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Abstract: Large volumes of trajectory-based data require development of appropriate data
manipulation mechanisms that will offer efficient computational solutions. In particular, identification
of meaningful geometric points of such trajectories is still an open research issue. Detection of these
critical points implies to identify self-intersecting, turning and curvature points so that specific
geometric characteristics that are worth identifying could be denoted. This research introduces
an approach called Trajectory Critical Point detection using Convex Hull (TCP-CH) to identify a
minimum number of critical points. The results can be applied to large trajectory data sets in order
to reduce storage costs and complexity for further data mining and analysis. The main principles
of the TCP-CH algorithm include computing: convex areas, convex hull curvatures, turning points,
and intersecting points. The experimental validation applied to Geolife trajectory dataset reveals
that the proposed framework can identify most of intersecting points in reasonable computing
time. Finally, comparison of the proposed algorithm with other methods, such as turning function
shows that our approach performs relatively well when considering the overall detection quality and
computing time.
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1. Introduction

Nowadays, positioning data collection devices, such as GPS and wireless communication,
technologies are widely available as personal devices. Users can easily record and save their geometric
paths as trajectory data [1]. Trajectory data can be roughly defined as a sequence of time-stamped
geographic positions of some moving objects, that is, a series of timestamped X and Y coordinates of
each position. For a given trajectory T, the position of a point at a time instant i can be denoted as
T(ti). Such data can be used in many application domains, such as detection and analysis of people’s
movement patterns and detection in the city, migration behavior of animals, and tracking of maritime
and aerial trajectories [2,3]. The analysis of trajectories can be closely associated to the geometric,
temporal, and semantic properties. Typically, the semantic dimension is related to all descriptive
attributes that can be associated to a given trajectory. For instance, the series of Points Of Interest (POI)
related to a given trajectory is considered as a semantic property, in which activities, mode of travel,
neighbor relations, context, and any metadata during movement can be considered [4].

When considering the very large volumes of collected trajectory data often available and/or
collected, the manipulation and analysis of the generated databases are not straightforward tasks [5].
Among the variety of processes that have been developed so far, clustering, Origin-Destination (O-D)
methods, spatio-temporal mining, and graph-based analysis are representative trajectory analyses that

ISPRS Int. J. Geo-Inf. 2018, 7, 14; doi:10.3390/ijgi7010014 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-7133-3844
http://dx.doi.org/10.3390/ijgi7010014
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2018, 7, 14 2 of 21

have been used by previous researchers [6]. Clustering is considered as an efficient computational
approach for data mining and identifying implicit geometric patterns in trajectory data [7]. The O-D
methods are often apply to study the spatial and temporal distribution of start and end points of
human displacements [8]. These studies apply a series of geometric-temporal and semantic criteria
for the derivation of movement patterns [9]. Graph-based studies have been also applied to explore
trajectory patterns [10]. A brief classification of the above methods is shown in Table 1 according to the
methods applied and data considered.

Table 1. Classification of trajectory-based studies.

Approach
Data Used

GPS Data Smart Card Data Cell Phone Data Other

O-D POI detection [8,11–14] [15] [16] [17]
Spatio-temporal mining [9,14,18–24] [25] [16,26,27] [28]

Clustering [29–35] [36–38] [39,40] [29,41,42]
Graph-based [10,43,44] [38] [45,46] [47]

Similarity-based analysis is rather oriented to the detection of trajectory analogies and
peculiarities [31]. Over the past few years, the analysis and search for similarities based on physical
and geometric descriptors has been the object of several research works. According to [48], stop points
provide valuable inputs for studying and differentiating trajectory data. In fact, a key issue relies
on identifying effective descriptors. Events and activities that are associated to either stop points
or movements also give useful insights for studying trajectory differences and similarities [49,50].
When considering geometric properties, structuring a trajectory by line segments based on curvature
points has been suggested as a valuable method for identifying the main characteristics and facilitating
the search for trajectory patterns [28,51–55]. Additional parameters such as velocity, direction,
turning points and angle, acceleration, sinuosity, distance, and travel time surely provide further
insights [56,57]. When considering large trajectory datasets, searching for outliers that deviate from
median trajectories in both space and time has been studied in related work [19,58]. A classification of
these studies according to these parameters is shown in Table 2.

Table 2. Classification of parameter-based previous studies.

