
 International Journal of

Geo-Information

Article

A Geometric Framework for Detection of Critical
Points in a Trajectory Using Convex Hulls

Amin Hosseinpoor Milaghardan 1, Rahim Ali Abbaspour 1,* ID and Christophe Claramunt 2

1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran,
North Kargar Street, After Ale-Ahmad Junction, 1439957131 Tehran, Iran; amin_hoseinpoor@ut.ac.ir

2 Naval Academy Research Institute Lanveoc-Poulmic, BP 600, 29240 Brest Naval, France;
christophe.claramunt@ecole-navale.fr

* Correspondence: abaspour@ut.ac.ir

Received: 12 October 2017; Accepted: 22 December 2017; Published: 4 January 2018

Abstract: Large volumes of trajectory-based data require development of appropriate data
manipulation mechanisms that will offer efficient computational solutions. In particular, identification
of meaningful geometric points of such trajectories is still an open research issue. Detection of these
critical points implies to identify self-intersecting, turning and curvature points so that specific
geometric characteristics that are worth identifying could be denoted. This research introduces
an approach called Trajectory Critical Point detection using Convex Hull (TCP-CH) to identify a
minimum number of critical points. The results can be applied to large trajectory data sets in order
to reduce storage costs and complexity for further data mining and analysis. The main principles
of the TCP-CH algorithm include computing: convex areas, convex hull curvatures, turning points,
and intersecting points. The experimental validation applied to Geolife trajectory dataset reveals
that the proposed framework can identify most of intersecting points in reasonable computing
time. Finally, comparison of the proposed algorithm with other methods, such as turning function
shows that our approach performs relatively well when considering the overall detection quality and
computing time.

Keywords: urban trajectory; convex hull; self-intersection; curvature area; turning point

1. Introduction

Nowadays, positioning data collection devices, such as GPS and wireless communication,
technologies are widely available as personal devices. Users can easily record and save their geometric
paths as trajectory data [1]. Trajectory data can be roughly defined as a sequence of time-stamped
geographic positions of some moving objects, that is, a series of timestamped X and Y coordinates of
each position. For a given trajectory T, the position of a point at a time instant i can be denoted as
T(ti). Such data can be used in many application domains, such as detection and analysis of people’s
movement patterns and detection in the city, migration behavior of animals, and tracking of maritime
and aerial trajectories [2,3]. The analysis of trajectories can be closely associated to the geometric,
temporal, and semantic properties. Typically, the semantic dimension is related to all descriptive
attributes that can be associated to a given trajectory. For instance, the series of Points Of Interest (POI)
related to a given trajectory is considered as a semantic property, in which activities, mode of travel,
neighbor relations, context, and any metadata during movement can be considered [4].

When considering the very large volumes of collected trajectory data often available and/or
collected, the manipulation and analysis of the generated databases are not straightforward tasks [5].
Among the variety of processes that have been developed so far, clustering, Origin-Destination (O-D)
methods, spatio-temporal mining, and graph-based analysis are representative trajectory analyses that

ISPRS Int. J. Geo-Inf. 2018, 7, 14; doi:10.3390/ijgi7010014 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-7133-3844
http://dx.doi.org/10.3390/ijgi7010014
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2018, 7, 14 2 of 21

have been used by previous researchers [6]. Clustering is considered as an efficient computational
approach for data mining and identifying implicit geometric patterns in trajectory data [7]. The O-D
methods are often apply to study the spatial and temporal distribution of start and end points of
human displacements [8]. These studies apply a series of geometric-temporal and semantic criteria
for the derivation of movement patterns [9]. Graph-based studies have been also applied to explore
trajectory patterns [10]. A brief classification of the above methods is shown in Table 1 according to the
methods applied and data considered.

Table 1. Classification of trajectory-based studies.

Approach
Data Used

GPS Data Smart Card Data Cell Phone Data Other

O-D POI detection [8,11–14] [15] [16] [17]
Spatio-temporal mining [9,14,18–24] [25] [16,26,27] [28]

Clustering [29–35] [36–38] [39,40] [29,41,42]
Graph-based [10,43,44] [38] [45,46] [47]

Similarity-based analysis is rather oriented to the detection of trajectory analogies and
peculiarities [31]. Over the past few years, the analysis and search for similarities based on physical
and geometric descriptors has been the object of several research works. According to [48], stop points
provide valuable inputs for studying and differentiating trajectory data. In fact, a key issue relies
on identifying effective descriptors. Events and activities that are associated to either stop points
or movements also give useful insights for studying trajectory differences and similarities [49,50].
When considering geometric properties, structuring a trajectory by line segments based on curvature
points has been suggested as a valuable method for identifying the main characteristics and facilitating
the search for trajectory patterns [28,51–55]. Additional parameters such as velocity, direction,
turning points and angle, acceleration, sinuosity, distance, and travel time surely provide further
insights [56,57]. When considering large trajectory datasets, searching for outliers that deviate from
median trajectories in both space and time has been studied in related work [19,58]. A classification of
these studies according to these parameters is shown in Table 2.

Table 2. Classification of parameter-based previous studies.

Property Parameters Related Work

Geometric

Distance [9,10,19,27,30–32,34,44,45]
Direction [8,16–18,23,27,33,34,39]
Turning Angle [19,23,28,31]
Sinuosity [16,20,28,31]

Physical

Velocity [8,18,19,27,28,44]
Acceleration [18–20]
Stop Point [17,18,27,30,33,34,36,43]
POI [9,10,14–16,21–25,30,39–44,46,47]

Context
People Attributes [8,13,14,25,36]
Time of Occurrence [11,12,15,25,29,34,37,40,42,45,46]

An interesting quality that can be used to study the embedded properties of a trajectory is the
notion of path curvature. The curvature of a given sub-trajectory can be revealed from the position of
a previous point (T(Pleft)) and the following one (T(Pright)), by either analyzing the rate of direction
change or fitting a circle through these two given points (Figure 1).

ISPRS Int. J. Geo-Inf. 2018, 7, 14 3 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, 14 3 of 21

Figure 1. Curvature derivation through (a) using a tangent vector or (b) fitting a circle [5].

Another descriptor that can be used when checking the similarity of some trajectories is the
status of turning points [5,59]. In fact, turning points are located in the beginning and end of some
trajectory curvatures. Turning points associated to a given trajectory curvature should reveal some
direction changes. When searching for the geometric complexity of a given trajectory, or searching
for some trajectory similarities, curvatures and turning points can play an important role. Another
component that should be considered is self-intersecting trajectories. Self-intersecting trajectories
arise when a given trajectory crosses its geometric path once or more. The self-intersection loops are
often omitted from the geometry, although they represent some specific behaviors, like orbiting or
changing the route, which have not being identified. Also, the shape of the path is sometimes
intersected as the double-level intersections [19,20,28,60,61]. Figure 2 illustrates a sample of self-
intersecting trajectories. This figure shows the difference between self-intersecting trajectories that
can be considered as noise and should be removed (Figure 2 left) and those that represent a real sub-
part of a trajectory with a self-intersecting point that is considered as a critical point in the trajectory
(Figure 2 right).

One common difficulty of all the mentioned methods appears at the computational level,
especially when dealing with large trajectory datasets. In order to improve processing times, a given
trajectory should be filtered by keeping the most relevant points, according to the most relevant
geometric descriptors. To this end, several algorithms have already been explored using spatial and
temporal descriptors, such as turning points, directions, sinuosity, and speed [5,19,31]. A key issue
when applying a filtering algorithm to a given trajectory is identifying the most relevant geometric
descriptors, the ones that make sense with respect to the application domain considered, as well as
avoiding dependent parameters. For instance, curvature and direction, as well as speed and
acceleration, are dependent descriptors that should not be considered together.

The objective of this study is to develop a computational approach for identifying critical
descriptors of trajectories, that is, curvature areas, turning points and self-intersecting points. A first
advantage of the three selected parameters is that many other parameters, such as sinuosity, heading
and curviness can be derived from curvature and turning points. As trajectories generated by most
applications are very large, an important requirement is to minimize storage and computational
costs, and then select the minimum number of geometrical parameters from which others can be
derived. The second principle is to take into account the very specificity of urban trajectories and the
fact that self-intersecting trajectories occur in many cases. As this parameter is independent of the
others, it should be considered.

The proposed method follows two main objectives. The first objective is to develop a framework
for identifying the minimum possible numbers of critical points and reducing the processing load of
each parameter. While in previous studies, relatively costly computational processes have been
implemented [61], we introduce an approach, called trajectory critical point detection using convex
hull (TCP-CH), and derive our selected parameters by only using a convex hull algorithm. The
application of this algorithm dramatically reduces the storage and computational costs, especially
when dealing with very large trajectory datasets.

Figure 1. Curvature derivation through (a) using a tangent vector or (b) fitting a circle [5].

Another descriptor that can be used when checking the similarity of some trajectories is the status
of turning points [5,59]. In fact, turning points are located in the beginning and end of some trajectory
curvatures. Turning points associated to a given trajectory curvature should reveal some direction
changes. When searching for the geometric complexity of a given trajectory, or searching for some
trajectory similarities, curvatures and turning points can play an important role. Another component
that should be considered is self-intersecting trajectories. Self-intersecting trajectories arise when a
given trajectory crosses its geometric path once or more. The self-intersection loops are often omitted
from the geometry, although they represent some specific behaviors, like orbiting or changing the
route, which have not being identified. Also, the shape of the path is sometimes intersected as the
double-level intersections [19,20,28,60,61]. Figure 2 illustrates a sample of self-intersecting trajectories.
This figure shows the difference between self-intersecting trajectories that can be considered as noise
and should be removed (Figure 2 left) and those that represent a real sub-part of a trajectory with a
self-intersecting point that is considered as a critical point in the trajectory (Figure 2 right).

One common difficulty of all the mentioned methods appears at the computational level,
especially when dealing with large trajectory datasets. In order to improve processing times, a given
trajectory should be filtered by keeping the most relevant points, according to the most relevant
geometric descriptors. To this end, several algorithms have already been explored using spatial and
temporal descriptors, such as turning points, directions, sinuosity, and speed [5,19,31]. A key issue
when applying a filtering algorithm to a given trajectory is identifying the most relevant geometric
descriptors, the ones that make sense with respect to the application domain considered, as well
as avoiding dependent parameters. For instance, curvature and direction, as well as speed and
acceleration, are dependent descriptors that should not be considered together.

The objective of this study is to develop a computational approach for identifying critical
descriptors of trajectories, that is, curvature areas, turning points and self-intersecting points. A first
advantage of the three selected parameters is that many other parameters, such as sinuosity, heading
and curviness can be derived from curvature and turning points. As trajectories generated by most
applications are very large, an important requirement is to minimize storage and computational costs,
and then select the minimum number of geometrical parameters from which others can be derived.
The second principle is to take into account the very specificity of urban trajectories and the fact
that self-intersecting trajectories occur in many cases. As this parameter is independent of the others,
it should be considered.

