A Visual Analysis Approach for Inferring Personal Job and Housing Locations Based on Public Bicycle Data
Abstract
:1. Introduction
- (1)
- A new kind of trajectory data: PBS data is studied to infer personal job and housing locations, and a visual analysis approach is presented to process such data.
- (2)
- Specific to the characteristics of PBS data, different visual views are designed to present meaningful abstractions from the raw data, and assist the intuitional and interactive reasoning process.
2. Related Work
2.1. Discovering Personal Job and Housing Locations from Movement Data
2.2. Analysis of the Public Bicycle System
3. System Overview
3.1. Data Description
3.2. System Pipeline
3.3. Data Preprocessing
4. User Clustering
5. Visual Analysis Procedure
5.1. The Discovery of Key Candidate Stations
5.2. The Visual Analysis of Station Usage Pattern
5.3. The Visual Analysis of User Hire Behavior
6. Case Studies
6.1. Example A
6.2. Example B
6.3. Visualization of Multiple Users’ Home and Workplaces
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yu, L.; Wu, W.; Li, X.; Li, G.; Ng, W.; Ng, S.; Huang, Z.; Arunan, A.; Watt, H. iVizTRANS: Interactive visual learning for home and work place detection from massive public transportation data. In Proceedings of the 2015 IEEE Conference on Visual Analytics Science and Technology (VAST), Chicago, IL, USA, 25–30 October 2015; pp. 49–56. [Google Scholar]
- Long, Y.; Thill, J.C. Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing. Comput. Environ. Urban Syst. 2013, 53, 19–35. [Google Scholar] [CrossRef]
- Isaacman, S.; Becker, R.; Cáceres, R.; Kobourov, S.; Martonosi, M.; Rowland, J.; Varshavsky, A. Identifying important places in people’s lives from cellular network data. In Proceedings of the 9th International Conference on Pervasive Computing (Pervasive), San Francisco, CA, USA, 12–15 June 2011; pp. 133–151. [Google Scholar]
- Wang, D.; Chai, Y. The jobs-housing relationship and commuting in Beijing, China: The legacy of Danwei. J. Transp. Geogr. 2009, 17, 30–38. [Google Scholar] [CrossRef]
- Zhao, P.; Lü, B.; De Roo, G. Impact of the jobs-housing balance on urban commuting in Beijing in the transformation era. J. Transp. Geogr. 2011, 19, 59–69. [Google Scholar] [CrossRef]
- Hasan, S.; Schneider, C.M.; Ukkusuri, S.V.; González, M.C. Spatiotemporal patterns of urban human mobility. J. Statist. Phys. 2013, 151, 304–318. [Google Scholar] [CrossRef]
- Ahas, R.; Silm, S.; Järv, O.; Saluveer, E.; Tiru, M. Using mobile positioning data to model locations meaningful to users of mobile phones. J. Urban Technol. 2010, 17, 3–27. [Google Scholar] [CrossRef]
- Yan, Z.; Parent, C.; Spaccapietra, S.; Chakraborty, D. A hybrid model and computing platform for spatio-semantic trajectories. In The Semantic Web: Research and Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 60–75. [Google Scholar]
- Andrienko, N.; Andrienko, G.; Fuchs, G.; Jankowski, P. Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Inf. Vis. 2016, 15, 117–153. [Google Scholar] [CrossRef]
- Ricci, M. Bike sharing: A review of evidence on impacts and processes of implementation and operation. Res. Trans. Bus. Manag. 2015, 15, 28–38. [Google Scholar] [CrossRef]
- Fishman, E. Bikeshare: A review of recent literature. Trans. Rev. 2016, 36, 92–113. [Google Scholar] [CrossRef]
- Nikitas, A.; Wallgren, P.; Rexfelt, O. The paradox of public acceptance of bike sharing in Gothenburg. In Proceedings of the Institution of Civil Engineers—Engineering Sustainability; ICE Publishing: London, UK, 2016; Volume 169, pp. 101–113. [Google Scholar]
- Shaheen, S.; Zhang, H.; Martin, E.; Guzman, S. Hangzhou Public Bicycle: Understanding Early Adoption and Behavioral Response to Bikesharing in Hangzhou, China. Trans. Res. Rec. 2011, 2247, 34–41. [Google Scholar] [CrossRef]
- Froehlich, J.; Neumann, J.; Oliver, N. Measuring the pulse of the city through shared bicycle programs. In Proceedings of the UrbanSense 08, Raleigh, NC, USA, 4 November 2008; pp. 16–20. [Google Scholar]
- Mooney, P.; Corcoran, P.; Winstanley, A.C. Preliminary results of a spatial analysis of Dublin’s bike rental scheme. In Proceedings of the 18th the GIS Research UK Annual Conference, London, UK, 14–16 June 2010; pp. 325–330. [Google Scholar]