Property Parameters Related Work

Geometric

Distance [9,10,19,27,30–32,34,44,45]
Direction [8,16–18,23,27,33,34,39]
Turning Angle [19,23,28,31]
Sinuosity [16,20,28,31]

Physical

Velocity [8,18,19,27,28,44]
Acceleration [18–20]
Stop Point [17,18,27,30,33,34,36,43]
POI [9,10,14–16,21–25,30,39–44,46,47]

Context
People Attributes [8,13,14,25,36]
Time of Occurrence [11,12,15,25,29,34,37,40,42,45,46]

An interesting quality that can be used to study the embedded properties of a trajectory is the
notion of path curvature. The curvature of a given sub-trajectory can be revealed from the position of
a previous point (T(Pleft)) and the following one (T(Pright)), by either analyzing the rate of direction
change or fitting a circle through these two given points (Figure 1).
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Figure 1. Curvature derivation through (a) using a tangent vector or (b) fitting a circle [5]. 

Another descriptor that can be used when checking the similarity of some trajectories is the 
status of turning points [5,59]. In fact, turning points are located in the beginning and end of some 
trajectory curvatures. Turning points associated to a given trajectory curvature should reveal some 
direction changes. When searching for the geometric complexity of a given trajectory, or searching 
for some trajectory similarities, curvatures and turning points can play an important role. Another 
component that should be considered is self-intersecting trajectories. Self-intersecting trajectories 
arise when a given trajectory crosses its geometric path once or more. The self-intersection loops are 
often omitted from the geometry, although they represent some specific behaviors, like orbiting or 
changing the route, which have not being identified. Also, the shape of the path is sometimes 
intersected as the double-level intersections [19,20,28,60,61]. Figure 2 illustrates a sample of self-
intersecting trajectories. This figure shows the difference between self-intersecting trajectories that 
can be considered as noise and should be removed (Figure 2 left) and those that represent a real sub-
part of a trajectory with a self-intersecting point that is considered as a critical point in the trajectory 
(Figure 2 right). 

One common difficulty of all the mentioned methods appears at the computational level, 
especially when dealing with large trajectory datasets. In order to improve processing times, a given 
trajectory should be filtered by keeping the most relevant points, according to the most relevant 
geometric descriptors. To this end, several algorithms have already been explored using spatial and 
temporal descriptors, such as turning points, directions, sinuosity, and speed [5,19,31]. A key issue 
when applying a filtering algorithm to a given trajectory is identifying the most relevant geometric 
descriptors, the ones that make sense with respect to the application domain considered, as well as 
avoiding dependent parameters. For instance, curvature and direction, as well as speed and 
acceleration, are dependent descriptors that should not be considered together. 

The objective of this study is to develop a computational approach for identifying critical 
descriptors of trajectories, that is, curvature areas, turning points and self-intersecting points. A first 
advantage of the three selected parameters is that many other parameters, such as sinuosity, heading 
and curviness can be derived from curvature and turning points. As trajectories generated by most 
applications are very large, an important requirement is to minimize storage and computational 
costs, and then select the minimum number of geometrical parameters from which others can be 
derived. The second principle is to take into account the very specificity of urban trajectories and the 
fact that self-intersecting trajectories occur in many cases. As this parameter is independent of the 
others, it should be considered.  

The proposed method follows two main objectives. The first objective is to develop a framework 
for identifying the minimum possible numbers of critical points and reducing the processing load of 
each parameter. While in previous studies, relatively costly computational processes have been 
implemented [61], we introduce an approach, called trajectory critical point detection using convex 
hull (TCP-CH), and derive our selected parameters by only using a convex hull algorithm. The 
application of this algorithm dramatically reduces the storage and computational costs, especially 
when dealing with very large trajectory datasets. 

Figure 1. Curvature derivation through (a) using a tangent vector or (b) fitting a circle [5].

Another descriptor that can be used when checking the similarity of some trajectories is the status
of turning points [5,59]. In fact, turning points are located in the beginning and end of some trajectory
curvatures. Turning points associated to a given trajectory curvature should reveal some direction
changes. When searching for the geometric complexity of a given trajectory, or searching for some
trajectory similarities, curvatures and turning points can play an important role. Another component
that should be considered is self-intersecting trajectories. Self-intersecting trajectories arise when a
given trajectory crosses its geometric path once or more. The self-intersection loops are often omitted
from the geometry, although they represent some specific behaviors, like orbiting or changing the
route, which have not being identified. Also, the shape of the path is sometimes intersected as the
double-level intersections [19,20,28,60,61]. Figure 2 illustrates a sample of self-intersecting trajectories.
This figure shows the difference between self-intersecting trajectories that can be considered as noise
and should be removed (Figure 2 left) and those that represent a real sub-part of a trajectory with a
self-intersecting point that is considered as a critical point in the trajectory (Figure 2 right).