The proposed method follows two main objectives. The first objective is to develop a framework
for identifying the minimum possible numbers of critical points and reducing the processing load
of each parameter. While in previous studies, relatively costly computational processes have been
implemented [61], we introduce an approach, called trajectory critical point detection using convex hull
(TCP-CH), and derive our selected parameters by only using a convex hull algorithm. The application
of this algorithm dramatically reduces the storage and computational costs, especially when dealing
with very large trajectory datasets.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 4 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, 14 4 of 21

Figure 2. Self-intersecting trajectories (noise to the left, real intersection to the right).

The second aim of this study is to select a few trajectory parameters that also identify the number
and locations of POIs. This approach has the advantage of favoring the search for trajectory
similarities when considering, for example, direction or origin-destinations. More precisely, the three
selected parameters can be defined as follows:

• Turning point: a turning point is considered as a changing direction point of a trajectory. For
instance, a trajectory with no curve does not have any turning points, while two turning points
arise for each curvature area (Figure 3).

• Curvature: a curvature denotes a curve in a trajectory. Every curve has two turning points that
denote the start and end of the curve, and a curvature point. A curvature can be also
characterized by its length and shape (Figure 3).

• Self-intersection point: a self-intersecting point denotes a point in the trajectories pass through
at least twice. A self-interacting point is considered as a critical point as it encompasses some
specific important properties: a self-intersecting point in a trajectory represents a node in the
trajectory, in which the trajectory passes through twice, surely denoting the relative importance
of that point. Amongst different parameters that can be considered for a self-intersecting point,
the time and distance that is covered by the self-intersecting part of the trajectory can be
mentioned. The role of self-intersecting trajectories has been studied in related work. For
example, Keler et al. integrated 68 taxi trajectories in Shanghai to detect travel duration variety
[62], while detecting 271 self-intersecting trajectories amongst 2750 intersections (Figure 4). Self-
intersections are important for biological studies such as the ones applied to animal movement
patterns and detection. In another related work, Bidder et al. studied horse trajectories [3], while
Vrotsou et al. applied an approximation algorithm to study birds trajectories and extract
movement and route patterns [63]. A few geometrical algorithms have been considered for
detecting self-intersecting trajectories such as Douglas-Peucker. However, the resulting
geometric simplification is not efficient enough and does not provide sufficient geometric
simplification [64].

Figure 2. Self-intersecting trajectories (noise to the left, real intersection to the right).

The second aim of this study is to select a few trajectory parameters that also identify the number
and locations of POIs. This approach has the advantage of favoring the search for trajectory similarities
when considering, for example, direction or origin-destinations. More precisely, the three selected
parameters can be defined as follows:

• Turning point: a turning point is considered as a changing direction point of a trajectory.
For instance, a trajectory with no curve does not have any turning points, while two turning
points arise for each curvature area (Figure 3).

• Curvature: a curvature denotes a curve in a trajectory. Every curve has two turning points that
denote the start and end of the curve, and a curvature point. A curvature can be also characterized
by its length and shape (Figure 3).

• Self-intersection point: a self-intersecting point denotes a point in the trajectories pass through at
least twice. A self-interacting point is considered as a critical point as it encompasses some specific
important properties: a self-intersecting point in a trajectory represents a node in the trajectory,
in which the trajectory passes through twice, surely denoting the relative importance of that
point. Amongst different parameters that can be considered for a self-intersecting point, the time
and distance that is covered by the self-intersecting part of the trajectory can be mentioned.
The role of self-intersecting trajectories has been studied in related work. For example, Keler et al.
integrated 68 taxi trajectories in Shanghai to detect travel duration variety [62], while detecting 271
self-intersecting trajectories amongst 2750 intersections (Figure 4). Self-intersections are important
for biological studies such as the ones applied to animal movement patterns and detection.
In another related work, Bidder et al. studied horse trajectories [3], while Vrotsou et al. applied an
approximation algorithm to study birds trajectories and extract movement and route patterns [63].
A few geometrical algorithms have been considered for detecting self-intersecting trajectories
such as Douglas-Peucker. However, the resulting geometric simplification is not efficient enough
and does not provide sufficient geometric simplification [64].

A schematic illustration of the application of these three parameters is presented in Figure 3.
A convex hull algorithm is used to extract the minimum number of critical points that can be used
to show all of the geometric properties of the trajectory, including shape, complexity, direction,
and distance. The importance of these three parameters is to contain comprehensive information about
spatial and temporal distances that can be used in geometric data mining analysis of trajectory, like
pattern detection. On the other hand, it should be mentioned that other physical parameters like speed,
acceleration and “stop and go” situation are also important to characterize a trajectory and search for
some similarities.

The rest of the paper is organized as follows. Section 2 introduces the suggested framework for
the detection of turning points and curvature areas. Section 3 presents the experimental evaluation.
Finally, Section 4 concludes the paper and outlines further work.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 5 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, 14 5 of 21

Figure 3. A trajectory with curvature, turning and self-intersection points.

A schematic illustration of the application of these three parameters is presented in Figure 3. A
convex hull algorithm is used to extract the minimum number of critical points that can be used to
show all of the geometric properties of the trajectory, including shape, complexity, direction, and
distance. The importance of these three parameters is to contain comprehensive information about
spatial and temporal distances that can be used in geometric data mining analysis of trajectory, like
pattern detection. On the other hand, it should be mentioned that other physical parameters like
speed, acceleration and “stop and go” situation are also important to characterize a trajectory and
search for some similarities.

Figure 4. Self-intersecting trajectories from the Geolife dataset

The rest of the paper is organized as follows. Section 2 introduces the suggested framework for
the detection of turning points and curvature areas. Section 3 presents the experimental evaluation.
Finally, Section 4 concludes the paper and outlines further work.

2. Algorithm Framework

We introduced a convex hull algorithm (TCP-CH), whose objective is to detect the principal
geometric characteristics according to three geometric parameters, that is, curvature, turning, and
intersection points (Figure 3). Indeed, such critical points should be detected using an appropriate
algorithm. The flowchart that is illustrated in Figure 5 describes the main steps of the proposed
approach. First, points with inadequate spatial accuracy are omitted from movement points. These
points are usually located in an illogical distance from the trend of the trajectory. The main reason
that causes poor accuracy in reporting trajectory points is GPS signal as recorded by a receiver.

Figure 3. A trajectory with curvature, turning and self-intersection points.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 5 of 21

Figure 3. A trajectory with curvature, turning and self-intersection points.

A schematic illustration of the application of these three parameters is presented in Figure 3. A
convex hull algorithm is used to extract the minimum number of critical points that can be used to
show all of the geometric properties of the trajectory, including shape, complexity, direction, and
distance. The importance of these three parameters is to contain comprehensive information about
spatial and temporal distances that can be used in geometric data mining analysis of trajectory, like
pattern detection. On the other hand, it should be mentioned that other physical parameters like
speed, acceleration and “stop and go” situation are also important to characterize a trajectory and
search for some similarities.

Figure 4. Self-intersecting trajectories from the Geolife dataset

The rest of the paper is organized as follows. Section 2 introduces the suggested framework for
the detection of turning points and curvature areas. Section 3 presents the experimental evaluation.
Finally, Section 4 concludes the paper and outlines further work.

2. Algorithm Framework

We introduced a convex hull algorithm (TCP-CH), whose objective is to detect the principal
geometric characteristics according to three geometric parameters, that is, curvature, turning, and
intersection points (Figure 3). Indeed, such critical points should be detected using an appropriate
algorithm. The flowchart that is illustrated in Figure 5 describes the main steps of the proposed
approach. First, points with inadequate spatial accuracy are omitted from movement points. These
points are usually located in an illogical distance from the trend of the trajectory. The main reason
that causes poor accuracy in reporting trajectory points is GPS signal as recorded by a receiver.

Figure 4. Self-intersecting trajectories from the Geolife dataset.

2. Algorithm Framework

We introduced a convex hull algorithm (TCP-CH), whose objective is to detect the principal geometric
characteristics according to three geometric parameters, that is, curvature, turning, and intersection
points (Figure 3). Indeed, such critical points should be detected using an appropriate algorithm.
The flowchart that is illustrated in Figure 5 describes the main steps of the proposed approach. First,
points with inadequate spatial accuracy are omitted from movement points. These points are usually
located in an illogical distance from the trend of the trajectory. The main reason that causes poor
accuracy in reporting trajectory points is GPS signal as recorded by a receiver. However, in many cases,
such location error at the processing phase can be solved by map matching methods [65]. The main
principle behind map matching methods is to minimize the distance between the projected path on
the map and the input trajectory [66–68]. Remaining noisy data are removed by the application of a
Kalman filter to smooth the positions by recursively modifying error values. This method applies a
recursive process to measurements that are observed over time (i.e., the positions coming in the GPS
receiver), and predicts positions that tend to be closer to the true values of the measurements [48,69–72].
This means that after linear estimation of the points for each trajectory, the standard deviation of
distance (

ISPRS Int. J. Geo-Inf. 2018, 7, 14 6 of 21

However, in many cases, such location error at the processing phase can be solved by map matching
methods [65]. The main principle behind map matching methods is to minimize the distance between
the projected path on the map and the input trajectory [66–68]. Remaining noisy data are removed
by the application of a Kalman filter to smooth the positions by recursively modifying error values.
This method applies a recursive process to measurements that are observed over time (i.e., the
positions coming in the GPS receiver), and predicts positions that tend to be closer to the true values
of the measurements [48,69–72]. This means that after linear estimation of the points for each
trajectory, the standard deviation of distance (ϭ) between two consecutive points is calculated. Next,
the points with the distance higher than 2 ϭ from the linear estimated model are detected as noise
and are removed from the trajectory. The objective of the processing phase is to extract convex hulls
as well as turning and self-intersection points from each trajectory.

Figure 5. Methodology flowchart.

2.1. Trajectory Convex Hull

One of the commonly used structures in geometric computation is the convex hull that is often
considered to derive some representative geometrical structures [73]. The notion of the convex hull
is widely applied in geometric computation and two-dimensional (2D) implementation of this
structure was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for
geometric computation, as well as an independent domain in computer science [73]. Designing
collision free paths, shape analysis, convex decomposition, and positioning are some representative
examples of convex hull applications [75].

Convexity definition: a set S is a convex set if and only if any connecting line of the two points
p and q of S are completely inside the set. (∀	, ݍ ∈ ܵ → തതതݍ ⊆ ܵ) ↔ set s is convex (1)

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, …, pn}, that
is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from
two dimension points [73,76].

