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Abstract: The current methods that use hyperspectral remote sensing imagery to extract and
monitor marine oil spills are quite popular. However, the automatic extraction of endmembers from
hyperspectral imagery remains a challenge. This paper proposes a data field-spectral preprocessing
(DSPP) algorithm for endmember extraction. The method first derives a set of extreme points
from the data field of an image. At the same time, it identifies a set of spectrally pure points
in the spectral space. Finally, the preprocessing algorithm fuses the data field with the spectral
calculation to generate a new subset of endmember candidates for the following endmember
extraction. The processing time is greatly shortened by directly using endmember extraction
algorithms. The proposed algorithm provides accurate endmember detection, including the detection
of anomalous endmembers. Therefore, it has a greater accuracy, stronger noise resistance, and is
less time-consuming. Using both synthetic hyperspectral images and real airborne hyperspectral
images, we utilized the proposed preprocessing algorithm in combination with several endmember
extraction algorithms to compare the proposed algorithm with the existing endmember extraction
preprocessing algorithms. The experimental results show that the proposed method can effectively
extract marine oil spill data.

Keywords: hyperspectral imaging; endmember extraction; data field—Spectral preprocessing
algorithm; marine oil spills

1. Introduction

Oil pollution is one of the most common forms of marine pollution. It is estimated that
approximately 706 million gallons of oil are spilled into the ocean each year [1]. Industrial discharges
and urban runoff, oil production, and the routine maintenance of ships during operation account
for a significant proportion of this spilt oil. The remainder results from seepage, shipping accidents,
or atmospheric circulation [2]. Marine oil spills have become one of the most serious ocean pollution
problems because they can degrade ocean ecosystems and affect both the environment and the
economy [3].

To address oil spill pollution and prevent large environmental and economic costs, a rapid and
accurate response is necessary. Hyperspectral remote sensing offers good coverage and the continuity
of observations, as well as rich spectral and spatial data. Thus, it is an efficient way to detect and
monitor oil spills over a broad area. Moreover, airborne hyperspectral remote sensing is an effective
and rapid tool for the remote detection and mapping of oil spills. During the Deepwater Horizon oil
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spills, hyperspectral remote sensing data were gathered from aerial flights that were undertaken to
assess the extent and magnitude of the surface oil [4].

This paper aims to perform precise oil spill extraction over large ocean surface areas. From earlier
studies, we know that the oil species typically involved in oil spill accidents (light diesel, heavy diesel,
and jet fuel) often have low reflectance values, similar to that of water. Moreover, the reflectance
difference between oil and water is not significant in many spectral channels. Traditional multi-band
imagery and panchromatic imagery are not able to extract oil spills on the ocean. Therefore, we used
hyperspectral imagery, taking advantage of its continuous imaging characteristics to discriminate oil
and water on the ocean surface.

Spectral unmixing analysis has been a desirable exploitation goal from the earliest days of
hyperspectral remote sensing up to the present [5]. The main techniques include endmember
confirmation, dimensionality reduction, endmember identification, and abundance estimation. Spectral
unmixing analysis is, therefore, a unique and important element of hyperspectral imagery analysis.
It satisfies real needs and offers considerable advantages over other remote sensing data analysis
methods in terms of solving these problems.

Here, we mainly discussed the endmember extraction method. Depending on whether pure
pixels exist, we divided the endmember extraction algorithms into two categories. One category
includes endmember identification algorithms, including the pixel purity index (PPI) [6], N-FINDR [7],
orthogonal subspace projection (OSP) [8], and the vertex component analysis (VCA) [9] methods,
as well as others. The other category includes endmember generation algorithms, such as minimum
volume simplex analysis (MVSA) [10], simplex identification via variable splitting and augmented
Lagrangian (SISAL) method [11], the iterative constrained endmember (ICE) method [12], convex
cones analysis (CCA) [13], and iterative error analysis (IEA) [14].

However, none of these methods consider spatial adjacency. The endmember extraction algorithms
that incorporate spatial information are subsequently described. The automated morphological
endmember extraction (AMEE) algorithm defines a morphological eccentricity index to confirm
the possibility of an endmember pixel [15]. The spatial–spectral endmember extraction (SSEE) tool
works by analysing a scene in parts to increase the spectral contrast of the low contrast endmembers
and improve the potential for these endmembers to be selected [16]. Spatial purity endmember
extraction (SPEE) first investigates several initial endmember candidates by their intensity and feature
levels, then identifies the endmembers using spatial context and spectral similarity refining.