One common difficulty of all the mentioned methods appears at the computational level,
especially when dealing with large trajectory datasets. In order to improve processing times, a given
trajectory should be filtered by keeping the most relevant points, according to the most relevant
geometric descriptors. To this end, several algorithms have already been explored using spatial and
temporal descriptors, such as turning points, directions, sinuosity, and speed [5,19,31]. A key issue
when applying a filtering algorithm to a given trajectory is identifying the most relevant geometric
descriptors, the ones that make sense with respect to the application domain considered, as well
as avoiding dependent parameters. For instance, curvature and direction, as well as speed and
acceleration, are dependent descriptors that should not be considered together.

The objective of this study is to develop a computational approach for identifying critical
descriptors of trajectories, that is, curvature areas, turning points and self-intersecting points. A first
advantage of the three selected parameters is that many other parameters, such as sinuosity, heading
and curviness can be derived from curvature and turning points. As trajectories generated by most
applications are very large, an important requirement is to minimize storage and computational costs,
and then select the minimum number of geometrical parameters from which others can be derived.
The second principle is to take into account the very specificity of urban trajectories and the fact
that self-intersecting trajectories occur in many cases. As this parameter is independent of the others,
it should be considered.

The proposed method follows two main objectives. The first objective is to develop a framework
for identifying the minimum possible numbers of critical points and reducing the processing load
of each parameter. While in previous studies, relatively costly computational processes have been
implemented [61], we introduce an approach, called trajectory critical point detection using convex hull
(TCP-CH), and derive our selected parameters by only using a convex hull algorithm. The application
of this algorithm dramatically reduces the storage and computational costs, especially when dealing
with very large trajectory datasets.
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The second aim of this study is to select a few trajectory parameters that also identify the number 
and locations of POIs. This approach has the advantage of favoring the search for trajectory 
similarities when considering, for example, direction or origin-destinations. More precisely, the three 
selected parameters can be defined as follows:  

• Turning point: a turning point is considered as a changing direction point of a trajectory. For 
instance, a trajectory with no curve does not have any turning points, while two turning points 
arise for each curvature area (Figure 3). 

• Curvature: a curvature denotes a curve in a trajectory. Every curve has two turning points that 
denote the start and end of the curve, and a curvature point. A curvature can be also 
characterized by its length and shape (Figure 3). 

• Self-intersection point: a self-intersecting point denotes a point in the trajectories pass through 
at least twice. A self-interacting point is considered as a critical point as it encompasses some 
specific important properties: a self-intersecting point in a trajectory represents a node in the 
trajectory, in which the trajectory passes through twice, surely denoting the relative importance 
of that point. Amongst different parameters that can be considered for a self-intersecting point, 
the time and distance that is covered by the self-intersecting part of the trajectory can be 
mentioned. The role of self-intersecting trajectories has been studied in related work. For 
example, Keler et al. integrated 68 taxi trajectories in Shanghai to detect travel duration variety 
[62], while detecting 271 self-intersecting trajectories amongst 2750 intersections (Figure 4). Self-
intersections are important for biological studies such as the ones applied to animal movement 
patterns and detection. In another related work, Bidder et al. studied horse trajectories [3], while 
Vrotsou et al. applied an approximation algorithm to study birds trajectories and extract 
movement and route patterns [63]. A few geometrical algorithms have been considered for 
detecting self-intersecting trajectories such as Douglas-Peucker. However, the resulting 
geometric simplification is not efficient enough and does not provide sufficient geometric 
simplification [64]. 

Figure 2. Self-intersecting trajectories (noise to the left, real intersection to the right).

The second aim of this study is to select a few trajectory parameters that also identify the number
and locations of POIs. This approach has the advantage of favoring the search for trajectory similarities
when considering, for example, direction or origin-destinations. More precisely, the three selected
parameters can be defined as follows:

• Turning point: a turning point is considered as a changing direction point of a trajectory.
For instance, a trajectory with no curve does not have any turning points, while two turning
points arise for each curvature area (Figure 3).

• Curvature: a curvature denotes a curve in a trajectory. Every curve has two turning points that
denote the start and end of the curve, and a curvature point. A curvature can be also characterized
by its length and shape (Figure 3).

