.; Zhan, M. Enabling Big Geoscience Data Analytics with a Cloud-Based, MapReduce-Enabled and Service-Oriented Workflow Framework. PLoS ONE 2015, 10, e0116781. [Google Scholar] [CrossRef] [PubMed]
- Big Data: Techniques and Technologies in Geoinformatics. Available online: https://www.crcpress.com/Big-Data-Techniques-and-Technologies-in-Geoinformatics/Karimi/p/book/9781138073197 (accessed on 21 June 2017).
- Huang, W.; Zhang, W.; Zhang, D.; Meng, L. Elastic Spatial Query Processing in OpenStack Cloud Computing Environment for Time-Constraint Data Analysis. ISPRS Int. J. Geo Inf. 2017, 6, 84. [Google Scholar] [CrossRef]
- Kang, S.; Lee, K. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment. Remote Sens. 2016, 8, 662. [Google Scholar] [CrossRef]
- Drăgan, I.; Fortiş, T.-F.; Iuhasz, G.; Neagul, M.; Petcu, D. Applying Self-* Principles in Heterogeneous Cloud Environments. Available online: https://link.springer.com/content/pdf/10.1007%2F978-3-319-54645-2.pdf (accessed on 21 June 2017).
- Kephart, J.O.; Chess, D.M. The vision of autonomic computing. Computer 2003, 36, 41–50. [Google Scholar] [CrossRef]
- geodata4edu.ch. Project Info 2017; geodata4edu.ch: Zurich, Switzerland, 2017; Available online: https://www.geodata4edu.ch/en/about-geodata4edu-ch/project-info/ (accessed on 21 June 2017).
- Iosifescu Enescu, I.; Gkonos, C.; Iosifescu Enescu, C.M.; Tsorlini, A.; Hotea, M.D.; Piguet, A.; Hurni, L. Guidelines for a Comprehensive Design of Geoportals based on Open Geospatial Software. In Proceedings of the 28th International Cartographic Conference, Washington, DC, USA, 27–28 July 2017. [Google Scholar]
- Iosifescu Enescu, I. Maps for Spatial Data Infrastructures (Service-Oriented Web Mapping); Lecture Notes; Institute of Cartography and Geoinformation, ETH Zurich: Zurich, Switzerland, 2016. [Google Scholar]
- Nebert, D.D. (Ed.) Developing Spatial Data Infrastructures: The SDI Cookbook v. 2.0, Global Spatial Data Infrastructure (GSDI). 2004. Available online: http://gsdiassociation.org/images/publications/cookbooks/SDI_Cookbook_GSDI_2004_ver2.pdf (accessed on 15 May 2017).
- Swisstopo Spatial Data Infrastructure. Available online: https://cms.geo.admin.ch/www.swisstopo.admin.ch/archives/cms2007/internet/swisstopo/en/home/topics/geodata_inf.html (accessed on 15 May 2017).
- Smyth, C.G. SDI–national to global: Perspectives from the UK academic sector. In Proceedings of the 27th International Cartographic Conference: Spatial Data Infrastructures, Standards, Open Source and Open Data for Geospatial (SDI-Open 2015), Rio de Janeiro, Brazil, 20–21 August 2015. [Google Scholar]
- geodata4edu.ch. Fields of Application 2017; geodata4edu.ch: Zurich, Switzerland, 2017; Available online: https://www.geodata4edu.ch/en/service/possible-fields-of-application/ (accessed on 21 June 2017).
- Iosifescu Enescu, C.M.; Iosifescu Enescu, I.; Jenny, H.; Hurni, L. GeoVITe—A Service-Driven Solution for an on-Demand, User-Friendly Web Access to Geodata. In Proceedings of the 25th International Cartographic Conference, Paris, France, 3–8 July 2011. [Google Scholar]
- geodata4edu.ethz.ch. Geodata Download Service Technology Overview 2017; geodata4edu.ch: Zurich, Switzerland, 2017; Available online: https://geodata4edu.ethz.ch/documents/GeoVITe_Technology_Overview.pdf (accessed on 21 June 2017).