Moreover, several endmember extraction preprocessing models have recently been proposed [17].
The spatial preprocessing (SPP) algorithm estimates a spatially derived scalar factor for each pixel that
relates to the spectral similarity of the pixels lying within a certain spatial neighbourhood. This scalar
value is then used to weigh the importance of the spectral information associated with each pixel in
terms of its spatial context [18]. The region-based spatial preprocessing for endmember extraction
(RBSPP) approach first identifies a collection of spectrally pure constituent spectra. It then expresses
the measured spectrum of each mixed pixel as a combination of endmembers weighted by abundances
that indicate the proportion of each endmember in the pixel [19]. The spatial-spectral preprocessing
(SSPP) method first derives a spatial homogeneity index for each pixel in the hyperspectral image.
This index is relatively insensitive to the noise present in the data. At the same time, it performs
unsupervised clustering to identify a set of clusters in spectral space. Finally, it fuses the spatial
and spectral information by selecting a subset of spatially homogeneous and spectrally pure pixels
from each cluster. These pixels constitute the new set of candidates for endmember extraction [20].
The spatial–spectral preprocessing module (SSPM) determines the spectral purity score of the pixels
located within spatially homogeneous regions. The algorithm is intended to ensure that the candidate
endmembers are not spatial border pixels [21]. Based on selecting the pixels that are in both the spatial
edges (SEs) and the spectral extremes (SEs) of the hyperspectral image, SE2PP first uses a parameter
to define a homogeneous region and then directly extracts the heterogeneous edge points from large
areas of the homogeneous region. At the same time, the algorithm extracts the spectral region for
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endmember extraction [22]. The above methods are all derived directly from the perspective of the
spatial information contained in the imagery and ignore the intrinsic relationships within mixed pixels.
In addition, most of them are prone to missing anomalous endmembers.

There is a spectral correlation between different bands in hyperspectral images. The traditional
endmember extraction methods include VCA, OSP, and IEA, which only use the spectral information
of the pixels and ignore the spatial information of the image. However, the existing preprocessing
endmember extraction models [18–22] are intended to consider the continuity of the image space and
use the specific parameters of the image to compute the image space over a wide range. There is no
doubt that a large computation area leads to a large number of calculations and is time-consuming.
Moreover, previous preprocessing models did not fundamentally consider the intrinsic relationships
of the pixel formations to extract the endmember candidates.

This paper proposes a novel endmember extraction preprocessing method called the data
field-spectral preprocessing (DSPP) algorithm. The method combines data field information
(reflecting the intrinsic relationships within pixels) and spectral information to identify candidate
endmembers. In addition, endmember extraction methods, such as VCA, OSP, MVSA, and SISAL,
are applied to identify the exact endmembers. We apply the fully constrained least squares (FCLS)
method based on the linear spectral mixing model to carry out the abundance estimation. Moreover,
to assess the performance of the proposed algorithm, we compare it with the SPP, RBSPP, and SSPP
preprocessing methods. The flowchart of the DSPP algorithm is shown in Figure 1.
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2. Methodology

2.1. Data Field Index Calculation

The feature space is a basic concept in hyperspectral remote sensing studies. Pixels with similar
spatial positions are more likely to belong to the same kind of objects than pixels that are far away
from each other. In the feature space, the distance between similar pixels is closer and more likely
to converge. Mixed pixels are more likely to be located on the boundary between different kinds of
objects. However, anomalous endmembers are prone to be located in the sparsest areas in the feature
space. A large homogeneous area in an image space has the cluster characteristics of the feature space,
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while an anomalous endmember appears as an isolated point. Therefore, the traditional preprocessing
methods cannot adequately extract abnormal endmembers in large homogeneous areas.

According to the characteristics of physical fields, the structural characteristics of a hyperspectral
image in feature space can be described by the data field theory. The data in the feature space are
regarded as data particles, which can radiate energy; thus, the entire feature space is projected to the
data field space, and each point in the space has a corresponding potential value. Using the field
theory from physics as a reference, we introduce the intrinsic interactions of material particles and the
corresponding field description to describe an abstract image datum space.

There exist some particles or nuclei of a given mass with a field around them in the space, in which
any given object is subject to the force exerted by the other objects. Thereby a data field is determined
over the entire space. For static data that do not depend on time, the data field can be considered
stable and active. Therefore, given all the intensity vectors or the potential scalars, we can describe the
spatial distribution.

From a point within the data field, the pixels are no longer isolated data points. Instead, they
represent many particles capable of radiation. A given point radiates energy from itself to the entire
area covered by the image. The energy intensity decreases with increasing distance. Any pixel receives
energy from the surrounding points; meanwhile, it radiates energy to other points.

The potential energy function is calculated in formula (1) [23]:

ϕ = m× e−(
||x−y||

σ )
k

, (1)

where m ≥ 0 denotes the grey value of a pixel; k ∈ N denotes the distance index; and k, which is set to
two in this study, represents the Euclidean distance. σ is the impact factor, which is a constant of the
data field and describes the potential influence of the pixels on one another. When this factor is small,
there is little influence between the pixels, reflecting limited clustering. In such cases, the lines of equal
potential also describe independent pixel-centric regions of energy. With increases in the impact factor,
increasing interactions between individual data pixels occur, and the line features are closer together.
The effects of the impact factor on the endmember extraction tests will be evaluated in the experiments
described in Section 3.

The data field model can effectively and conveniently reflect the distribution of the important
feature points (such as the maxima and minima in the data field space) of the original image in
different characteristic spaces. Using the field operation of the data field, the original image can be
easily transformed through the extraction of feature points. Take a face for example, which can easily
demonstrate the function of the data field model, as shown in Figure 2.