) between two consecutive points is calculated. Next, the points with the distance higher
than 2

ISPRS Int. J. Geo-Inf. 2018, 7, 14 6 of 21

However, in many cases, such location error at the processing phase can be solved by map matching
methods [65]. The main principle behind map matching methods is to minimize the distance between
the projected path on the map and the input trajectory [66–68]. Remaining noisy data are removed
by the application of a Kalman filter to smooth the positions by recursively modifying error values.
This method applies a recursive process to measurements that are observed over time (i.e., the
positions coming in the GPS receiver), and predicts positions that tend to be closer to the true values
of the measurements [48,69–72]. This means that after linear estimation of the points for each
trajectory, the standard deviation of distance (ϭ) between two consecutive points is calculated. Next,
the points with the distance higher than 2 ϭ from the linear estimated model are detected as noise
and are removed from the trajectory. The objective of the processing phase is to extract convex hulls
as well as turning and self-intersection points from each trajectory.

Figure 5. Methodology flowchart.

2.1. Trajectory Convex Hull

One of the commonly used structures in geometric computation is the convex hull that is often
considered to derive some representative geometrical structures [73]. The notion of the convex hull
is widely applied in geometric computation and two-dimensional (2D) implementation of this
structure was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for
geometric computation, as well as an independent domain in computer science [73]. Designing
collision free paths, shape analysis, convex decomposition, and positioning are some representative
examples of convex hull applications [75].

Convexity definition: a set S is a convex set if and only if any connecting line of the two points
p and q of S are completely inside the set. (∀	, ݍ ∈ ܵ → തതതݍ ⊆ ܵ) ↔ set s is convex (1)

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, …, pn}, that
is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from
two dimension points [73,76].

from the linear estimated model are detected as noise and are removed from the trajectory.
The objective of the processing phase is to extract convex hulls as well as turning and self-intersection
points from each trajectory.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 6 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, 14 6 of 21

However, in many cases, such location error at the processing phase can be solved by map matching
methods [65]. The main principle behind map matching methods is to minimize the distance between
the projected path on the map and the input trajectory [66–68]. Remaining noisy data are removed
by the application of a Kalman filter to smooth the positions by recursively modifying error values.
This method applies a recursive process to measurements that are observed over time (i.e., the
positions coming in the GPS receiver), and predicts positions that tend to be closer to the true values
of the measurements [48,69–72]. This means that after linear estimation of the points for each
trajectory, the standard deviation of distance (ϭ) between two consecutive points is calculated. Next,
the points with the distance higher than 2ϭ from the linear estimated model are detected as noise and
are removed from the trajectory. The objective of the processing phase is to extract convex hulls as
well as turning and self-intersection points from each trajectory.

Figure 5. Methodology flowchart.

2.1. Trajectory Convex Hull

One of the commonly used structures in geometric computation is the convex hull that is often
considered to derive some representative geometrical structures [73]. The notion of the convex hull
is widely applied in geometric computation and two-dimensional (2D) implementation of this
structure was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for
geometric computation, as well as an independent domain in computer science [73]. Designing
collision free paths, shape analysis, convex decomposition, and positioning are some representative
examples of convex hull applications [75].

Convexity definition: a set S is a convex set if and only if any connecting line of the two points
p and q of S are completely inside the set. (∀	, ݍ ∈ ܵ → തതതݍ ⊆ ܵ) ↔ set s is convex (1)

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, …, pn}, that
is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from
two dimension points [73,76].

Figure 5. Methodology flowchart.

2.1. Trajectory Convex Hull

One of the commonly used structures in geometric computation is the convex hull that is often
considered to derive some representative geometrical structures [73]. The notion of the convex hull is
widely applied in geometric computation and two-dimensional (2D) implementation of this structure
was first proposed by Graham in 1972 [74]. Graham’s study acts as a foundation for geometric
computation, as well as an independent domain in computer science [73]. Designing collision free
paths, shape analysis, convex decomposition, and positioning are some representative examples of
convex hull applications [75].

Convexity definition: a set S is a convex set if and only if any connecting line of the two points p
and q of S are completely inside the set.

(∀ p, q ∈ S→ pq ⊆ S)↔ set s is convex (1)

Based on the convexity concept, a convex hull structure is a set of n points P = {p1, p2, . . . , pn},
that is the smallest convex set containing all the points of P. Figure 6 shows a convex hull of a set from
two dimension points [73,76].ISPRS Int. J. Geo-Inf. 2018, 7, 14 7 of 21

Figure 6. Two-dimensional (2D) convex hull structure for a given set of points.

Several computational methods have been suggested to derive convex hull structures. Amongst
many approaches suggested so far, several approaches consider non-extreme points, extreme edges,
quick hull, gift wrapping, graham, divide and conquer, and incremental [74,76–78]. According to the
structure of trajectory data that can be considered as a time-stamped series of locations, the
implementation of the proposed method is incremental. The pseudo code of the derivation of a
convex hull structure using incremental method is shown in Figure 7.

Figure 7. Pseudo code of the convex hull structure.

The parameters of pihu and pihl are the connecting edges of upper and lower hulls, respectively.
The incremental method divides the convex hull to upper and lower hulls as an upper hull is the part
of the convex hull, which is visible from the above. It runs from its rightmost point to the leftmost
point in counterclockwise order. Lower hull is the remaining part of the convex hull. The derivation
of any convex hull structure in a given trajectory is based on the analysis of a sequence of points.
Figure 8 shows an example of formation of four convex hulls labeled from CH1 to CH4 as follows: CH1
= {p1, p2, p3, p4, p5}, CH2 = {p5, p6, p7, p8, p9}, CH3 = {p9, p10, p11}, and CH4 = {p11, p12, p13, p14, p15, p16} (CH is
the short form of the convex hull).

Figure 6. Two-dimensional (2D) convex hull structure for a given set of points.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 7 of 21

Several computational methods have been suggested to derive convex hull structures. Amongst
many approaches suggested so far, several approaches consider non-extreme points, extreme edges,
quick hull, gift wrapping, graham, divide and conquer, and incremental [74,76–78]. According
to the structure of trajectory data that can be considered as a time-stamped series of locations,
the implementation of the proposed method is incremental. The pseudo code of the derivation of a
convex hull structure using incremental method is shown in Figure 7.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 7 of 21

Figure 6. Two-dimensional (2D) convex hull structure for a given set of points.

Several computational methods have been suggested to derive convex hull structures. Amongst
many approaches suggested so far, several approaches consider non-extreme points, extreme edges,
quick hull, gift wrapping, graham, divide and conquer, and incremental [74,76–78]. According to the
structure of trajectory data that can be considered as a time-stamped series of locations, the
implementation of the proposed method is incremental. The pseudo code of the derivation of a
convex hull structure using incremental method is shown in Figure 7.

Figure 7. Pseudo code of the convex hull structure.

The parameters of pihu and pihl are the connecting edges of upper and lower hulls, respectively.
The incremental method divides the convex hull to upper and lower hulls as an upper hull is the part
of the convex hull, which is visible from the above. It runs from its rightmost point to the leftmost
point in counterclockwise order. Lower hull is the remaining part of the convex hull. The derivation
of any convex hull structure in a given trajectory is based on the analysis of a sequence of points.
Figure 8 shows an example of formation of four convex hulls labeled from CH1 to CH4 as follows: CH1
= {p1, p2, p3, p4, p5}, CH2 = {p5, p6, p7, p8, p9}, CH3 = {p9, p10, p11}, and CH4 = {p11, p12, p13, p14, p15, p16} (CH is
the short form of the convex hull).

Figure 7. Pseudo code of the convex hull structure.

The parameters of pihu and pihl are the connecting edges of upper and lower hulls, respectively.
The incremental method divides the convex hull to upper and lower hulls as an upper hull is the part
of the convex hull, which is visible from the above. It runs from its rightmost point to the leftmost
point in counterclockwise order. Lower hull is the remaining part of the convex hull. The derivation of
any convex hull structure in a given trajectory is based on the analysis of a sequence of points. Figure 8
shows an example of formation of four convex hulls labeled from CH1 to CH4 as follows: CH1 = {p1, p2,
p3, p4, p5}, CH2 = {p5, p6, p7, p8, p9}, CH3 = {p9, p10, p11}, and CH4 = {p11, p12, p13, p14, p15, p16} (CH is the
short form of the convex hull).ISPRS Int. J. Geo-Inf. 2018, 7, 14 8 of 21

Figure 8. Convex hull structures for a given trajectory.

2.2. Critical Points Derivation

The derivation of the critical points that act as the main descriptors of a given trajectory is based
on the convex hull structure. The TCP-CH is developed hereafter. A trajectory is considered as a
discrete time-stamped series of location data.

Definition 1. A discrete trajectory T is a mapping of a time series t1, …, tn to the two dimension plane. For
each time stamp ti, the position (Xti, Yti) in the plane is given as T(ti). Moreover, for two given time stamps tt
and tj with ti < tj, the subtrajectory T from ti to tj is denoted as T[ti,tj] [5].

Another important constraint to determine the robustness of the proposed method is the
monotonicity condition, as introduced in Definition 2.

Definition 2. A criterion is monotone if for any subtrajectory ܶ′ ⊆ ܶ, we have that if ܶ′ satisfies the criterion,
then any subtrajectory ܶ′′ ⊆ ܶ′	 also satisfies the criterion [5].

Indeed, curvature and turning points should be extracted for relevant trajectories, that is, curved
trajectories. As suggested in [2], a curvature can be defined as the rate of change in the tangent vector
direction of a given trajectory. A curvature can be approximated by the turning angle of the directed
line segments connecting three given points (Figure 1a).

In Figure 9, an example of curved trajectory is shown. Figure 9a shows a trajectory with at least
three minimum possible points that can denote a curved trajectory while Figure 9b shows a trajectory
with a series of sample points recorded by GPS.

Figure 9. Examples of a curved trajectory. (a) A potential curved trajectory with minimum critical
points; (b) A simple trajectory with a series of sample points recorded by GPS.

Figure 8. Convex hull structures for a given trajectory.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 8 of 21

2.2. Critical Points Derivation

The derivation of the critical points that act as the main descriptors of a given trajectory is based
on the convex hull structure. The TCP-CH is developed hereafter. A trajectory is considered as a
discrete time-stamped series of location data.

Definition 1. A discrete trajectory T is a mapping of a time series t1, . . . , tn to the two dimension plane.
For each time stamp ti, the position (Xti, Yti) in the plane is given as T(ti). Moreover, for two given time stamps
tt and tj with ti < tj, the subtrajectory T from ti to tj is denoted as T[ti,tj] [5].

Another important constraint to determine the robustness of the proposed method is the
monotonicity condition, as introduced in Definition 2.

Definition 2. A criterion is monotone if for any subtrajectory T′ ⊆ T, we have that if T′ satisfies the criterion,
then any subtrajectory T′′ ⊆ T′ also satisfies the criterion [5].