- GeoAdmin API Documentation. Available online: http://api3.geo.admin.ch/ (accessed on 15 May 2017).
- OpenLayers. Available online: http://openlayers.org/ (accessed on 15 May 2017).
- Rashwan, A.; Ormandjieva, O.; Witte, R. Ontology-based classification of non-functional requirements in software specifications: A new corpus and SVM-based classifier. In Proceedings of the 2013 IEEE 37th Annual Computer Software and Applications Conference, Kyoto, Japan, 22–26 July 2013; pp. 381–386. [Google Scholar]
- Roman, G.-C. A taxonomy of current issues in requirements engineering. IEEE Comput. 1985, 18, 14–23. [Google Scholar] [CrossRef]
- Iosifescu Enescu, I.; Vescoukis, V.; Iosifescu Enescu, C.M.; Müller, F.; Panchaud, N.H.; Hurni, L. Hypercube-Based Visualization Architecture for Web-Based Environmental Geospatial Information Systems. Cartogr. J. 2015, 52, 137–148. [Google Scholar] [CrossRef]
- Kellenberger, B.; Iosifescu Enescu, I.; Nicola, R.; Iosifescu Enescu, C.M.; Panchaud, N.H.; Walt, R.; Hotea, M.; Piguet, A.; Hurni, L. The wheel of design: assessing and refining the usability of geoportals. Int. J. Cartogr. 2016, 2, 95–112. [Google Scholar] [CrossRef]
- Coulouris, G.F.; Dollimore, J.; Kindberg, T. Distributed Systems: Concepts and Design, 4th ed.; Addison Wesley: Harlow, UK, 2005. [Google Scholar]
- SWITCHaai. Available online: https://www.switch.ch/aai/ (accessed on 15 May 2017).
- Gartner. Magic Quadrant for Cloud Infrastructure as a Service, Worldwide. Available online: https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519 (accessed on 15 May 2017).
- Microsoft Azure: Cloud Computing Platform & Services. Available online: https://azure.microsoft.com/en-us/ (accessed on 15 May 2017).
- Google Cloud Computing, Hosting Services & APIs | Google Cloud Platform. Available online: https://cloud.google.com/ (accessed on 15 May 2017).
- CloudCheckr. Revealed: The 7 Hidden Costs Every Public Cloud User Needs to Avoid. Available online: http://cloudcheckr.com/2017/05/revealed-7-hidden-costs-every-public-cloud-user-needs-avoid/ (accessed on 15 May 2017).
- VMware. VMware Hyper-Converged Infrastructure (HCI)—VMware Products. Available online: http://www.vmware.com/products/hyper-converged-infrastructure.html (accessed on 15 May 2017).
- Nutanix. Hyperconverged Infrastructure: The Definitive Guide. Available online: https://www.nutanix.com/go/what-is-nutanix-hyperconverged-infrastructure.html (accessed on 15 May 2017).
- OpenStack Open Source Cloud Computing Software. Available online: https://www.openstack.org/software/ (accessed on 15 May 2017).
- Apache CloudStack: Open Source Cloud Computing. Available online: https://cloudstack.apache.org/ (accessed on 15 May 2017).
- VMware vSphere ESXi Bare-Metal Hypervisor. Available online: https://www.vmware.com/products/esxi-and-esx/overview.html (accessed on 15 May 2017).
- Microsoft Hyper-V, Server Virtualization. Available online: https://www.microsoft.com/en-us/cloud-platform/server-virtualization (accessed on 15 May 2017).
- Linux Kernel Virtual Machine. Available online: http://www.linux-kvm.org/page/Main_Page (accessed on 15 May 2017).