Different spatial and spectral characteristics in the local region result in different spatial
distributions and different data fields associated with each pixel vector in the image space. We used
the potential energy as the feature to extract from the characteristics of the data field, thus achieving
the purpose of the endmember extraction preprocessing.

To more deeply explore the characteristics of an image data field, this paper studied the data field
properties of central pixels and their neighbouring pixels in an image. We simulated a grid with a
background value of vb = 0 and a foreground value of vo = 150, and another grid with a background
value of vb = 255 and a foreground value of vo = 100, as shown in Figure 3. In addition, we also
calculated the corresponding image data fields, as shown in Figure 4.
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When the centre pixel and the neighbouring pixels of the homogeneous region are relatively
high values, they are called the high grey value areas (the nine patches in Figure 3a). Conversely,
the homogeneous regions containing low-value pixels are called the low grey value areas (the nine
patches in Figure 3b). The data field calculated from the above figure shows that the average potential
energy of the high grey areas is also high, so there exists a maximum in the local data field space.
In contrast, the potential value of the nine patches is significantly lower than that of the edge region
with a higher background value. In addition, both high-value areas and low-value areas are defined as
homogeneous regions [24,25]. The normal endmember in the image space we are examining may exist
in the geometric centre of a homogeneous region, corresponding to the potential extreme values of the
data field space. Therefore, using the data field theory to locate the endmembers corresponds to locating
the maximal or minimal points in the data field where the “potential cores” of the homogeneous area
are located. The normal candidate endmembers are always located in the “potential cores” of the
data field.

To explore the performance of the anomalous endmember extraction using the data field theory,
anomalous pixels were added to the above simulated images. The corresponding data fields were then
calculated, as shown in Figures 5 and 6.ISPRS Int. J. Geo-Inf. 2017, 6, 286  6 of 20 
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The accuracy of the anomalous endmember extraction directly affects the accuracy of the spectral
unmixing. It is shown in the above figures that when an anomalous pixel is added to a corner of a
simulated image, the anomalous pixel will form an obvious extreme in a neighbouring range of the
local data field. On the other hand, the endmember of the homogeneous region will also generate



ISPRS Int. J. Geo-Inf. 2017, 6, 286 7 of 21

many extreme points in the data field space. Therefore, to extract the extreme in two places, that is,
to extract the local potential cores of the image, we can extract the candidate endmembers, including
the anomalous endmembers and the homogeneous endmembers. This procedure lays a theoretical
foundation for extracting candidate endmembers using data field theory.

In this step, in the process of the data field index calculation, with the help of principal component
analysis (PCA) [26], we used the first three principal components of the hyperspectral image and the
impact factor σ as the inputs and obtained a set of data field values derived from the input image as
the outputs.

2.2. Spectral Clustering

In parallel with the first step, we first determined the endmember number e using the HySime
algorithm [27]. In addition, we then applied the unsupervised spectral-based ISODATA algorithm to
the original spectral data, where the minimum and the maximum class numbers were all set to e [20].

This step is useful for the next “spectral purity index calculation” process. In this step, during the
process of spectral clustering, we inputted the hyperspectral image and the cluster class number and
obtained the classified segmentation of the image.

2.3. Spectral Purity Index Calculation

We calculated a spectral purity index similar to the well-known pixel purity index algorithm
to identify the most spectrally pure pixels in each cluster (we set the percentage for ranking pure
pixels to β). First, a principal component analysis was applied to the entire image. Taking the first
components as the direction for example, we computed the maximum and minimum projection values.
The pixels with maximum and minimum projection values were assigned weights of 1. We also apply
a threshold value; weights that were lower than the threshold were assigned values of 0. The spectral
purity index for a given pixel is the sum of all the weights for that pixel over all e principal components.

In this step, we inputted the clustering map from step 2, the percentage of ranking spectrally pure
pixels per cluster β, and a weight threshold value δ, and obtained a series of pixels with the greatest
spectral purity.

2.4. Fusion of Data Field and Spectral Information

This step takes the data field pixels calculated in step 1 and the spectrally purest pixels identified
in step 3 as the inputs. The two index results were calculated by means of a dot product computation,
carried out point by point.

Finally, it returned a subset of pixels from the original hyperspectral image, which were
preprocessed to subsequently extract the endmembers.

Moreover, in addition to using the DSPP endmember preprocessing algorithms for endmember
candidate extraction, we also used OSP, VCA, MVSA, and SISAL to extract the exact endmembers.
The reasons why we selected these extraction algorithms are as follows: (1) They are fully automated;
(2) They require no additional input parameters other than the endmember number e; (3) The four
algorithms can be divided into two groups. OSP and VCA are based on the pure signature assumption,
whereas MVSA and SISAL are considered minimum volume methods. Therefore, the latter two
algorithms do not assume that the endmembers exist in the image. At last, we applied a fully
constrained linear model [28] to complete the hyperspectral unmixing. The result of this process is a
set of e endmembers and their corresponding abundance estimation maps.
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3. Experimental Results