Indeed, curvature and turning points should be extracted for relevant trajectories, that is, curved
trajectories. As suggested in [2], a curvature can be defined as the rate of change in the tangent vector
direction of a given trajectory. A curvature can be approximated by the turning angle of the directed
line segments connecting three given points (Figure 1a).

In Figure 9, an example of curved trajectory is shown. Figure 9a shows a trajectory with at least
three minimum possible points that can denote a curved trajectory while Figure 9b shows a trajectory
with a series of sample points recorded by GPS.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 8 of 21

Figure 8. Convex hull structures for a given trajectory.

2.2. Critical Points Derivation

The derivation of the critical points that act as the main descriptors of a given trajectory is based
on the convex hull structure. The TCP-CH is developed hereafter. A trajectory is considered as a
discrete time-stamped series of location data.

Definition 1. A discrete trajectory T is a mapping of a time series t1, …, tn to the two dimension plane. For
each time stamp ti, the position (Xti, Yti) in the plane is given as T(ti). Moreover, for two given time stamps tt
and tj with ti < tj, the subtrajectory T from ti to tj is denoted as T[ti,tj] [5].

Another important constraint to determine the robustness of the proposed method is the
monotonicity condition, as introduced in Definition 2.

Definition 2. A criterion is monotone if for any subtrajectory ܶ′ ⊆ ܶ, we have that if ܶ′ satisfies the criterion,
then any subtrajectory ܶ′′ ⊆ ܶ′	 also satisfies the criterion [5].

Indeed, curvature and turning points should be extracted for relevant trajectories, that is, curved
trajectories. As suggested in [2], a curvature can be defined as the rate of change in the tangent vector
direction of a given trajectory. A curvature can be approximated by the turning angle of the directed
line segments connecting three given points (Figure 1a).

In Figure 9, an example of curved trajectory is shown. Figure 9a shows a trajectory with at least
three minimum possible points that can denote a curved trajectory while Figure 9b shows a trajectory
with a series of sample points recorded by GPS.

Figure 9. Examples of a curved trajectory. (a) A potential curved trajectory with minimum critical
points; (b) A simple trajectory with a series of sample points recorded by GPS.

Figure 9. Examples of a curved trajectory. (a) A potential curved trajectory with minimum critical
points; (b) A simple trajectory with a series of sample points recorded by GPS.

The following subsections introduce the principles of the proposed method for detecting turning,
curvature, and self-intersecting points.

2.2.1. Turning Points Detection

This sub-section introduces the definition and algorithms that is applied for detecting critical
turning points. In fact, a convex hull structure appears in between two sequential turning points along
a given trajectory. A turning point is defined as follows:

Definition 3. A point T(ti) materializes a turning point for each i = 1, 2, . . . , n from a given trajectory n if and
only if:

1. Conditions (2) and (3) are true for two values of j = i + 1 and s < i − 1

dist[T(ti)T(ti−1), T
(
tj
)
] > 0 (2)

ISPRS Int. J. Geo-Inf. 2018, 7, 14 9 of 21

f or s < i→ ∆ti,s is minimum and dist[T(ti)T(ti−1), T(ts)] 6= 0 (3)

2. The signs of the two values extracted from Relation (4) are same and opposite to the sign of Relation (5) for
two values j and s ∣∣∣∣∣∣∣

xT(ti)
yT(ti)

1
xT(ti−1)

yT(ti−1)
1

xT(ts) yT(ts) 1

∣∣∣∣∣∣∣ 6= 0,

∣∣∣∣∣∣∣
xT(ts+1)

yT(ts+1)
1

xT(ts) yT(ts) 1
xT(ts−1)

yT(ts−1)
1

∣∣∣∣∣∣∣ 6= 0 (4)

∣∣∣∣∣∣∣
xT(ti)

yT(ti)
1

xT(ti−1)
yT(ti−1)

1
xT(tj)

yT(tj)
1

∣∣∣∣∣∣∣ 6= 0 (5)

where xT(ti)
and yT(ti)

are the coordinate specifications of the point T(ti) and same for the points s and
j. Moreover, dist[T(ti)T(ti−1), T

(
tj
)
] describes the distance between the connecting line of T(ti) and

T(ti−1) to the point T(tj). Additionally, ∆ti,s is the time difference of the points i and s. Figure 10 shows
an example of trajectory with turning points. Figure 10a shows two sequential turning points, with a
curvature between them. Convex hulls of a trajectory are sequentially derived as the end point of the ith

convex hull is considered as the start point for the (i + 1)th convex hull. Figure 10b generalizes the case
with a trajectory of seven turning points.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 10 of 21

Figure 10. Turning points of a trajectory. (a) Two turning points at the intersection of some Convex
Hulls; (b) Generalisation of turning points at the intersection of several Convex Hulls.

In fact, the comparison of Figure 10a and 10b illustrates the monotonicity property of the
application of the convex hull structure. This means that between any start and end points of a formed
convex hull along a trajectory, there could not be any turning point and this feature is verified for
any subset of considered convex hull points.

2.2.2. Curvature Point Detection

A critical curvature point is an important geometrical descriptor that helps to specify the shape
and length of the curve. The proposed method for detecting these critical curvature points is as follows:

Definition 4. For each point, T(ti) and T(tj) respectively denote the start and end points of a convex hull, while
T(tr) denotes the curvature point if and only if; ݀݅ݐݏ ൬ቂܶ(ݐప)ܶ൫ݐఫ൯തതതതതതതതതതതതതቃ , ൰(ݐ)ܶ ݏ݅ (6) ܺܣܯ

Figure 11 illustrates the critical points of two convex hulls.

Figure 10. Turning points of a trajectory. (a) Two turning points at the intersection of some Convex
Hulls; (b) Generalisation of turning points at the intersection of several Convex Hulls.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 10 of 21

In fact, the comparison of Figure 10a and Figure 10b illustrates the monotonicity property of the
application of the convex hull structure. This means that between any start and end points of a formed
convex hull along a trajectory, there could not be any turning point and this feature is verified for any
subset of considered convex hull points.

2.2.2. Curvature Point Detection

A critical curvature point is an important geometrical descriptor that helps to specify the shape
and length of the curve. The proposed method for detecting these critical curvature points is as follows:

Definition 4. For each point, T(ti) and T(tj) respectively denote the start and end points of a convex hull,
while T(tr) denotes the curvature point if and only if;

dist
(
[T(ti)T

(
tj
)
], T(tr)

)
is MAX (6)

Figure 11 illustrates the critical points of two convex hulls.ISPRS Int. J. Geo-Inf. 2018, 7, 14 11 of 21

Figure 11. Detecting critical points of a curvature using a convex hull structure.

As shown in Figure 11, curvature and turning points are valuable parameters to describe the
geometry of a trajectory. This also provides some useful quantifiers to evaluate the similarities
between some trajectories.

2.2.3. Intersection Point Detection

Detecting the location of trajectory self-intersection is another approach for valuing and
exploring possible similarities between trajectories. Indeed, self-intersecting trajectories often occur
in real contexts. Detecting such trajectories allows for us to not only to simplify such trajectories, but
also to qualify them. Considering discrete trajectory data—as they have been used in this study—
three general modes of intersection can be defined. These three modes respectively denote Point to
Point, Point to Edge and Edge to Edge cases. These three different cases are hereafter defined and
illustrated in Figure 12.

Definition 5. Point to Point mode: the points T(tj) and T(ti) are denoted as intersection vertices in a self-
intersected trajectory if and only if for any 0 < i, r, j < n, the turning point T(tr) exists while i < r < j and it
meets the condition below: ܶ(ݐ) ൌ (7) (ݐ)ܶ

Definition 6. Point to Edge mode: the points T(ti) and T(ti + 1) are denoted as vertices of the intersection edge
and T(ts) as the intersection point if for any 0 < i, r, j < n, there exist a turning point T(tr) while i < r < s and it
meets the condition below: ݐ < ௦ݐ < ݐ ܽ݊݀ ൫݀݅ݐݏ ,തതതതതതതതതതതതതതതത(పାଵݐ)ܶ(పݐ)ܶ] ൯[(௦ݐ)ܶ ൌ 0 (8)

Definition 7. Edge to Edge mode: the two edges i and j (0 < i, j < n) contain the vertices (i, i + 1) and (j, j + 1)
relatively, and are denoted as intersection edges if the line equation of these two edges intersects.

Figure 11. Detecting critical points of a curvature using a convex hull structure.

As shown in Figure 11, curvature and turning points are valuable parameters to describe the
geometry of a trajectory. This also provides some useful quantifiers to evaluate the similarities between
some trajectories.

2.2.3. Intersection Point Detection

Detecting the location of trajectory self-intersection is another approach for valuing and exploring
possible similarities between trajectories. Indeed, self-intersecting trajectories often occur in real
contexts. Detecting such trajectories allows for us to not only to simplify such trajectories, but also
to qualify them. Considering discrete trajectory data—as they have been used in this study—three
general modes of intersection can be defined. These three modes respectively denote Point to Point,
Point to Edge and Edge to Edge cases. These three different cases are hereafter defined and illustrated
in Figure 12.

Definition 5. Point to Point mode: the points T(tj) and T(ti) are denoted as intersection vertices in a
self-intersected trajectory if and only if for any 0 < i, r, j < n, the turning point T(tr) exists while i < r < j and it
meets the condition below:

T(ti) = T
(
tj
)

(7)

ISPRS Int. J. Geo-Inf. 2018, 7, 14 11 of 21

Definition 6. Point to Edge mode: the points T(ti) and T(ti + 1) are denoted as vertices of the intersection edge
and T(ts) as the intersection point if for any 0 < i, r, j < n, there exist a turning point T(tr) while i < r < s and it
meets the condition below:

ti < ts < tj and
(

dist[T(ti)T(ti+1), T(ts)]
)
= 0 (8)

Definition 7. Edge to Edge mode: the two edges i and j (0 < i, j < n) contain the vertices (i, i + 1) and (j, j + 1)
relatively, and are denoted as intersection edges if the line equation of these two edges intersects.ISPRS Int. J. Geo-Inf. 2018, 7, 14 12 of 21

Figure 12. Three modes of intersection in self-intersection trajectories. (a) Point to Point Intersection;
(b) Edge to Point Intersection; (c) Edge to Edge Intersection.

The principle behind the identification of self-intersecting points is to overlay convex hull structures.

Definition 8. A trajectory T is a self-intersecting trajectory if and only if it meets the two conditions below:

1- Condition 1: After derivation of convex hulls of a given trajectory, at least two convex hulls overlay.
2- Condition 2: For the points f and l that respectively denote the start and end points of the two convex hulls

i and j, an intersection occurs between (fi, Ii) and (fj, Ij) if at least two edges of Ei and Ej (considering Ej є
CHi and Ej є CHj) exist; that is, Ei is inside CHj and Ej is inside CHi.