• Self-intersection point: a self-intersecting point denotes a point in the trajectories pass through at
least twice. A self-interacting point is considered as a critical point as it encompasses some specific
important properties: a self-intersecting point in a trajectory represents a node in the trajectory,
in which the trajectory passes through twice, surely denoting the relative importance of that
point. Amongst different parameters that can be considered for a self-intersecting point, the time
and distance that is covered by the self-intersecting part of the trajectory can be mentioned.
The role of self-intersecting trajectories has been studied in related work. For example, Keler et al.
integrated 68 taxi trajectories in Shanghai to detect travel duration variety [62], while detecting 271
self-intersecting trajectories amongst 2750 intersections (Figure 4). Self-intersections are important
for biological studies such as the ones applied to animal movement patterns and detection.
In another related work, Bidder et al. studied horse trajectories [3], while Vrotsou et al. applied an
approximation algorithm to study birds trajectories and extract movement and route patterns [63].
A few geometrical algorithms have been considered for detecting self-intersecting trajectories
such as Douglas-Peucker. However, the resulting geometric simplification is not efficient enough
and does not provide sufficient geometric simplification [64].

A schematic illustration of the application of these three parameters is presented in Figure 3.
A convex hull algorithm is used to extract the minimum number of critical points that can be used
to show all of the geometric properties of the trajectory, including shape, complexity, direction,
and distance. The importance of these three parameters is to contain comprehensive information about
spatial and temporal distances that can be used in geometric data mining analysis of trajectory, like
pattern detection. On the other hand, it should be mentioned that other physical parameters like speed,
acceleration and “stop and go” situation are also important to characterize a trajectory and search for
some similarities.

The rest of the paper is organized as follows. Section 2 introduces the suggested framework for
the detection of turning points and curvature areas. Section 3 presents the experimental evaluation.
Finally, Section 4 concludes the paper and outlines further work.
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2. Algorithm Framework 

We introduced a convex hull algorithm (TCP-CH), whose objective is to detect the principal 
geometric characteristics according to three geometric parameters, that is, curvature, turning, and 
intersection points (Figure 3). Indeed, such critical points should be detected using an appropriate 
algorithm. The flowchart that is illustrated in Figure 5 describes the main steps of the proposed 
approach. First, points with inadequate spatial accuracy are omitted from movement points. These 
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that causes poor accuracy in reporting trajectory points is GPS signal as recorded by a receiver. 
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2. Algorithm Framework

We introduced a convex hull algorithm (TCP-CH), whose objective is to detect the principal geometric
characteristics according to three geometric parameters, that is, curvature, turning, and intersection
points (Figure 3). Indeed, such critical points should be detected using an appropriate algorithm.
The flowchart that is illustrated in Figure 5 describes the main steps of the proposed approach. First,
points with inadequate spatial accuracy are omitted from movement points. These points are usually
located in an illogical distance from the trend of the trajectory. The main reason that causes poor
accuracy in reporting trajectory points is GPS signal as recorded by a receiver. However, in many cases,
such location error at the processing phase can be solved by map matching methods [65]. The main
principle behind map matching methods is to minimize the distance between the projected path on
the map and the input trajectory [66–68]. Remaining noisy data are removed by the application of a
Kalman filter to smooth the positions by recursively modifying error values. This method applies a
recursive process to measurements that are observed over time (i.e., the positions coming in the GPS
receiver), and predicts positions that tend to be closer to the true values of the measurements [48,69–72].
This means that after linear estimation of the points for each trajectory, the standard deviation of
distance (

ISPRS Int. J. Geo-Inf. 2018, 7, 14  6 of 21 

 

However, in many cases, such location error at the processing phase can be solved by map matching 
methods [65]. The main principle behind map matching methods is to minimize the distance between 
the projected path on the map and the input trajectory [66–68]. Remaining noisy data are removed 
by the application of a Kalman filter to smooth the positions by recursively modifying error values. 
This method applies a recursive process to measurements that are observed over time (i.e., the 
positions coming in the GPS receiver), and predicts positions that tend to be closer to the true values 
of the measurements [48,69–72]. This means that after linear estimation of the points for each 
trajectory, the standard deviation of distance (ϭ) between two consecutive points is calculated. Next, 
the points with the distance higher than 2  ϭ  from the linear estimated model are detected as noise 
and are removed from the trajectory. The objective of the processing phase is to extract convex hulls 
as well as turning and self-intersection points from each trajectory. 

 
Figure 5. Methodology flowchart. 

2.1. Trajectory Convex Hull 
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structure was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for 
geometric computation, as well as an independent domain in computer science [73]. Designing 
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p and q of S are completely inside the set. (∀	, ݍ ∈ ܵ → തതതݍ ⊆ ܵ) ↔ set s is convex (1) 

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, …, pn}, that 
is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from 
two dimension points [73,76]. 
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The objective of the processing phase is to extract convex hulls as well as turning and self-intersection
points from each trajectory.
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2.1. Trajectory Convex Hull

One of the commonly used structures in geometric computation is the convex hull that is often
considered to derive some representative geometrical structures [73]. The notion of the convex hull is
widely applied in geometric computation and two-dimensional (2D) implementation of this structure
was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for geometric
computation, as well as an independent domain in computer science [73]. Designing collision free
paths, shape analysis, convex decomposition, and positioning are some representative examples of
convex hull applications [75].