3.1. Synthetic Data

3.1.1. DSPP Procedure

In this paper, we first use synthetic hyperspectral scenes to complement the real images mainly
because the details of the simulations are predetermined and controllable. The spectra and abundance
of each endmember are known in advance. Therefore, the performance of the algorithm can be
validated in a controlled manner. The endmember spectra, which have a total of 224 bands that we
chose, are often found in marine oil spill imagery, which includes clouds, oil, and water. Figure 7 shows
the endmember spectra, from which we can see that the spectral shapes of these three typical features
on the ocean surface are almost the same. The largest difference is found in the absolute value of the
spectral differences. In this paper, to promote correspondence with the hyperspectral reflectance values
seen in real data, we expanded the endmember reflectance of the synthetic data 10,000 times, from
0 to 10,000. Using the hyperspectral imagery synthesis tools [29], we chose the “Legendre” method
to simulate the abundances within the range of 0.1–0.8. The fractional abundances in each pixel of
the scene were positive and added up to one, ensuring that all pixel instances in the synthetic fractal
image strictly adhered to a fully constrained linear mixture model. In addition, we inputted the ready
endmembers. Thus, a database of five 128 × 128-pixel synthetic hyperspectral scenes was created.
Figure 8 shows the five synthetic hyperspectral scenes displayed in band 10, band 120, and band 210
(similarly hereinafter).ISPRS Int. J. Geo-Inf. 2017, 6, 286  8 of 20 
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Next, we computed the potential energy value of the data field of each input image, following
formula (1). Each pixel has a potential value, as in geological digital elevation models. We connected
the same values within an interval using ‘equipotential lines’. To explore how the different impact
factors affected the model, we set the impact factor σ to 0.5, 2, and 5 in succession, as shown in Figure 9.
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Figure 9. Data fields corresponding to different impact factors.

We found that the exact impact factor value does not play an essential role in the synthesis of
small images (obviously different areas were drawn in the rectangular frames in Figure 9). The smaller
the impact factor, the rougher the potential function curve and the lower the potential energy of the
entire data field. Conversely, a greater impact factor means a smoother curve and a higher overall
potential energy. However, in this step, we only required a maximum or a minimum in a certain
neighbourhood. Through the experiments, we found that the impact factor had little influence on the
extraction of the potential cores. Therefore, in the following, we take the impact factor σ to be 2 as an
example to complete the experiment. The potential cores were calculated as follows. According to
previous image data field theoretical analyses of potential energy, the candidate endmembers always
exist as the potential cores within an image. Within a rectangular window neighbourhood with a
radius = 5, we obtained maxima equal to the potential peak values, and the minima were the minimum
potential values. The peaks and minima represent the sum of the candidate endmembers in this step,
as shown in Figure 10. On the other hand, after the unsupervised clustering procedure was conducted
with ISODATA for the same synthetic image, the candidate endmembers were calculated using the
spectral purity index model (βwas set to 30 and δwas set to 1.0), as shown in Figure 11.
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The intersection sets of the data field endmember candidates and the spectral purity endmember
candidates make up all endmember candidates for the next endmember extraction. Thus, the DSPP
preprocessing procedure is complete, and the endmember candidates have been detected.

In the following section, the different endmember extraction algorithms, such as VCA, OSP,
MVSA, and SISAL, are applied to the endmember candidates after the procedure described above.
We also compare the performance of the proposed DSPP method to that of the other preprocessing
procedures in combination with several endmember extraction algorithms. The SPP, RBSPP, and SSPP
preprocessing procedure are compared qualitatively and quantitatively.

3.1.2. DSPP Performance Analysis

We compared the performance of the proposed DSPP algorithm with those of the existing SPP,
RBSPP, and SSPP algorithms. Together with the VCA, OSP, MVSA, and SISAL endmember extraction
algorithms, we obtained the endmember spectra. With the help of the FCLS model, their corresponding
abundance maps were estimated. Take the abundance map using DSPP+VCA for example, as shown
in Figure 12.
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We then calculated the respective reconstructed images for the five original synthetic images.
We empirically selected suitable parameter values for each algorithm so that they provided good
results in most cases. We set the window size value of SPP to 5. For the SSPP algorithm, the percentage
of pixels using the spatially homogeneous index was set to 50, and that of the spectral purity index was
set to 30, and the parameter that denotes the spatial context of the given pixel was set to 1.5. Taking
one of the synthetic images as an example, the reconstructed images using the above endmember
preprocessing algorithms combined with VCA combination are shown in Figure 13.

ISPRS Int. J. Geo-Inf. 2017, 6, 286  10 of 20 

 

In the following section, the different endmember extraction algorithms, such as VCA, OSP, 
MVSA, and SISAL, are applied to the endmember candidates after the procedure described above. 
We also compare the performance of the proposed DSPP method to that of the other preprocessing 
procedures in combination with several endmember extraction algorithms. The SPP, RBSPP, and 
SSPP preprocessing procedure are compared qualitatively and quantitatively. 

3.1.2. DSPP Performance Analysis 

We compared the performance of the proposed DSPP algorithm with those of the existing SPP, 
RBSPP, and SSPP algorithms. Together with the VCA, OSP, MVSA, and SISAL endmember extraction 
algorithms, we obtained the endmember spectra. With the help of the FCLS model, their 
corresponding abundance maps were estimated. Take the abundance map using DSPP+VCA for 
example, as shown in Figure 12. 