The two conditions given for Definition 8 verify the existence of some self-intersection points in
a given trajectory. The first condition checks whether at least two convex hulls of a trajectory overlap.
This is a necessary, but not sufficient, condition when detecting self-intersecting points in a trajectory.
The second condition assures the existence of intersection in trajectory data.

Figure 13 illustrates the principles applied by Definition 8. Figure 13a illustrates a subset of a
trajectory with 2 self-intersections. After application of the proposed convex hull structure, 4 convex
hulls are formed from points 1 to 12. These four convex hulls fulfill the first condition of Definition 8
as they overlap. However, the second condition of Definition 8 is true only between the 1st to the 4th
and 3rd to the 4th convex hulls. Figure 13b provides some similar examples.

Figure 13. Deriving convex hulls to detect self-intersections in (a) simple intersected trajectory and
(b) more complicated trajectory.

3. Implementation

The main aim of this study was to develop a computational approach for the detection of critical
geometrical points of a given trajectory, namely curvature, turning and self-intersection points. This
subsection describes the implementation of the different algorithms that are presented in the previous

Figure 12. Three modes of intersection in self-intersection trajectories. (a) Point to Point Intersection;
(b) Edge to Point Intersection; (c) Edge to Edge Intersection.

The principle behind the identification of self-intersecting points is to overlay convex
hull structures.

Definition 8. A trajectory T is a self-intersecting trajectory if and only if it meets the two conditions below:

1- Condition 1: After derivation of convex hulls of a given trajectory, at least two convex hulls overlay.
2- Condition 2: For the points f and l that respectively denote the start and end points of the two convex hulls

i and j, an intersection occurs between (fi, Ii) and (fj, Ij) if at least two edges of Ei and Ej (considering
Ej є CHi and Ej є CHj) exist; that is, Ei is inside CHj and Ej is inside CHi.

The two conditions given for Definition 8 verify the existence of some self-intersection points in a
given trajectory. The first condition checks whether at least two convex hulls of a trajectory overlap.
This is a necessary, but not sufficient, condition when detecting self-intersecting points in a trajectory.
The second condition assures the existence of intersection in trajectory data.

Figure 13 illustrates the principles applied by Definition 8. Figure 13a illustrates a subset of a
trajectory with 2 self-intersections. After application of the proposed convex hull structure, 4 convex
hulls are formed from points 1 to 12. These four convex hulls fulfill the first condition of Definition 8
as they overlap. However, the second condition of Definition 8 is true only between the 1st to the 4th
and 3rd to the 4th convex hulls. Figure 13b provides some similar examples.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 12 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, 14 12 of 21

Figure 12. Three modes of intersection in self-intersection trajectories. (a) Point to Point Intersection;
(b) Edge to Point Intersection; (c) Edge to Edge Intersection.

The principle behind the identification of self-intersecting points is to overlay convex hull structures.

Definition 8. A trajectory T is a self-intersecting trajectory if and only if it meets the two conditions below:

1- Condition 1: After derivation of convex hulls of a given trajectory, at least two convex hulls overlay.
2- Condition 2: For the points f and l that respectively denote the start and end points of the two convex hulls

i and j, an intersection occurs between (fi, Ii) and (fj, Ij) if at least two edges of Ei and Ej (considering Ej є
CHi and Ej є CHj) exist; that is, Ei is inside CHj and Ej is inside CHi.

The two conditions given for Definition 8 verify the existence of some self-intersection points in
a given trajectory. The first condition checks whether at least two convex hulls of a trajectory overlap.
This is a necessary, but not sufficient, condition when detecting self-intersecting points in a trajectory.
The second condition assures the existence of intersection in trajectory data.

Figure 13 illustrates the principles applied by Definition 8. Figure 13a illustrates a subset of a
trajectory with 2 self-intersections. After application of the proposed convex hull structure, 4 convex
hulls are formed from points 1 to 12. These four convex hulls fulfill the first condition of Definition 8
as they overlap. However, the second condition of Definition 8 is true only between the 1st to the 4th
and 3rd to the 4th convex hulls. Figure 13b provides some similar examples.

Figure 13. Deriving convex hulls to detect self-intersections in (a) simple intersected trajectory and
(b) more complicated trajectory.

3. Implementation

The main aim of this study was to develop a computational approach for the detection of critical
geometrical points of a given trajectory, namely curvature, turning and self-intersection points. This
subsection describes the implementation of the different algorithms that are presented in the previous

Figure 13. Deriving convex hulls to detect self-intersections in (a) simple intersected trajectory and (b)
more complicated trajectory.

3. Implementation

The main aim of this study was to develop a computational approach for the detection of
critical geometrical points of a given trajectory, namely curvature, turning and self-intersection points.
This subsection describes the implementation of the different algorithms that are presented in the
previous section. Figure 14 shows the sample of trajectories used in this study, which are a part of the
Geolife data repository [14], which encompasses a large urban set of trajectories recorded from 2007 to
2012 by GPS devices in the city of Beijing in China.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 13 of 21

section. Figure 14 shows the sample of trajectories used in this study, which are a part of the Geolife
data repository [14], which encompasses a large urban set of trajectories recorded from 2007 to 2012
by GPS devices in the city of Beijing in China.

The number of trajectories extracted from that sample equals 326, which denote travel patterns
performed as walking, cycling, and by car and bus. After pre-processing and eliminating trajectory
outliers, the total number of trajectory points is 83,412 and the total traveled distance is 67,2195 m.
The shortest trajectory equals 8.54 m, whereas the longest one equals 14,408.2 m. Moreover, the
average length of the trajectories is 2417.94 m, the average distance is 10.21 m, and the average
sampling time is 5.11 s. Most of these trajectories are curved and then fulfill a necessary condition for
an appropriate implementation of our algorithms. Moreover, in order to facilitate and optimize the
computation of the convex hull structure, a smoothing processing step is applied to the dataset. The
objective of this smoothing step is to avoid derivation of small and local convex hulls. Table 3 shows
the number of deleted noisy points at the trajectory data set divided to four groups based on length
of the trajectories. The results that are presented in Table 3 show the existence of the most deviated
noisy points in long-range trajectories, with the largest number of deleted points found in trajectories
with lengths between 800 and 1200 m.

Figure 14. Geolife trajectories sample extract [14].

Figure 14. Geolife trajectories sample extract [14].

ISPRS Int. J. Geo-Inf. 2018, 7, 14 13 of 21

The number of trajectories extracted from that sample equals 326, which denote travel patterns
performed as walking, cycling, and by car and bus. After pre-processing and eliminating trajectory
outliers, the total number of trajectory points is 83,412 and the total traveled distance is 67,2195 m.
The shortest trajectory equals 8.54 m, whereas the longest one equals 14,408.2 m. Moreover, the average
length of the trajectories is 2417.94 m, the average distance is 10.21 m, and the average sampling time
is 5.11 s. Most of these trajectories are curved and then fulfill a necessary condition for an appropriate
implementation of our algorithms. Moreover, in order to facilitate and optimize the computation of
the convex hull structure, a smoothing processing step is applied to the dataset. The objective of this
smoothing step is to avoid derivation of small and local convex hulls. Table 3 shows the number of
deleted noisy points at the trajectory data set divided to four groups based on length of the trajectories.
The results that are presented in Table 3 show the existence of the most deviated noisy points in
long-range trajectories, with the largest number of deleted points found in trajectories with lengths
between 800 and 1200 m.

Table 3. Results of deleted noisy points in the trajectories.

Category Length of
Trajectory No. of Trajectories No. of Removed

Points
Variance of Distance to

Fitting Line

1 0–1000 56 63 3.41
2 1000–4000 82 235 7.33
3 4000–8000 127 1376 14.57
4 8000–15,000 61 639 17.20

3.1. Detection of Curvature and Turning Points

The next step of the experimental validation is forming convex hull structures along these
trajectories, as well as deriving turning and curvature points. For example, Figure 15 shows a part
of trajectories 80, 125, 242, and 286, with the identified turning and curvature points. As shown in
Figure 15, between two turning points, only one curvature is detected. This is an implementation
confirmation of the monotonicity condition of the proposed method.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 14 of 21

Table 3. Results of deleted noisy points in the trajectories.

Category
Length of
Trajectory

No. of
Trajectories

No. of Removed
Points

Variance of Distance
to Fitting Line

1 0–1000 56 63 3.41
2 1000–4000 82 235 7.33
3 4000–8000 127 1376 14.57
4 8000–15,000 61 639 17.20

3.1. Detection of Curvature and Turning Points

The next step of the experimental validation is forming convex hull structures along these
trajectories, as well as deriving turning and curvature points. For example, Figure 15 shows a part of
trajectories 80, 125, 242, and 286, with the identified turning and curvature points. As shown in Figure
15, between two turning points, only one curvature is detected. This is an implementation
confirmation of the monotonicity condition of the proposed method.

Figure 15. Detected trajectory turning and curvature points in different parts of some trajectories.

The proposed model, in addition to the detection of turning and curvature points, also
dramatically decreases the number of derived points. For example, Figure 16 shows the trajectory, 80
consisting of 534 points. As shown in Figure 16, 25 critical curvature and turning points are detected,
revealing the final aim of our study. In fact, the minimum meaningful number of geometric
descriptors is actually derived, while largely decreasing the number of trajectory points necessary to
represent the geometrical characteristics of a given trajectory.

Figure 15. Detected trajectory turning and curvature points in different parts of some trajectories.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 14 of 21

The proposed model, in addition to the detection of turning and curvature points,
also dramatically decreases the number of derived points. For example, Figure 16 shows the trajectory,
80 consisting of 534 points. As shown in Figure 16, 25 critical curvature and turning points are detected,
revealing the final aim of our study. In fact, the minimum meaningful number of geometric descriptors
is actually derived, while largely decreasing the number of trajectory points necessary to represent the
geometrical characteristics of a given trajectory.ISPRS Int. J. Geo-Inf. 2018, 7, 14 15 of 21

Figure 16. Number and location of extracted critical curvature and turning points.

Table 3 illustrates the overall figures of our whole implementation. Accordingly, 3253 turning
points have been extracted, representing 0.045% of the input trajectory points. Our approach is
compared to the one applied by [79], which takes into account a few different criteria, such as
distance, direction, area, and shape. When considering our approach, the length ratio between the
extract and initial trajectories is 98.1%, showing the efficiency of the algorithm in preserving the
overall shape of a given trajectory. Moreover, by applying the principles that are introduced in [79],
the average geometric similarity between the derived TCP-CH trajectory and the primary trajectory
is 96.3% considering the parameters of distance, direction, area and shape. This reveals the high
ability of the TCP-CH method in extracting critical points and keeping the primary trajectory
geometry using minimum meaningful points.

One of the most important characteristics of the proposed method is computation load decrement
for detecting turning points. Other methods, like turning functions, use the difference between tangent
angles of the lines connecting sequential points [80]. In order to detect turning points, the mentioned
method requires to derive the heading for each adjacent point, and also the difference between at least
three sequential headings, thus generating computational overload and complexity. Another advantage
of our proposed method is that it can detect these critical turning points only with the formation of
convex hull structures along the trajectory and without heading calculation.