Convexity definition: a set S is a convex set if and only if any connecting line of the two points p
and q of S are completely inside the set.

(∀ p, q ∈ S→ pq ⊆ S)↔ set s is convex (1)

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, . . . , pn},
that is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from
two dimension points [73,76].ISPRS Int. J. Geo-Inf. 2018, 7, 14  7 of 21 
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Several computational methods have been suggested to derive convex hull structures. Amongst
many approaches suggested so far, several approaches consider non-extreme points, extreme edges,
quick hull, gift wrapping, graham, divide and conquer, and incremental [74,76–78]. According
to the structure of trajectory data that can be considered as a time-stamped series of locations,
the implementation of the proposed method is incremental. The pseudo code of the derivation of a
convex hull structure using incremental method is shown in Figure 7.
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The parameters of pihu and pihl are the connecting edges of upper and lower hulls, respectively.
The incremental method divides the convex hull to upper and lower hulls as an upper hull is the part
of the convex hull, which is visible from the above. It runs from its rightmost point to the leftmost
point in counterclockwise order. Lower hull is the remaining part of the convex hull. The derivation of
any convex hull structure in a given trajectory is based on the analysis of a sequence of points. Figure 8
shows an example of formation of four convex hulls labeled from CH1 to CH4 as follows: CH1 = {p1, p2,
p3, p4, p5}, CH2 = {p5, p6, p7, p8, p9}, CH3 = {p9, p10, p11}, and CH4 = {p11, p12, p13, p14, p15, p16} (CH is the
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2.2. Critical Points Derivation

The derivation of the critical points that act as the main descriptors of a given trajectory is based
on the convex hull structure. The TCP-CH is developed hereafter. A trajectory is considered as a
discrete time-stamped series of location data.

Definition 1. A discrete trajectory T is a mapping of a time series t1, . . . , tn to the two dimension plane.
For each time stamp ti, the position (Xti, Yti) in the plane is given as T(ti). Moreover, for two given time stamps
tt and tj with ti < tj, the subtrajectory T from ti to tj is denoted as T[ti,tj] [5].

Another important constraint to determine the robustness of the proposed method is the
monotonicity condition, as introduced in Definition 2.

Definition 2. A criterion is monotone if for any subtrajectory T′ ⊆ T, we have that if T′ satisfies the criterion,
then any subtrajectory T′′ ⊆ T′ also satisfies the criterion [5].

Indeed, curvature and turning points should be extracted for relevant trajectories, that is, curved
trajectories. As suggested in [2], a curvature can be defined as the rate of change in the tangent vector
direction of a given trajectory. A curvature can be approximated by the turning angle of the directed
line segments connecting three given points (Figure 1a).

In Figure 9, an example of curved trajectory is shown. Figure 9a shows a trajectory with at least
three minimum possible points that can denote a curved trajectory while Figure 9b shows a trajectory
with a series of sample points recorded by GPS.
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The following subsections introduce the principles of the proposed method for detecting turning,
curvature, and self-intersecting points.

2.2.1. Turning Points Detection

This sub-section introduces the definition and algorithms that is applied for detecting critical
turning points. In fact, a convex hull structure appears in between two sequential turning points along
a given trajectory. A turning point is defined as follows:

Definition 3. A point T(ti) materializes a turning point for each i = 1, 2, . . . , n from a given trajectory n if and
only if:

1. Conditions (2) and (3) are true for two values of j = i + 1 and s < i − 1

dist[T(ti)T(ti−1), T
(
tj
)
] > 0 (2)
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f or s < i→ ∆ti,s is minimum and dist[T(ti)T(ti−1), T(ts)] 6= 0 (3)

2. The signs of the two values extracted from Relation (4) are same and opposite to the sign of Relation (5) for
two values j and s ∣∣∣∣∣∣∣

xT(ti)
yT(ti)

1
xT(ti−1)

yT(ti−1)
1

xT(ts) yT(ts) 1

∣∣∣∣∣∣∣ 6= 0,

∣∣∣∣∣∣∣
xT(ts+1)

yT(ts+1)
1

xT(ts) yT(ts) 1
xT(ts−1)

yT(ts−1)
1

∣∣∣∣∣∣∣ 6= 0 (4)