 
(a) (b) (c) 

Figure 12. Abundance maps. (a) Water; (b) Oil; (c) Cloud. 

We then calculated the respective reconstructed images for the five original synthetic images. 
We empirically selected suitable parameter values for each algorithm so that they provided good 
results in most cases. We set the window size value of SPP to 5. For the SSPP algorithm, the 
percentage of pixels using the spatially homogeneous index was set to 50, and that of the spectral 
purity index was set to 30, and the parameter that denotes the spatial context of the given pixel was 
set to 1.5. Taking one of the synthetic images as an example, the reconstructed images using the above 
endmember preprocessing algorithms combined with VCA combination are shown in Figure 13. 

 
(a) (b)

ISPRS Int. J. Geo-Inf. 2017, 6, 286  11 of 20 

 

 
(c) (d)

Figure 13. Reconstructed images. (a) DSPP+VCA; (b) SPP+VCA; (c) RBSPP+VCA; (d) SSPP+VCA. 

As is shown in Figure 13, we qualitatively compared the reconstructed images with the original 
image in Figure 8. We drew the provisional conclusion that the reconstruction using DSPP+VCA is 
the closest to the original image. In addition, it is clear that the reconstructed images obtained using 
RBSPP+VCA and SSPP+VCA have many unsmoothed speckles. The results of SPP+VCA are better in 
this respect, but the spectral value was not similar to that of the original image. 

In this paper, we used the root mean square error (RMSE) to compare the original and the 
reconstructed hyperspectral images. The reconstructed images were generated using the 
endmembers obtained by the different algorithms and their corresponding abundances, which were 
estimated by the FCLS model. The RMSE values of the five reconstructed images using several 
endmember extraction algorithm combinations are shown in Figure 14. 

 
Figure 14. RMSE between the five reconstructed images and the original images. 

Overall, the performance of SPP is the best. The proposed DSPP is also reasonably good. The RBSPP 
and SSPP rely primarily on map-based unsupervised classification to ensure spatial homogeneity, so they 
may have difficulties in extracting the anomalous endmembers. Moreover, in terms of our purpose of 
discriminating water and oil, which have similar spectra, we found that the MVSA and SISAL algorithms, 
which do not assume a pure signature, performed better than both VCA and OSP.  

To validate the robustness of the proposed DSPP algorithm to noise, Gaussian white noise with 
a zero mean was added to the different SNRs (30 dB, 70 dB, and 110 dB), following the procedure 
described in [8]. The SNR is defined here as 50% reflectance divided by the standard deviation of the 
noise. The SNR = 30 dB synthetic image is shown in Figure 15, and the endmembers extracted using 
DSPP+VCA with SNR = 30 dB are shown in Figure 16. 

Figure 13. Reconstructed images. (a) DSPP+VCA; (b) SPP+VCA; (c) RBSPP+VCA; (d) SSPP+VCA.

As is shown in Figure 13, we qualitatively compared the reconstructed images with the original
image in Figure 8. We drew the provisional conclusion that the reconstruction using DSPP+VCA is
the closest to the original image. In addition, it is clear that the reconstructed images obtained using
RBSPP+VCA and SSPP+VCA have many unsmoothed speckles. The results of SPP+VCA are better in
this respect, but the spectral value was not similar to that of the original image.

In this paper, we used the root mean square error (RMSE) to compare the original and the
reconstructed hyperspectral images. The reconstructed images were generated using the endmembers
obtained by the different algorithms and their corresponding abundances, which were estimated by the
FCLS model. The RMSE values of the five reconstructed images using several endmember extraction
algorithm combinations are shown in Figure 14.

Overall, the performance of SPP is the best. The proposed DSPP is also reasonably good.
The RBSPP and SSPP rely primarily on map-based unsupervised classification to ensure spatial
homogeneity, so they may have difficulties in extracting the anomalous endmembers. Moreover,
in terms of our purpose of discriminating water and oil, which have similar spectra, we found that the
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MVSA and SISAL algorithms, which do not assume a pure signature, performed better than both VCA
and OSP.
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To validate the robustness of the proposed DSPP algorithm to noise, Gaussian white noise with
a zero mean was added to the different SNRs (30 dB, 70 dB, and 110 dB), following the procedure
described in [8]. The SNR is defined here as 50% reflectance divided by the standard deviation of the
noise. The SNR = 30 dB synthetic image is shown in Figure 15, and the endmembers extracted using
DSPP+VCA with SNR = 30 dB are shown in Figure 16.
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In this section, we mainly used three metrics to verify the validation of the proposed preprocessing
algorithm. One of these metrics is a spectral similarity measurement (SSM). Under different SNR
conditions, we used SSM to assess the similarity among the spectra of the extracted endmembers
using several algorithms and the spectra of the original endmembers. The Euclidean distance mainly
describes the spectral radiance of the spectral vector difference for hyperspectral image gain sensitivity.
On the other hand, while the spectral angle measurement is spectral vector-oriented and therefore
represents the shape of the spectrum to some extent, it is insensitive to the gain of hyperspectral
images. The above analysis shows that using the Euclidean distance or the spectral angles alone does
not accurately reflect the similarity between the spectral vectors. Therefore, we used a combination of
spectral angles and Euclidean distances to improve the accuracy of the endmember spectral vector
similarity. The spectral similarity measurement was calculated as shown in formula (2).