For a more accurate assessment of the TCP-CH method, the turning function algorithm is
implemented and compared, as presented in Table 4. As it can be seen, the turning function method
has extracted 14078 points as meaningful points, which is more than four times the ones extracted by
the TCP-CH method. However, the accuracy of the TCP-CH method is 3.9% higher than that of the
mentioned one. Despite the large numbers of detected points by the turning function method, it is
expected that the similarity accuracy also increases. This is due to the intrinsic structure of the
intended method that avoids taking into account local curvatures, and, thus, preserves better
accuracy. In other words, the large number of meaningful points in the turning function method
generated computation overload while performing trajectory data analysis. Finally, another
disadvantage of the turning function method is dependency of the accuracy of results to the data
scalability. This is because some of the meaningful points at a small scale are not identifiable in large
scales and vice versa. This occurs since turning function uses the angle difference of successive edges
and finally, shows how the difference changes. Therefore, it falls in local differences, especially in
high radius curves.

Figure 16. Number and location of extracted critical curvature and turning points.

Table 3 illustrates the overall figures of our whole implementation. Accordingly, 3253 turning
points have been extracted, representing 0.045% of the input trajectory points. Our approach is
compared to the one applied by [79], which takes into account a few different criteria, such as distance,
direction, area, and shape. When considering our approach, the length ratio between the extract and
initial trajectories is 98.1%, showing the efficiency of the algorithm in preserving the overall shape of a
given trajectory. Moreover, by applying the principles that are introduced in [79], the average geometric
similarity between the derived TCP-CH trajectory and the primary trajectory is 96.3% considering
the parameters of distance, direction, area and shape. This reveals the high ability of the TCP-CH
method in extracting critical points and keeping the primary trajectory geometry using minimum
meaningful points.

One of the most important characteristics of the proposed method is computation load decrement
for detecting turning points. Other methods, like turning functions, use the difference between tangent
angles of the lines connecting sequential points [80]. In order to detect turning points, the mentioned
method requires to derive the heading for each adjacent point, and also the difference between at
least three sequential headings, thus generating computational overload and complexity. Another
advantage of our proposed method is that it can detect these critical turning points only with the
formation of convex hull structures along the trajectory and without heading calculation.

For a more accurate assessment of the TCP-CH method, the turning function algorithm is
implemented and compared, as presented in Table 4. As it can be seen, the turning function method
has extracted 14078 points as meaningful points, which is more than four times the ones extracted
by the TCP-CH method. However, the accuracy of the TCP-CH method is 3.9% higher than that of
the mentioned one. Despite the large numbers of detected points by the turning function method,
it is expected that the similarity accuracy also increases. This is due to the intrinsic structure of the
intended method that avoids taking into account local curvatures, and, thus, preserves better accuracy.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 15 of 21

In other words, the large number of meaningful points in the turning function method generated
computation overload while performing trajectory data analysis. Finally, another disadvantage of
the turning function method is dependency of the accuracy of results to the data scalability. This is
because some of the meaningful points at a small scale are not identifiable in large scales and vice versa.
This occurs since turning function uses the angle difference of successive edges and finally, shows how
the difference changes. Therefore, it falls in local differences, especially in high radius curves.

Table 4. Comparison of results between proposed trajectory critical point detection using convex hull
(TCP-CH) method and turning function method in detecting geometric critical points.

Data Specification TCP-CH Turning Function

Number of Point 73,062 3253 14,078
Mean of geometric similarity (%) - 96.3 92.4

Length (m) 672,195.6 659,423.8 647,162.1

3.2. Detection of Intersection Points

The final step of this study is to identify the self-intersecting trajectories among a set of
trajectory data with potential intersection points. In fact, the TCP-CH algorithm applied to the
identification of self-intersecting trajectories is considered as a possible approach for the detection of
trajectory similarities. Regarding the considered Geolife dataset sample, almost 17% of all data include
self-intersecting trajectory points denoting 58 self-intersecting trajectories. It appears that some of these
trajectories contain some simple, complex, or consecutive intersections. Furthermore, 33 trajectories
have one self-intersection, while 25 trajectories have two or more intersections. In addition, the total
number of intersections gives 105 self-intersection points, which can be used for trajectory similarity
detection. Important aspects that are related to the analysis of these intersection points include their
overall number and location (Figure 17). In this figure, the number of intersections that occurred in
each quarter of trajectories is shown by the red polygon. Moreover, the number of trajectories with
intersection points in each quarter is shown in Figure 17, by the black polygon. The quarter is defined
based on the length of the related trajectory.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 16 of 21

Table 4. Comparison of results between proposed trajectory critical point detection using convex hull
(TCP-CH) method and turning function method in detecting geometric critical points.

 Data Specification TCP-CH Turning Function
Number of Point 73,062 3253 14,078
Mean of geometric similarity (%) - 96.3 92.4
Length (m) 672,195.6 659,423.8 647,162.1

3.2. Detection of Intersection Points

The final step of this study is to identify the self-intersecting trajectories among a set of trajectory
data with potential intersection points. In fact, the TCP-CH algorithm applied to the identification of
self-intersecting trajectories is considered as a possible approach for the detection of trajectory
similarities. Regarding the considered Geolife dataset sample, almost 17% of all data include self-
intersecting trajectory points denoting 58 self-intersecting trajectories. It appears that some of these
trajectories contain some simple, complex, or consecutive intersections. Furthermore, 33 trajectories
have one self-intersection, while 25 trajectories have two or more intersections. In addition, the total
number of intersections gives 105 self-intersection points, which can be used for trajectory similarity
detection. Important aspects that are related to the analysis of these intersection points include their
overall number and location (Figure 17). In this figure, the number of intersections that occurred in
each quarter of trajectories is shown by the red polygon. Moreover, the number of trajectories with
intersection points in each quarter is shown in Figure 17, by the black polygon. The quarter is defined
based on the length of the related trajectory.

Figure 17. Trajectory self-intersection diagram.

Figure 18 shows an example of a trajectory with 317 nodes and 2141 m length containing the
location of several self-intersecting points, which are illustrated at a larger scale at the bottom. As
shown in Figure 18, the TCP-CH algorithm method is able to derive 26 self-intersection points in total
to keep the main critical points of that trajectory, while being able to properly detect these self-
intersections and their positions in Section 5 by considering notable complexity.

0
10
20
30
40
50

1

2

3

4

Self-intersections Diagram

No. of Intersections

No. of Trajectories

Figure 17. Trajectory self-intersection diagram.

ISPRS Int. J. Geo-Inf. 2018, 7, 14 16 of 21

Figure 18 shows an example of a trajectory with 317 nodes and 2141 m length containing
the location of several self-intersecting points, which are illustrated at a larger scale at the bottom.
As shown in Figure 18, the TCP-CH algorithm method is able to derive 26 self-intersection points
in total to keep the main critical points of that trajectory, while being able to properly detect these
self-intersections and their positions in Section 5 by considering notable complexity.ISPRS Int. J. Geo-Inf. 2018, 7, 14 17 of 21

Figure 18. Self-intersecting points of a given trajectory.

4. Conclusions

Nowadays, in most modern cities, urban trajectory data are produced on a regular mode. This
offers many opportunities for the development of data monitoring and analysis frameworks and
location-based services. However, very large volumes of generated data imply to reduce the
complexity and size of databases that are generated in order to decrease computation times and favor
further data analysis. In particular, one common analysis developed and applied to trajectory data is
to explore similarities and outliers. This implies to identify the most important and critical geometrical
characteristics of some given trajectories. The research developed in this paper introduces a convex
hull geometric structure, named TCP-CH, whose objective is to identify the critical points of some
trajectory data. These critical points include the ones considered as such from a geometrical point of
view, and in fact, the ones that can be used to characterize the geometric complexity of a given
trajectory. These critical points are based on three complementary geometric descriptors including
turning, curvature and self-intersection points. One of the peculiarities of the TCP-CH algorithm is
that it minimizes the number of critical points that are detected for each descriptor, favoring further
similarity analysis. Overall, the main advantages of the proposed method are as follows:

- The TCP-CH method identifies critical curvature, turning and self-intersection descriptors using
one common geometrical structure. In particular, we introduced a new parameter, named self-
intersection, which improves the accuracy of trajectory similarity detection.

- These critical points favor the generalization of derived trajectory that keeps the main and the
most valuable geometrical characteristics of a given trajectory with sufficient accuracy. Overall,
the TCP-CH method exhibits more than 96% of similarity when evaluating distance, area,
direction, and shape parameters.

Figure 18. Self-intersecting points of a given trajectory.

4. Conclusions

Nowadays, in most modern cities, urban trajectory data are produced on a regular mode.
This offers many opportunities for the development of data monitoring and analysis frameworks
and location-based services. However, very large volumes of generated data imply to reduce the
complexity and size of databases that are generated in order to decrease computation times and favor
further data analysis. In particular, one common analysis developed and applied to trajectory data is
to explore similarities and outliers. This implies to identify the most important and critical geometrical
characteristics of some given trajectories. The research developed in this paper introduces a convex
hull geometric structure, named TCP-CH, whose objective is to identify the critical points of some
trajectory data. These critical points include the ones considered as such from a geometrical point
of view, and in fact, the ones that can be used to characterize the geometric complexity of a given
trajectory. These critical points are based on three complementary geometric descriptors including
turning, curvature and self-intersection points. One of the peculiarities of the TCP-CH algorithm is

ISPRS Int. J. Geo-Inf. 2018, 7, 14 17 of 21

that it minimizes the number of critical points that are detected for each descriptor, favoring further
similarity analysis. Overall, the main advantages of the proposed method are as follows:

- The TCP-CH method identifies critical curvature, turning and self-intersection descriptors using
one common geometrical structure. In particular, we introduced a new parameter, named self-
intersection, which improves the accuracy of trajectory similarity detection.

- These critical points favor the generalization of derived trajectory that keeps the main and
the most valuable geometrical characteristics of a given trajectory with sufficient accuracy.
Overall, the TCP-CH method exhibits more than 96% of similarity when evaluating distance,
area, direction, and shape parameters.

- Comparison of the TCP-CH method with the turning function method—which is a common
method applied for the detection of curvatures—shows more than 3% accuracy improvement
when considering that the number of detected critical points is four times less than the
mentioned method.

Overall, the TCP-CH method provides a framework that can be used for the analysis of geometrical
trajectories, regardless of the domain of study. Indeed, the examples that are developed in this
paper are closely related to urban trajectories; however, many other domains of application might
be also explored with additional geometrical characteristics. Furthermore, despite the fact that the
contribution is extremely limited to the spatial dimension, integration of additional semantic and
temporal parameters might provide additional information and data inputs that can surely enrich and
extend the applicability of our whole approach.