Cloud Service | AWS | Microsoft Azure | Google Cloud | Private Cloud |
---|---|---|---|---|
Virtual servers | EC2 | Azure VMs | Compute Engine | VMware ESXi VMs |
Autoscaling | AWS AutoScaling | Azure Machine Scale Sets | Managed Instance Groups | Senlin-ceilometer/Aodh |
Load Balancers | Elastic Load Balancing | Load Balancer | Google Cloud Load Balancing | OpenStack LBaaS v2/HAProxy |
Virtual Server Disks | Elastic Block Store | Azure Storage Disks | Persistent Disks | Virtual Hard Disks (VHDs) |
Shared File Storage | Elastic File System | Azure File Storage | ZFS/Avere | Nutanix Acropolis File Services |
PostgreSQL DBaaS | Amazon RDS for PostgreSQL | Azure Database for PostgreSQL | Cloud SQL for PostgreSQL | OpenStack Trove with PostgreSQL |
Archiving | Amazon Glacier | Azure Cool Storage | Cloud Storage Nearline | Glance, Nova Backup, VHD clones |
Cloud Service | AWS | Microsoft Azure | Google Cloud | Private Cloud |
---|---|---|---|---|
Containers (CaaS) | EC2 Container Service | Azure Container Service | Google Container Engine | OpenStack Magnum/Zun |
Serverless Compute | Lambda | Azure Functions | Google Cloud Functions | Custom solutions 1,2 |
Object Storage | Amazon S3 | Azure Blob Storage | Google Cloud Storage | Swift; |
Reliable Message Queuing | Amazon SQS | Azure Queue Storage | Google Cloud PUB/SUB | Zaqar |
Caching | Amazon ElastiCache | Azure Redis Cache | Redis Cloud | Nutanix Acropolis 3 |
Public Cloud Service | AWS | Microsoft Azure | Google Cloud |
---|---|---|---|
Virtual Cloud Networking | Amazon Virtual Private Cloud (VPC) | Azure Virtual Network | Google Virtual Private Cloud (VPC) |
Managed Firewall | AWS Web Application Firewall (WAF) | Application Gateway WAF | VPC Firewall, Brocade Virtual WAF 1 |
Security Assessment | Amazon Inspector | Security Center | Google Cloud Security Scanner |
Managed DDoS | AWS Shield | N/A 1,2 | N/A 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosifescu-Enescu, I.; Matthys, C.; Gkonos, C.; Iosifescu-Enescu, C.M.; Hurni, L. Cloud-Based Architectures for Auto-Scalable Web Geoportals towards the Cloudification of the GeoVITe Swiss Academic Geoportal. ISPRS Int. J. Geo-Inf. 2017, 6, 192. https://doi.org/10.3390/ijgi6070192
Iosifescu-Enescu I, Matthys C, Gkonos C, Iosifescu-Enescu CM, Hurni L. Cloud-Based Architectures for Auto-Scalable Web Geoportals towards the Cloudification of the GeoVITe Swiss Academic Geoportal. ISPRS International Journal of Geo-Information. 2017; 6(7):192. https://doi.org/10.3390/ijgi6070192
Chicago/Turabian StyleIosifescu-Enescu, Ionuț, Claudia Matthys, Charalampos Gkonos, Cristina M. Iosifescu-Enescu, and Lorenz Hurni. 2017. "Cloud-Based Architectures for Auto-Scalable Web Geoportals towards the Cloudification of the GeoVITe Swiss Academic Geoportal" ISPRS International Journal of Geo-Information 6, no. 7: 192. https://doi.org/10.3390/ijgi6070192
APA StyleIosifescu-Enescu, I., Matthys, C., Gkonos, C., Iosifescu-Enescu, C. M., & Hurni, L. (2017). Cloud-Based Architectures for Auto-Scalable Web Geoportals towards the Cloudification of the GeoVITe Swiss Academic Geoportal. ISPRS International Journal of Geo-Information, 6(7), 192. https://doi.org/10.3390/ijgi6070192