SSM =

√
(Xi −Yi)

2 ∗ (1− ∑n
i−1 Xi ∗Yi√

∑n
i=1 X2

i ∗
√

∑n
i=1 Y2

i

), (2)

The average SSM values of the five synthetic images are shown in Table 1. The smaller the SSM
value, the more similar the extracted endmember spectra are to the original spectral and the better
the performance.

Table 1. SSM values of endmembers obtained using different SNRs and several different algorithms.

SSM Algorithm SNR = 30 dB SNR = 70 dB SNR = 110 dB

Water Oil Clouds Water Oil Clouds Water Oil Clouds

DSPP

DSPP+VCA 0.51 2.70 0.01 0.01 0.63 0.01 0.00 0.62 0.01

DSPP+OSP 0.02 73.02 0.11 0.00 3.58 0.02 0.00 3.67 0.02

DSPP+MVSA 52.70 19.91 0.47 0.01 1.33 0.06 0.00 2.22 0.00

DSPP+SISAL 0.61 23.32 0.45 1.55 1.89 0.03 0.20 2.98 0.00

SPP

SPP+VCA 39.60 23.27 0.26 31.49 25.80 0.17 27.63 0.66 0.20

SPP+OSP 25.37 0.63 0.15 28.70 0.74 0.22 27.33 0.65 0.23

SPP+MVSA 15.83 64.15 0.09 20.45 0.67 0.00 17.65 0.79 0.03

SPP+SISAL 19.00 93.31 1.04 27.33 0.92 0.00 29.64 0.53 0.01

RBSPP

RBSPP+VCA 252.97 30.35 5.02 259.25 10.44 3.77 259.42 8.25 3.88

RBSPP+OSP 266.58 37.11 5.45 260.18 69.90 4.06 259.36 34.53 4.13

RBSPP+MVSA 707.84 7.70 4.42 374.27 0.28 0.40 185.37 10.59 1.61

RBSPP+SISAL 114.02 44.99 4.56 196.16 9.14 0.51 187.66 10.04 1.48

SSPP

SSPP+VCA 265.53 27.45 6.07 263.59 31.62 4.27 260.13 20.99 4.15

SSPP+OSP 274.70 27.91 3.82 264.28 26.87 3.50 267.71 6.15 3.65

SSPP+MVSA 238.13 25.96 1.62 114.76 34.69 2.89 81.98 33.26 2.23

SSPP+SISAL 231.33 27.03 1.78 133.27 35.14 3.81 104.80 33.97 3.30

From Table 1, similar to the above no-noise synthetic results, we can also say that the proposed
DSPP algorithm yielded a better performance than the other preprocessing algorithms when oil, water,
and clouds were the endmembers, which is consistent with our purpose of identifying marine oil
spills. The SSM was always small, and it achieved a minimum value at low noise values. In addition,
the performance of the SPP algorithm was also quite good, and the spectral similarity was always small.
With increasing noise, the algorithm yielded stable results. Based on VCA, OSP, MVSA, and SISAL,
we found that VCA performed much better in terms of its robustness to noise; the VCA endmember
extraction algorithm that we applied included a module that estimates noise.
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The next metric we used was the RMSE (discussed above), which was calculated between the
original synthetic images and the FCLS-reconstructed images generated using the endmembers by the
different combined algorithms. The calculated RMSE values are shown in Table 2.

Table 2. RMSEs of reconstructed images using different SNRs and different algorithms.

RMSE Algorithm SNR = 30 dB SNR = 70 dB SNR = 110 dB

DSPP

DSPP+VCA 4.6 1.999 1.284

DSPP+OSP 5.14 2.43 1.61

DSPP+MVSA 4.6 1.995 1.283

DSPP+SISAL 4.6 1.997 1.29

SPP

SPP+VCA 4.95 3.094 2.39

SPP+OSP 5.17 3.085 2.54

SPP+MVSA 5.07 1.975 1.426

SPP+SISAL 4.58 1.976 1.29

RBSPP

RBSPP+VCA 10.9 9.86 9.962

RBSPP+OSP 11.02 9.87 9.961

RBSPP+MVSA 8.94 4.03 6.46

RBSPP+SISAL 9.18 4.45 6.26

SSPP

SSPP+VCA 12.49 9.98 10.51

SSPP+OSP 10.04 9.88 10.05

SSPP+MVSA 7.27 7.49 6.72

SSPP+SISAL 7.49 8.48 7.99

The RMSE results were similar to the spectral similarity measurements. We concluded that our
proposed DSPP and the existing SPP methods were consistently better. In addition, the results from
RBSPP and SSPP were not satisfactory in our case. Unlike the spectral similarity measurement, it seems
that the results of VCA and OSP were reasonably similar, while those of MVSA and SISAL were quite
similar. The differences among the four endmember extraction algorithms did not mainly lie in their
RMSE values.