∣∣∣∣∣∣∣
xT(ti)

yT(ti)
1

xT(ti−1)
yT(ti−1)

1
xT(tj)

yT(tj)
1

∣∣∣∣∣∣∣ 6= 0 (5)

where xT(ti)
and yT(ti)

are the coordinate specifications of the point T(ti) and same for the points s and
j. Moreover, dist[T(ti)T(ti−1), T

(
tj
)
] describes the distance between the connecting line of T(ti) and

T(ti−1) to the point T(tj). Additionally, ∆ti,s is the time difference of the points i and s. Figure 10 shows
an example of trajectory with turning points. Figure 10a shows two sequential turning points, with a
curvature between them. Convex hulls of a trajectory are sequentially derived as the end point of the ith

convex hull is considered as the start point for the (i + 1)th convex hull. Figure 10b generalizes the case
with a trajectory of seven turning points.
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In fact, the comparison of Figure 10a and Figure 10b illustrates the monotonicity property of the
application of the convex hull structure. This means that between any start and end points of a formed
convex hull along a trajectory, there could not be any turning point and this feature is verified for any
subset of considered convex hull points.

2.2.2. Curvature Point Detection

A critical curvature point is an important geometrical descriptor that helps to specify the shape
and length of the curve. The proposed method for detecting these critical curvature points is as follows:

Definition 4. For each point, T(ti) and T(tj) respectively denote the start and end points of a convex hull,
while T(tr) denotes the curvature point if and only if;

dist
(
[T(ti)T

(
tj
)
], T(tr)

)
is MAX (6)

Figure 11 illustrates the critical points of two convex hulls.ISPRS Int. J. Geo-Inf. 2018, 7, 14  11 of 21 
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As shown in Figure 11, curvature and turning points are valuable parameters to describe the
geometry of a trajectory. This also provides some useful quantifiers to evaluate the similarities between
some trajectories.

2.2.3. Intersection Point Detection

Detecting the location of trajectory self-intersection is another approach for valuing and exploring
possible similarities between trajectories. Indeed, self-intersecting trajectories often occur in real
contexts. Detecting such trajectories allows for us to not only to simplify such trajectories, but also
to qualify them. Considering discrete trajectory data—as they have been used in this study—three
general modes of intersection can be defined. These three modes respectively denote Point to Point,
Point to Edge and Edge to Edge cases. These three different cases are hereafter defined and illustrated
in Figure 12.

Definition 5. Point to Point mode: the points T(tj) and T(ti) are denoted as intersection vertices in a
self-intersected trajectory if and only if for any 0 < i, r, j < n, the turning point T(tr) exists while i < r < j and it
meets the condition below:

T(ti) = T
(
tj
)

(7)
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Definition 6. Point to Edge mode: the points T(ti) and T(ti + 1) are denoted as vertices of the intersection edge
and T(ts) as the intersection point if for any 0 < i, r, j < n, there exist a turning point T(tr) while i < r < s and it
meets the condition below:

ti < ts < tj and
(

dist[T(ti)T(ti+1), T(ts)]
)
= 0 (8)

Definition 7. Edge to Edge mode: the two edges i and j (0 < i, j < n) contain the vertices (i, i + 1) and (j, j + 1)
relatively, and are denoted as intersection edges if the line equation of these two edges intersects.ISPRS Int. J. Geo-Inf. 2018, 7, 14  12 of 21 
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The principle behind the identification of self-intersecting points is to overlay convex
hull structures.

Definition 8. A trajectory T is a self-intersecting trajectory if and only if it meets the two conditions below:

1- Condition 1: After derivation of convex hulls of a given trajectory, at least two convex hulls overlay.
2- Condition 2: For the points f and l that respectively denote the start and end points of the two convex hulls

i and j, an intersection occurs between (fi, Ii) and (fj, Ij) if at least two edges of Ei and Ej (considering
Ej є CHi and Ej є CHj) exist; that is, Ei is inside CHj and Ej is inside CHi.

The two conditions given for Definition 8 verify the existence of some self-intersection points in a
given trajectory. The first condition checks whether at least two convex hulls of a trajectory overlap.
This is a necessary, but not sufficient, condition when detecting self-intersecting points in a trajectory.
The second condition assures the existence of intersection in trajectory data.