Author Contributions: Amin Hosseinpoor Milaghardan is a student at the University of Tehran supervised by
Rahim Ali Abbaspour and advised by Christophe Claramunt. Amin Hosseinpoor Milaghardan and Rahim Ali
Abbaspour conceived and designed the methodology while Amin Hosseinpoor Milaghardan implemented the
whole methodology. Amin Hosseinpoor Milaghardan wrote the main draft of the paper; while Rahim Ali
Abbaspour and Christophe Claramunt have critically revised and extended the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhao, P.; Qin, K.; Ye, X.; Wang, Y.; Chen, Y. A trajectory clustering approach based on decision graph and
data field for detecting hotspots. Int. J. Geogr. Inf. Sci. 2016, 31, 1–27. [CrossRef]

2. Bertrand, F.; Bouju, A.; Claramunt, C.; Devogele, T.; Ray, C. Web architecture for monitoring and visualizing
mobile objects in maritime contexts. In Proceedings of the International Symposium on Web and Wireless
Geographical Information Systems, Cardiff, UK, 28–29 November 2007; Springer: Berlin, Germany.

3. Bidder, O.; Walker, J.; Jones, M.; Holton, M.; Urge, P.; Scantlebury, D.; Marks, N.; Magowan, E.; Maguire, I.;
Wilson, R. Step by step: Reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol.
2015, 3, 23. [CrossRef] [PubMed]

4. Bogorny, V.; Renso, C.; Aquino, A.R.; Lucca Siqueira, F.; Alvares, L.O. CONSTAnT—A conceptual data
model for semantic trajectories of moving objects. Trans. GIS 2014, 18, 66–88. [CrossRef]

5. Buchin, M.; Driemel, A.; van Kreveld, M.; Sacristán, V. Segmenting trajectories: A framework and algorithms
using spatiotemporal criteria. J. Spat. Inf. Sci. 2011, 2011, 33–63.

6. Sadahiro, Y.; Lay, R.; Kobayashi, T. Trajectories of moving objects on a network: Detection of similarities,
visualization of relations, and classification of trajectories. Trans. GIS 2013, 17, 18–40. [CrossRef]

7. Izakian, Z.; Mesgari, M.S.; Abraham, A. Automated clustering of trajectory data using a particle swarm
optimization. Comput. Environ. Urban Syst. 2016, 55, 55–65. [CrossRef]

8. Lu, M.; Wang, Z.; Liang, J.; Yuan, X. OD-Wheel: Visual design to explore OD patterns of a central
region. In Proceedings of the 2015 IEEE Pacific Visualization Symposium (PacificVis), Hangzhou, China,
14–17 April 2015.

9. Cao, H.; Mamoulis, N.; Cheung, D.W. Mining frequent spatio-temporal sequential patterns. In Proceedings
of the Fifth IEEE International Conference on Data Mining, Houston, TX, USA, 27–30 November 2005.

http://dx.doi.org/10.1080/13658816.2016.1213845
http://dx.doi.org/10.1186/s40462-015-0055-4
http://www.ncbi.nlm.nih.gov/pubmed/26380711
http://dx.doi.org/10.1111/tgis.12011
http://dx.doi.org/10.1111/j.1467-9671.2012.01330.x
http://dx.doi.org/10.1016/j.compenvurbsys.2015.10.009

ISPRS Int. J. Geo-Inf. 2018, 7, 14 18 of 21

10. El Mahrsi, M.K.; Rossi, F. Graph-based approaches to clustering network-constrained trajectory data.
In Proceedings of the International Workshop on New Frontiers in Mining Complex Patterns, Bristol,
UK, 24 September 2012; Springer: Berlin, Germany, 2012.

11. Jiang, X.; Zheng, C.; Tian, Y.; Liang, R. Large-scale taxi o/d visual analytics for understanding metropolitan
human movement patterns. J. Vis. 2015, 18, 185–200. [CrossRef]

12. Tang, J.; Liu, F.; Wang, Y.; Wang, H. Uncovering urban human mobility from large scale taxi GPS data.
Phys. A Stat. Mech. Appl. 2015, 438, 140–153. [CrossRef]

13. Hanaoka, K.; Nakaya, T.; Yano, K.; Inoue, S. Network-based spatial interpolation of commuting trajectories:
Application of a university commuting management project in Kyoto, Japan. J. Transp. Geogr. 2014, 34,
274–281. [CrossRef]

14. Zheng, Y.; Zhang, L.; Xie, X.; Ma, W.Y. Mining interesting locations and travel sequences from GPS trajectories.
In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009;
ACM: New York, NY, USA, 2009.

15. Chapleau, R.; Chu, K.K.A. Modeling transit travel patterns from location-stamped smart card data using a
disaggregate approach. In Proceedings of the 11th World Conference on Transport Research, Berkeley, CA,
USA, 24–28 June 2007.

16. Aung, S.S.; Naing, T.T. Mining Data for Traffic Detection System Using GPS _enable Mobile Phone in Mobile
Cloud Infrastructure. Int. J. Cloud Comput. Serv. Archit. 2014, 4, 1–12.

17. Perttunen, M.; Kostakos, V.; Riekki, J.; Ojala, T. Urban traffic analysis through multi-modal sensing.
Pers. Ubiquitous Comput. 2015, 19, 709–721. [CrossRef]

18. Zheng, Y.; Chen, Y.; Li, Q.; Xie, X.; Ma, W.Y. Understanding transportation modes based on GPS data for web
applications. ACM Trans. Web 2010, 4, 1. [CrossRef]

19. Dodge, S.; Weibel, R.; Forootan, E. Revealing the physics of movement: Comparing the similarity of
movement characteristics of different types of moving objects. Comput. Environ. Urban Syst. 2009, 33,
419–434. [CrossRef]

20. Dodge, S.; Weibel, R.; Laube, P. Trajectory similarity analysis in movement parameter space. In Proceedings
of the GIS Research UK Annual Conference, Plymouth, UK, 27–29 April 2011.

21. Cao, H.; Mamoulis, N.; Cheung, D.W. Discovery of periodic patterns in spatiotemporal sequences. IEEE Trans.
Knowl. Data Eng. 2007, 19, 453–467. [CrossRef]

22. Lin, M.; Hsu, W.-J.; Lee, Z.Q. Predictability of individuals’ mobility with high-resolution positioning data.
In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September
2012; ACM: New York, NY, USA, 2012.

23. Monreale, A.; Pinelli, F.; Trasarti, R.; Giannotti, F. Wherenext: A location predictor on trajectory pattern
mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Paris, France, 28 June–1 July 2009; ACM: New York, NY, USA, 2009.

24. Han, J.; Dong, G.; Yin, Y. Efficient mining of partial periodic patterns in time series database. In Proceedings
of the 15th IEEE International Conference on Data Engineering, Sydney, Australia, 23–26 March 1999.

25. Gong, Y.; Liu, Y.; Lin, Y.; Yang, J.; Duan, Z.; Li, G. Exploring spatiotemporal characteristics of intra-urban trips
using metro smartcard records. In Proceedings of the 20th IEEE International Conference on Geoinformatics,
Hong Kong, China, 15–17 June 2012.

26. Widhalm, P.; Yang, Y.; Ulm, M.; Athavale, S.; González, M.C. Discovering urban activity patterns in cell
phone data. Transportation 2015, 42, 597–623. [CrossRef]

27. Asakura, Y.; Hato, E. Tracking survey for individual travel behaviour using mobile communication
instruments. Transp. Res. Part C Emerg. Technol. 2004, 12, 273–291. [CrossRef]

28. Soleymani, A.; Cachat, J.; Robinson, K.; Dodge, S.; Kalueff, A.; Weibel, R. Integrating cross-scale analysis in
the spatial and temporal domains for classification of behavioral movement. J. Spat. Inf. Sci. 2014, 2014, 74.
[CrossRef]

29. Lee, J.-G.; Han, J.; Whang, K.-Y. Trajectory clustering: A partition-and-group framework. In Proceedings of
the 2007 ACM SIGMOD International Conference on Management of data, Beijing, China, 11–14 June 2007;
ACM: New York, NY, USA, 2007.

30. Lee, J.-G.; Han, J.; Li, X.; Cheng, H. Mining discriminative patterns for classifying trajectories on road
networks. IEEE Trans. Knowl. Data Eng. 2011, 23, 713–726. [CrossRef]

http://dx.doi.org/10.1007/s12650-015-0278-x
http://dx.doi.org/10.1016/j.physa.2015.06.032
http://dx.doi.org/10.1016/j.jtrangeo.2013.09.006
http://dx.doi.org/10.1007/s00779-015-0833-4
http://dx.doi.org/10.1145/1658373.1658374
http://dx.doi.org/10.1016/j.compenvurbsys.2009.07.008
http://dx.doi.org/10.1109/TKDE.2007.1002
http://dx.doi.org/10.1007/s11116-015-9598-x
http://dx.doi.org/10.1016/j.trc.2004.07.010
http://dx.doi.org/10.5311/JOSIS.2014.8.162
http://dx.doi.org/10.1109/TKDE.2010.153

ISPRS Int. J. Geo-Inf. 2018, 7, 14 19 of 21

31. Lin, M.; Hsu, W.-J. Mining GPS data for mobility patterns: A survey. Pervasive Mob. Comput. 2014, 12, 1–16.
[CrossRef]

32. Morzy, M. Mining frequent trajectories of moving objects for location prediction. In Proceedings of the
Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany, 18–20 July 2007; pp. 667–680.

33. Lee, J.-G.; Han, J.; Li, X.; Gonzalez, H. TraClass: Trajectory classification using hierarchical region-based and
trajectory-based clustering. Proc. VLDB Endow. 2008, 1, 1081–1094. [CrossRef]

34. Pelekis, N.; Kopanakis, I.; Kotsifakos, E.; Frentzos, E.; Theodoridis, Y. Clustering trajectories of moving
objects in an uncertain world. In Proceedings of the Ninth IEEE International Conference on Data Mining,
Miami, FL, USA, 6–9 December 2009.

35. Nanni, M.; Pedreschi, D. Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 2006, 27,
267–289. [CrossRef]

36. Hofmann, M.; Wilson, S.P.; White, P. Automated identification of linked trips at trip level using electronic fare
collection data. In Proceedings of the 88th Annual Meeting on Transportation Research Board, Washington,
DC, USA, 11–15 January 2009.

37. Morency, C.; Trépanier, M.; Agard, B. Analysing the variability of transit users behaviour with smart card
data. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, ON, Canada, 17–20
September 2006.