Moreover, we compared the computational complexity of the proposed DSPP with that of other
algorithms using the five synthetic images, employing the processing time as our metric. Our results
are shown in Table 3.

The runtime of the preprocessing algorithms is generally shorter than that of the original
endmember extraction. In the preprocessing stage, only the SPP algorithm is quicker than the
DSPP algorithm. However, the endmember extraction time of SPP is long because it uses the
entire image as the input, whereas the other three methods use the endmember candidates as the
inputs. In addition, the DSPP contains a pixel selection module that discards a significant number of
endmember candidates. As a result, the combinations involving DSPP require the least time for the
endmember identification stage.

Hence, the proposed DSPP has the potential to yield significantly improved endmember
identification precision and reduce the time used in preprocessing for extracting the
endmember candidates.
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Table 3. Processing time comparisons using different algorithms.

Algorithm Preprocessing
Time (s)

Endmember
Extraction Time (s) Total Time (s)

ORIGINAL

VCA \ 60.26 50.26

OSP \ 136.87 136.87

MVSA \ 350.42 350.42

SISAL \ 172.52 172.52

DSPP

DSPP+VCA 63.28 9.24 72.52

DSPP+OSP 63.28 10.86 74.14

DSPP+MVSA 63.28 241.4 304.68

DSPP+SISAL 63.28 8.31 71.59

SPP

SPP+VCA 56.54 48.88 105.42

SPP+OSP 56.54 128.95 185.49

SPP+MVSA 56.54 342.35 398.89

SPP+SISAL 56.54 163.25 219.79

RBSPP

RBSPP+VCA 83.71 8.69 92.4

RBSPP+OSP 83.71 9.98 93.69

RBSPP+MVSA 83.71 256.8 340.51

RBSPP+SISAL 83.71 9.05 92.76

SSPP

SSPP+VCA 69.52 5.85 75.37

SSPP+OSP 69.52 6.72 76.24

SSPP+MVSA 69.52 244.09 313.61

SSPP+SISAL 69.52 8.58 78.1

3.2. Real Hyperspectral Data

To validate the effectiveness of the proposed algorithm further, the present study used Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) data covering the Deepwater Horizon Oil Spill. These
data, which contain the region from 88◦23’ W to 88◦24’ W, and 28◦49’ N to 28◦50’38” N within
393 × 393 pixels, were acquired on 9th July 2010. The data comprises 224 spectral bands between
0.4 µm and 2.5 µm.

We also used the DSPP, SPP, RBSPP, and SSPP methods as endmember candidate
preprocessing algorithms and combined them with the VCA, OSP, MVSA, and SISAL endmember
extraction algorithms.

The endmembers extracted using DSPP+MVSA, SPP+MVSA, RBSPP+MVSA, and SSPP+MVSA
are shown in Figure 17. We displayed the results of the MVSA algorithm because the MVSA
endmember extraction algorithm was verified as the most applicable algorithm, as subsequently
measured using the RMSE and SSM. In addition, the original endmember spectra were extracted from
the image by expert experience. In addition, for the proposed DSPP algorithm, we set the impact factor
σ to 5, βwas set to 30, and δwas set to 0.7. We also set the window size value of SPP to 9. For the SSPP
algorithm, the percentage of pixels using the spatially homogeneous index was set to 50, and that of
the spectral purity index was set to 30.
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The spectral similarity values were also calculated, as shown in Table 4. We found that the
DSPP and SSPP endmember identification algorithms displayed a better performance than the other
algorithms. In addition, the results of RBSPP were poor. Overall, the MVSA algorithm, which does not
assume a pure signature, extracted endmembers that were more similar to the original endmembers.

Table 4. SSM value of endmembers using several different algorithms.

SSM Algorithm Water Oil Clouds

DSPP

DSPP+VCA 0.0042 1.3083 0.5910

DSPP+OSP 0.1352 3.8199 0.5078

DSPP+MVSA 0.3702 1.4977 2.0667

DSPP+SISAL 0.5281 0.9696 2.5910

SPP

SPP+VCA 0.0299 1.3041 1.054

SPP+OSP 0.0288 3.2215 1.2586

SPP+MVSA 0.0952 0.7771 2.9965

SPP+SISAL 0.0608 0.7013 1.9358

RBSPP

RBSPP+VCA 0.3898 3.5866 6.6255

RBSPP+OSP 1.6857 4.2385 6.26

RBSPP+MVSA 0.6622 2.5833 4.1918

RBSPP+SISAL 1.2356 3.7815 2.4958

SSPP

SSPP+VCA 0.0187 1.1604 3.0309

SSPP+OSP 0.0243 0.6502 2.5849

SSPP+MVSA 0.0976 2.6116 4.9067

SSPP+SISAL 0.102 2.2873 6.3993
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Using the abundance maps of the different endmembers, we can extract oil spills using
hyperspectral unmixing. As space is limited, the abundance maps of the endmembers using
DSPP+MVSA and RBSPP+MVSA are shown in Figures 18 and 19. The results using the above
two algorithms have large differences.
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By contrasting the abundance maps using different algorithms, we can initially identify the
abundance of the three endmembers using DSPP+MVSA and RBSPP+MVSA, and the results were
quite different. The higher the gray value of the abundance map, the greater the abundance of the
endmember. The water on the right side of the image was completely mixed up using RBSPP+MVSA.