- Wood, J.; Slingsby, A.; Dykes, J. Visualizing the dynamics of London’s bicycle-hire scheme. Cartogr. Int. J. Geogr. Inf. Geovis. 2011, 46, 239–251. [Google Scholar] [CrossRef]
- Beecham, R.; Wood, J. Exploring gendered cycling behaviours within a large-scale behavioural data-set. Transp. Plan. Technol. 2014, 37, 83–97. [Google Scholar] [CrossRef]
- Chen, W.; Guo, F.; Wang, F.Y. A survey of traffic data visualization. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2970–2984. [Google Scholar] [CrossRef]
- Andrienko, N.; Andrienko, G. Visual analytics of movement: An overview of methods, tools and procedures. Inf. Vis. 2013, 12, 3–24. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Duan, Z.; Bryde, D. Sustainable bike-sharing systems: Characteristics and commonalities across cases in urban China. J. Clean. Prod. 2015, 97, 124–133. [Google Scholar] [CrossRef]
- Beecham, R.; Wood, J.; Bowerman, A. Studying commuting behaviours using collaborative visual analytics. Comput. Environ. Urban Syst. 2014, 47, 5–15. [Google Scholar] [CrossRef]
- Yang, R.; Long, R. Analysis of the Influencing Factors of the Public Willingness to Participate in Public Bicycle Projects and Intervention Strategies—A Case Study of Jiangsu Province, China. Sustainability 2016, 8, 349. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, T.; Brussel, M.; Van Maarseveen, M. Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China. J. Transp. Geogr. 2017, 58, 59–70. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, X.; Yang, X. User satisfaction and its impacts on the use of a public bicycle system: Empirical studies from Hangzhou, China. Transp. Res. Rec. J. Transp. Res. Board 2015, 2512, 56–65. [Google Scholar] [CrossRef]
- Oliveira, G.N.; Sotomayor, J.L.; Torchelsen, R.P.; Silva, C.T.; Comba, J.L. Visual analysis of bike-sharing systems. Comput. Graph. 2016, 60, 119–129. [Google Scholar] [CrossRef]
- Bargar, A.; Gupta, A.; Gupta, S.; Ma, D. Interactive visual analytics for multi-city bikeshare data analysis. In Proceedings of the 3rd Urbcomp, New York, NY, USA, 24 August 2014. [Google Scholar]
- Zhou, X. Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in Chicago. PLoS ONE 2015, 10, e0137922. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.; Cheshire, J. Inequalities in the London bicycle sharing system revisited: Impacts of extending the scheme to poorer areas but then doubling prices. J. Transp. Geogr. 2014, 41, 272–279. [Google Scholar] [CrossRef]
- Vogel, M.; Hamon, R.; Lozenguez, G.; Merchez, L.; Abry, P.; Barnier, J.; Borgnat, P.; Flandrin, P.; Mallon, I.; Robardet, C. From bicycle sharing system movements to users: A typology of Vélo’v cyclists in Lyon based on large-scale behavioural dataset. J. Transp. Geogr. 2014, 41, 280–291. [Google Scholar] [CrossRef]
- Shi, X.; Yu, Z.; Chen, J.; Xu, H.; Lin, F. The visual analysis of flow pattern for public bicycle system. J. Vis. Lang. Comput. 2017. [Google Scholar] [CrossRef]
- Krueger, R.; Thom, D.; Ertl, T. Visual analysis of movement behavior using web data for context enrichment. In Proceedings of the 2014 IEEE Pacific Visualization Symposium (PacificVis), Yokohama, Japan, 4–7 March 2014; pp. 193–200. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Yu, Z.; Fang, Q.; Zhou, Q. A Visual Analysis Approach for Inferring Personal Job and Housing Locations Based on Public Bicycle Data. ISPRS Int. J. Geo-Inf. 2017, 6, 205. https://doi.org/10.3390/ijgi6070205
Shi X, Yu Z, Fang Q, Zhou Q. A Visual Analysis Approach for Inferring Personal Job and Housing Locations Based on Public Bicycle Data. ISPRS International Journal of Geo-Information. 2017; 6(7):205. https://doi.org/10.3390/ijgi6070205
Chicago/Turabian StyleShi, Xiaoying, Zhenhai Yu, Qiming Fang, and Quan Zhou. 2017. "A Visual Analysis Approach for Inferring Personal Job and Housing Locations Based on Public Bicycle Data" ISPRS International Journal of Geo-Information 6, no. 7: 205. https://doi.org/10.3390/ijgi6070205
APA StyleShi, X., Yu, Z., Fang, Q., & Zhou, Q. (2017). A Visual Analysis Approach for Inferring Personal Job and Housing Locations Based on Public Bicycle Data. ISPRS International Journal of Geo-Information, 6(7), 205. https://doi.org/10.3390/ijgi6070205