38. Pelletier, M.-P.; Trépanier, M.; Morency, C. Smart card data use in public transit: A literature review.
Transp. Res. Part C Emerg. Technol. 2011, 19, 557–568. [CrossRef]

39. Gao, S.; Liu, Y.; Wang, Y.; Ma, X. Discovering spatial interaction communities from mobile phone data.
Trans. GIS 2013, 17, 463–481. [CrossRef]

40. Zhang, Y.; Qin, X.; Dong, S.; Ran, B. Daily OD matrix estimation using cellular probe data. In Proceedings of
the 89th Annual Meeting Transportation Research Board, Washington, DC, USA, 10–14 January 2010.

41. Crandall, D.J.; Backstrom, L.; Huttenlocher, D.; Kleinberg, J. Mapping the world’s photos. In Proceedings of
the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; ACM: New York,
NY, USA, 2009.

42. Fujisaka, T.; Lee, R.; Sumiya, K. Exploring urban characteristics using movement history of mass mobile
microbloggers. In Proceedings of the Eleventh Workshop on Mobile Computing Systems and Applications,
Annapolis, MD, USA, 22–23 February 2010; ACM: New York, NY, USA, 2010.

43. Zhou, Y.; Fang, Z.; Thill, J.-C.; Li, Q.; Li, Y. Functionally critical locations in an urban transportation network:
Identification and space–time analysis using taxi trajectories. Comput. Environ. Urban Syst. 2015, 52, 34–47.
[CrossRef]

44. Fang, H.; Hsu, W.-J.; Rudolph, L. Mining user position log for construction of personalized activity map.
In Proceedings of the International Conference on Advanced Data Mining and Applications, Beijing, China,
17–19 August 2009; Springer: Berlin, Germany, 2009.

45. Gonzalez, M.C.; Hidalgo, C.A.; Barabasi, A.-L. Understanding individual human mobility patterns. Nature
2008, 453, 779–782. [CrossRef] [PubMed]

46. Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones
for urban analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [CrossRef]

47. Brockmann, D.; Theis, F. Money circulation, trackable items, and the emergence of universal human mobility
patterns. IEEE Pervasive Comput. 2008, 7. [CrossRef]

48. Parent, C.; Spaccapietra, S.; Renso, C.; Andrienko, G.; Andrienko, N.; Bogorny, V.; Damiani, M.L.;
Gkoulalas-Divanis, A.; Macedo, J.; Pelekis, N. Semantic trajectories modeling and analysis. ACM Comput. Surv.
2013, 45, 42. [CrossRef]

49. Hornsby, K.S.; Cole, S. Modeling Moving Geospatial Objects from an Event-based Perspective. Trans. GIS
2007, 11, 555–573. [CrossRef]

50. Robinson, A.C.; Peuquet, D.J.; Pezanowski, S.; Hardisty, F.A.; Swedberg, B. Design and evaluation of a
geovisual analytics system for uncovering patterns in spatio-temporal event data. Cartogr. Geogr. Inf. Sci.
2017, 44, 216–228. [CrossRef]

51. Bashir, F.I.; Khokhar, A.A.; Schonfeld, D. Object trajectory-based activity classification and recognition using
hidden Markov models. IEEE Trans. Image Process. 2007, 16, 1912–1919. [CrossRef] [PubMed]

52. Kafkafi, N.; Yekutieli, D.; Elmer, G.I. A data mining approach to in vivo classification of
psychopharmacological drugs. Neuropsychopharmacology 2009, 34, 607–623. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.pmcj.2013.06.005
http://dx.doi.org/10.14778/1453856.1453972
http://dx.doi.org/10.1007/s10844-006-9953-7
http://dx.doi.org/10.1016/j.trc.2010.12.003
http://dx.doi.org/10.1111/tgis.12042
http://dx.doi.org/10.1016/j.compenvurbsys.2015.03.001
http://dx.doi.org/10.1038/nature06958
http://www.ncbi.nlm.nih.gov/pubmed/18528393
http://dx.doi.org/10.1068/b32047
http://dx.doi.org/10.1109/MPRV.2008.77
http://dx.doi.org/10.1145/2501654.2501656
http://dx.doi.org/10.1111/j.1467-9671.2007.01060.x
http://dx.doi.org/10.1080/15230406.2016.1139467
http://dx.doi.org/10.1109/TIP.2007.898960
http://www.ncbi.nlm.nih.gov/pubmed/17605388
http://dx.doi.org/10.1038/npp.2008.103
http://www.ncbi.nlm.nih.gov/pubmed/18719620

ISPRS Int. J. Geo-Inf. 2018, 7, 14 20 of 21

53. Kafkafi, N.; Elmer, G. Texture of locomotor path: A replicable characterization of a complex behavioral
phenotype. Genes Brain Behav. 2005, 4, 431–443. [CrossRef] [PubMed]

54. Harguess, J.; Aggarwal, J. Semantic labeling of track events using time series segmentation and shape
analysis. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt,
7–10 November 2009.

55. Himberg, J.; Korpiaho, K.; Mannila, H.; Tikanmaki, J.; Toivonen, H.T. Time series segmentation for context
recognition in mobile devices. In Proceedings of the IEEE International Conference on Data Mining, San Jose,
CA, USA, 29 November–2 December 2001.

56. Dodge, S.; Weibel, R.; Lautenschütz, A.-K. Towards a taxonomy of movement patterns. Inf. Vis. 2008, 7,
240–252. [CrossRef]

57. Giannotti, F.; Pedreschi, D. Mobility, Data Mining and Privacy: Geographic Knowledge Discovery; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 2008.

58. Laube, P.; Purves, R.S. How fast is a cow? cross-scale analysis of movement data. Trans. GIS 2011, 15,
401–418.

59. Van Loon, E.; Sack, J.-R.; Buchin, K.; Buchin, M.; de Berg, M.; van Kreveld, M.; Gudmundsson, J.;
Mountain, D. 10491 Results of the break-out group: Gulls Data. In Dagstuhl Seminar Proceedings; Schloss
Dagstuhl-Leibniz-Zentrum fÃ 1

4 r Informatik: Wadern, Germany, 2011.
60. Wang, W.; Pan, L.; Yuan, N.; Zhang, S.; Liu, D. A comparative analysis of intra-city human mobility by taxi.

Phys. A Stat. Mech. Appl. 2015, 420, 134–147. [CrossRef]
61. Buchin, M.; Dodge, S.; Speckmann, B. Context-aware similarity of trajectories. In Proceedings of the

International Conference on Geographic Information Science, Columbus, OH, USA, 18–21 September
2012; Springer: Berlin, Germany, 2012.

62. Keler, A.; Krisp, J.M.; Ding, L. Detecting Travel Time Variations in Urban Road Networks by Taxi Trajectory
Intersections. In Proceedings of the 25th GIS Research UK Conference, Manchester, UK, 18–21 May 2016.

63. Buchin, K.; Buchin, M.; Van Kreveld, M.; Löffler, M.; Silveira, R.I.; Wenk, C.; Wiratma, L. Median trajectories.
Algorithmica 2013, 66, 595–614. [CrossRef]

64. Vrotsou, K.; Janetzko, H.; Navarra, C.; Fuchs, G.; Spretke, D.; Mansmann, F.; Andrienko, N.; Andrienko, G.
SimpliFly: A methodology for simplification and thematic enhancement of trajectories. IEEE Trans. Vis.
Comput. Graph. 2015, 21, 107–121. [CrossRef] [PubMed]

65. Bergman, C.; Oksanen, J. Conflation of OpenStreetMap and Mobile Sports Tracking Data for Automatic
Bicycle Routing. Trans. GIS 2016, 20, 848–868. [CrossRef]

66. Li, Y.; Huang, Q.; Kerber, M.; Zhang, L.; Guibas, L. Large-scale joint map matching of GPS traces.
In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Orlando, FL, USA, 2013; ACM: New York, NY, USA, 2013.

67. Javanmard, A.; Haridasan, M.; Zhang, L. Multi-track map matching. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 6–9 November
2012; ACM: New York, NY, USA, 2012.

68. Chehreghan, A.; Abbaspour, R.A. A geometric-based approach for road matching on multi-scale datasets
using a genetic algorithm. Cartogr. Geogr. Inf. Sci. 2017, 1–15. [CrossRef]

69. Zheng, Y.; Zhou, X. Computing with Spatial Trajectories; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2011.

70. Lin, K.; Xu, Z.; Qiu, M.; Wang, X.; Han, T. Noise filtering, trajectory compression and trajectory segmentation
on GPS data. In Proceedings of the 11th International Conference on Computer Science & Education (ICCSE),
Nagoya, Japan, 23–25 August 2016.

71. Grewal, M.S. Kalman Filtering; Springer: Berlin, Germany, 2011.
72. Rosales, R.; Sclaroff, S. Improved tracking of multiple humans with trajectory prediction and occlusion

modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Workshop
on the Interpretation of Visual Motion, Santa Barbara, CA, USA, 21–27 June 1998.

73. O’Rourke, J. Computational Geometry in C; Cambridge University Press: Cambridge, UK, 1998.
74. Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett.

1972, 1, 132–133. [CrossRef]
75. Zhang, X.; Lee, M.; Kim, Y.J. Interactive continuous collision detection for non-convex polyhedra. Vis. Comput.

2006, 22, 749–760. [CrossRef]

http://dx.doi.org/10.1111/j.1601-183X.2005.00126.x
http://www.ncbi.nlm.nih.gov/pubmed/16176389
http://dx.doi.org/10.1057/PALGRAVE.IVS.9500182
http://dx.doi.org/10.1016/j.physa.2014.10.085
http://dx.doi.org/10.1007/s00453-012-9654-2
http://dx.doi.org/10.1109/TVCG.2014.2337333
http://www.ncbi.nlm.nih.gov/pubmed/26357025
http://dx.doi.org/10.1111/tgis.12192
http://dx.doi.org/10.1080/15230406.2017.1324823
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://dx.doi.org/10.1007/s00371-006-0060-0

ISPRS Int. J. Geo-Inf. 2018, 7, 14 21 of 21

76. De Berg, M.; Van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. Computational Geometry; Springer: Berlin,
Germany, 2000; pp. 1–17.

77. Chand, D.R.; Kapur, S.S. An algorithm for convex polytopes. J. ACM 1970, 17, 78–86. [CrossRef]
78. Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw.

1996, 22, 469–483. [CrossRef]
79. Chehreghan, A.; Abbaspour, R.A. An assessment of spatial similarity degree between polylines on multi-scale,

multi-source maps. Geocarto Int. 2017, 32, 471–487. [CrossRef]
80. Veltkamp, R.C. Shape matching: Similarity measures and algorithms. In Proceedings of the SMI 2001

International Conference on Shape Modeling and Applications, Genova, Italy, 7–11 May 2001.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/321556.321564
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1080/10106049.2016.1155659
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Algorithm Framework
	Trajectory Convex Hull
	Critical Points Derivation
	Turning Points Detection
	Curvature Point Detection
	Intersection Point Detection

	Implementation
	Detection of Curvature and Turning Points
	Detection of Intersection Points

	Conclusions
	References