Figure 13 illustrates the principles applied by Definition 8. Figure 13a illustrates a subset of a
trajectory with 2 self-intersections. After application of the proposed convex hull structure, 4 convex
hulls are formed from points 1 to 12. These four convex hulls fulfill the first condition of Definition 8
as they overlap. However, the second condition of Definition 8 is true only between the 1st to the 4th
and 3rd to the 4th convex hulls. Figure 13b provides some similar examples.
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Figure 13. Deriving convex hulls to detect self-intersections in (a) simple intersected trajectory and (b)
more complicated trajectory.

3. Implementation

The main aim of this study was to develop a computational approach for the detection of
critical geometrical points of a given trajectory, namely curvature, turning and self-intersection points.
This subsection describes the implementation of the different algorithms that are presented in the
previous section. Figure 14 shows the sample of trajectories used in this study, which are a part of the
Geolife data repository [14], which encompasses a large urban set of trajectories recorded from 2007 to
2012 by GPS devices in the city of Beijing in China.
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The number of trajectories extracted from that sample equals 326, which denote travel patterns
performed as walking, cycling, and by car and bus. After pre-processing and eliminating trajectory
outliers, the total number of trajectory points is 83,412 and the total traveled distance is 67,2195 m.
The shortest trajectory equals 8.54 m, whereas the longest one equals 14,408.2 m. Moreover, the average
length of the trajectories is 2417.94 m, the average distance is 10.21 m, and the average sampling time
is 5.11 s. Most of these trajectories are curved and then fulfill a necessary condition for an appropriate
implementation of our algorithms. Moreover, in order to facilitate and optimize the computation of
the convex hull structure, a smoothing processing step is applied to the dataset. The objective of this
smoothing step is to avoid derivation of small and local convex hulls. Table 3 shows the number of
deleted noisy points at the trajectory data set divided to four groups based on length of the trajectories.
The results that are presented in Table 3 show the existence of the most deviated noisy points in
long-range trajectories, with the largest number of deleted points found in trajectories with lengths
between 800 and 1200 m.

Table 3. Results of deleted noisy points in the trajectories.

Category Length of
Trajectory No. of Trajectories No. of Removed

Points
Variance of Distance to

Fitting Line

1 0–1000 56 63 3.41
2 1000–4000 82 235 7.33
3 4000–8000 127 1376 14.57
4 8000–15,000 61 639 17.20

3.1. Detection of Curvature and Turning Points

The next step of the experimental validation is forming convex hull structures along these
trajectories, as well as deriving turning and curvature points. For example, Figure 15 shows a part
of trajectories 80, 125, 242, and 286, with the identified turning and curvature points. As shown in
Figure 15, between two turning points, only one curvature is detected. This is an implementation
confirmation of the monotonicity condition of the proposed method.
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The proposed model, in addition to the detection of turning and curvature points,
also dramatically decreases the number of derived points. For example, Figure 16 shows the trajectory,
80 consisting of 534 points. As shown in Figure 16, 25 critical curvature and turning points are detected,
revealing the final aim of our study. In fact, the minimum meaningful number of geometric descriptors
is actually derived, while largely decreasing the number of trajectory points necessary to represent the
geometrical characteristics of a given trajectory.ISPRS Int. J. Geo-Inf. 2018, 7, 14  15 of 21 
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Table 3 illustrates the overall figures of our whole implementation. Accordingly, 3253 turning
points have been extracted, representing 0.045% of the input trajectory points. Our approach is
compared to the one applied by [79], which takes into account a few different criteria, such as distance,
direction, area, and shape. When considering our approach, the length ratio between the extract and
initial trajectories is 98.1%, showing the efficiency of the algorithm in preserving the overall shape of a
given trajectory. Moreover, by applying the principles that are introduced in [79], the average geometric
similarity between the derived TCP-CH trajectory and the primary trajectory is 96.3% considering
the parameters of distance, direction, area and shape. This reveals the high ability of the TCP-CH
method in extracting critical points and keeping the primary trajectory geometry using minimum
meaningful points.

One of the most important characteristics of the proposed method is computation load decrement
for detecting turning points. Other methods, like turning functions, use the difference between tangent
angles of the lines connecting sequential points [80]. In order to detect turning points, the mentioned
method requires to derive the heading for each adjacent point, and also the difference between at
least three sequential headings, thus generating computational overload and complexity. Another
advantage of our proposed method is that it can detect these critical turning points only with the
formation of convex hull structures along the trajectory and without heading calculation.