For a more intuitive comparison of the unmixing results using different algorithms, the images
were reconstructed by the extracted endmembers and their corresponding abundance. The original
hyperspectral images for band 10, band 66, and band 145 are shown in Figure 20, together with the
reconstructed images using DSPP+MVSA, SPP+MVSA, RBSPP+MVSA, and SSPP+MVSA.
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Figure 20. The reconstructed images obtained using the preprocessing algorithms and MVSA
combinations. (a) Original image; (b) DSPP reconstructed image; (c) SPP reconstructed image;
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As shown in Figure 20, the DSPP, SPP, and SSPP combinations exhibited a good performance in
terms of endmember extraction. Thus, further quantitative analysis was necessary to compare the
preprocessing algorithms. RBSPP could not discriminate the cloud and oil endmembers properly,
resulting in a poor reconstruction of thin clouds.

Table 5 tabulates the RMSE values between the original and the reconstructed hyperspectral
images. The other algorithms were also optimized for the best performance. As shown in Table 5,
the RMSE values using the DSPP algorithm were uniformly low, especially for DSPP+MVSA and
DSPP+SISAL. Moreover, the results of the combinations using SPP were also favourable.

Table 5. RMSE values between the original and the reconstructed hyperspectral images using
different algorithms.

Algorithm RMSE

DSPP

DSPP+VCA 4.820846

DSPP+OSP 8.338002

DSPP+MVSA 3.127129

DSPP+SISAL 3.147139

SPP

SPP+VCA 4.097042

SPP+OSP 5.150471

SPP+MVSA 3.136146

SPP+SISAL 3.153928

RBSPP

RBSPP+VCA 6.02655

RBSPP+OSP 8.232756

RBSPP+MVSA 3.915835

RBSPP+SISAL 4.212568

SSPP

SSPP+VCA 5.620443

SSPP+OSP 8.221507

SSPP+MVSA 3.187329

SSPP+SISAL 3.312629

We also compared the computational complexity of the proposed DSPP with that of other
algorithms using the real hyperspectral images, employing the processing time as our metric.
Our results are shown in Table 6.
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Table 6. Processing time comparisons using different algorithms.

Algorithm Preprocessing
Time (s)

Endmember
Extraction Time (s) Total Time (s)

ORIGINAL

VCA \ 472.52 472.52

OSP \ 650.42 650.42

MVSA \ 20,254.52 20,254.52

SISAL \ 828.86 828.86

DSPP

DSPP+VCA 138.85 160.87 299.72

DSPP+OSP 138.85 174.41 313.26

DSPP+MVSA 138.85 1587.35 1726.2

DSPP+SISAL 138.85 168.25 307.1

SPP

SPP+VCA 119.23 489.25 608.48

SPP+OSP 119.23 508.28 627.51

SPP+MVSA 119.23 20073.1 20,192.33

SPP+SISAL 119.23 756.35 875.58

RBSPP

RBSPP+VCA 173.21 175.65 348.86

RBSPP+OSP 173.21 165.91 339.12

RBSPP+MVSA 173.21 1640.92 1814.13

RBSPP+SISAL 173.21 153.47 326.68

SSPP

SSPP+VCA 152.68 163.89 316.57

SSPP+OSP 152.68 168.01 320.69

SSPP+MVSA 152.68 1610.68 1763.36

SSPP+SISAL 152.68 175.24 327.92

As shown in Table 6, as the size of the image increases, the advantages of the preprocessing
algorithm become visible. The processing time is greatly shortened by directly using endmember
extraction algorithms. The DSPP and SSPP are quicker than the other endmember extraction
algorithms. In addition, the proposed algorithm has the shortest processing time during the entire
endmember extraction.

4. Conclusions

In this paper, a new data field-spectral endmember extraction preprocessing algorithm has been
proposed for the identification of marine oil spills. The proposed preprocessing algorithm can extract
endmember candidates that could be used prior to subsequent endmember extraction and the spectral
unmixing of the hyperspectral images. We applied the algorithms to synthetic hyperspectral images
and a real hyperspectral image covering oil films. The extracted endmembers have been used for
hyperspectral unmixing using the FCLS method. Using the SSM, RMSE, and processing time as
metrics, the proposed algorithm has been shown to be efficient, robust, and fast through a comparison
with existing preprocessing algorithms and noise robustness experiments. The proposed algorithm has
the advantage of identifying candidates accurately, including anomalous endmembers. Therefore, this
is an effective method to monitor oil spills using hyperspectral images. However, the method also has
limitations in that it has more input parameters. The identification of an endmember extraction method
for hyperspectral unmixing with no additional supervised inputs should be the goal of future research.
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