For a more accurate assessment of the TCP-CH method, the turning function algorithm is
implemented and compared, as presented in Table 4. As it can be seen, the turning function method
has extracted 14078 points as meaningful points, which is more than four times the ones extracted
by the TCP-CH method. However, the accuracy of the TCP-CH method is 3.9% higher than that of
the mentioned one. Despite the large numbers of detected points by the turning function method,
it is expected that the similarity accuracy also increases. This is due to the intrinsic structure of the
intended method that avoids taking into account local curvatures, and, thus, preserves better accuracy.
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In other words, the large number of meaningful points in the turning function method generated
computation overload while performing trajectory data analysis. Finally, another disadvantage of
the turning function method is dependency of the accuracy of results to the data scalability. This is
because some of the meaningful points at a small scale are not identifiable in large scales and vice versa.
This occurs since turning function uses the angle difference of successive edges and finally, shows how
the difference changes. Therefore, it falls in local differences, especially in high radius curves.

Table 4. Comparison of results between proposed trajectory critical point detection using convex hull
(TCP-CH) method and turning function method in detecting geometric critical points.

Data Specification TCP-CH Turning Function

Number of Point 73,062 3253 14,078
Mean of geometric similarity (%) - 96.3 92.4

Length (m) 672,195.6 659,423.8 647,162.1

3.2. Detection of Intersection Points

The final step of this study is to identify the self-intersecting trajectories among a set of
trajectory data with potential intersection points. In fact, the TCP-CH algorithm applied to the
identification of self-intersecting trajectories is considered as a possible approach for the detection of
trajectory similarities. Regarding the considered Geolife dataset sample, almost 17% of all data include
self-intersecting trajectory points denoting 58 self-intersecting trajectories. It appears that some of these
trajectories contain some simple, complex, or consecutive intersections. Furthermore, 33 trajectories
have one self-intersection, while 25 trajectories have two or more intersections. In addition, the total
number of intersections gives 105 self-intersection points, which can be used for trajectory similarity
detection. Important aspects that are related to the analysis of these intersection points include their
overall number and location (Figure 17). In this figure, the number of intersections that occurred in
each quarter of trajectories is shown by the red polygon. Moreover, the number of trajectories with
intersection points in each quarter is shown in Figure 17, by the black polygon. The quarter is defined
based on the length of the related trajectory.
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Figure 18 shows an example of a trajectory with 317 nodes and 2141 m length containing
the location of several self-intersecting points, which are illustrated at a larger scale at the bottom.
As shown in Figure 18, the TCP-CH algorithm method is able to derive 26 self-intersection points
in total to keep the main critical points of that trajectory, while being able to properly detect these
self-intersections and their positions in Section 5 by considering notable complexity.ISPRS Int. J. Geo-Inf. 2018, 7, 14  17 of 21 
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4. Conclusions

Nowadays, in most modern cities, urban trajectory data are produced on a regular mode.
This offers many opportunities for the development of data monitoring and analysis frameworks
and location-based services. However, very large volumes of generated data imply to reduce the
complexity and size of databases that are generated in order to decrease computation times and favor
further data analysis. In particular, one common analysis developed and applied to trajectory data is
to explore similarities and outliers. This implies to identify the most important and critical geometrical
characteristics of some given trajectories. The research developed in this paper introduces a convex
hull geometric structure, named TCP-CH, whose objective is to identify the critical points of some
trajectory data. These critical points include the ones considered as such from a geometrical point
of view, and in fact, the ones that can be used to characterize the geometric complexity of a given
trajectory. These critical points are based on three complementary geometric descriptors including
turning, curvature and self-intersection points. One of the peculiarities of the TCP-CH algorithm is
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that it minimizes the number of critical points that are detected for each descriptor, favoring further
similarity analysis. Overall, the main advantages of the proposed method are as follows:

- The TCP-CH method identifies critical curvature, turning and self-intersection descriptors using
one common geometrical structure. In particular, we introduced a new parameter, named self-
intersection, which improves the accuracy of trajectory similarity detection.

- These critical points favor the generalization of derived trajectory that keeps the main and
the most valuable geometrical characteristics of a given trajectory with sufficient accuracy.
Overall, the TCP-CH method exhibits more than 96% of similarity when evaluating distance,
area, direction, and shape parameters.

- Comparison of the TCP-CH method with the turning function method—which is a common
method applied for the detection of curvatures—shows more than 3% accuracy improvement
when considering that the number of detected critical points is four times less than the
mentioned method.

Overall, the TCP-CH method provides a framework that can be used for the analysis of geometrical
trajectories, regardless of the domain of study. Indeed, the examples that are developed in this
paper are closely related to urban trajectories; however, many other domains of application might
be also explored with additional geometrical characteristics. Furthermore, despite the fact that the
contribution is extremely limited to the spatial dimension, integration of additional semantic and
temporal parameters might provide additional information and data inputs that can surely enrich and
extend the applicability of our whole approach.
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