
 International Journal of

Geo-Information

Article

Multi-Agent Planning for Automatic Geospatial Web
Service Composition in Geoportals

Mahdi Farnaghi 1,2,* and Ali Mansourian 1,3

1 GIS Center, Department of Physical Geography and Ecosystem Science, Lund University,
22362 Lund, Sweden; ali.mansourian@nateko.lu.se

2 Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology,
Tehran 19697 64499, Iran

3 Center for Middle-Eastern Studies, Lund University, 22362 Lund, Sweden
* Correspondence: mahdi.farnaghi@nateko.lu.se or farnaghi@kntu.ac.ir; Tel.: +46-46-222-17-33

Received: 4 September 2018; Accepted: 9 October 2018; Published: 12 October 2018
����������
�������

Abstract: Automatic composition of geospatial web services increases the possibility of taking full
advantage of spatial data and processing capabilities that have been published over the internet.
In this paper, a multi-agent artificial intelligence (AI) planning solution was proposed, which works
within the geoportal architecture and enables the geoportal to compose semantically annotated
Open Geospatial Consortium (OGC) Web Services based on users’ requirements. In this solution,
the registered Catalogue Service for Web (CSW) services in the geoportal along with a composition
coordinator component interact together to synthesize Open Geospatial Consortium Web Services
(OWSs) and generate the composition workflow. A prototype geoportal was developed, a case study
of evacuation sheltering was implemented to illustrate the functionality of the algorithm, and a
simulation environment, including one hundred simulated OWSs and five CSW services, was used
to test the performance of the solution in a more complex circumstance. The prototype geoportal was
able to generate the composite web service, based on the requested goals of the user. Additionally,
in the simulation environment, while the execution time of the composition with two CSW service
nodes was 20 s, the addition of new CSW nodes reduced the composition time exponentially, so that
with five CSW nodes the execution time reduced to 0.3 s. Results showed that due to the utilization
of the computational power of CSW services, the solution was fast, horizontally scalable, and less
vulnerable to the exponential growth in the search space of the AI planning problem.

Keywords: multi-agent artificial intelligence (AI) planning; automatic web service composition;
OGC web service; semantic web; geoportal

1. Introduction

During the last decade, an enormous amount of spatial information and processing capabilities
have been published over the internet. To meet the interoperability of the systems, Open Geospatial
Consortium Web Services (OWS) have been used as the underlying technology. The need to integrate
atomic OWS nodes into complex workflows is an important milestone on the path to fully benefit
from published spatial data and functionality over the internet. This integration of OWSs, known as
web service composition, provides the geospatial community with a flexible opportunity to address
more complicated analytical requirements using distributed spatial information and knowledge
organization systems.

Web service composition is defined as the process of creating web service chains and establishing
new functionalities by composing a collection of web services [1]. Web service composition aims to
arrange several web services into one complex service to achieve complex objectives [2–4].

ISPRS Int. J. Geo-Inf. 2018, 7, 404; doi:10.3390/ijgi7100404 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-3071-5563
http://www.mdpi.com/2220-9964/7/10/404?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi7100404
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2018, 7, 404 2 of 20

Discovery and selection of proper OWSs and combining them into a new composite web
service is a complex and time-consuming task, which requires experts with different proficiencies
to handle it manually. Automatic generation of composite OWSs is a promising alternative that can
significantly reduce the complexity of integrating OWSs. Using the automatic composition techniques,
users formalize their requirements as a goal and send it to a composer component. The composer
component utilizes the syntactic and semantic description of OWSs to generate a new workflow to
address the user’s goal.

A few researchers in the geospatial community, including Yue et al. [5], Cruz et al. [6], Farnaghi and
Mansourian [7], Farnaghi and Mansourian [8], and Al-Areqi et al. [9] have tried to solve the problem
of automatic composition of OWSs. The overall approach in their studies was to semantically or
syntactically describe specific characteristics of OWSs, and then exploit centralized artificial intelligence
(AI) planning techniques [10] to generate an execution workflow from atomic OWSs. However,
this approach encounters two critical challenges: Incompatibility with the distributed architecture of
geoportals and exponential growth of the search space.

The first challenge is that centralized AI planning techniques, which have been used in previous
studies for automatic composition of OWSs, are not compatible with the distributed architecture of
geoportals [11,12], which have been developed and used over the last fifteen years in the geospatial
community for the search and discovery of spatial data and OWSs. Based on the standard architecture
of geoportals, OWSs are registered in Catalogue Service for Web (CSW) services [12]. Using the
geoportal interface, users can specify the characteristics of their desired geospatial data or services.
The geoportal then executes a distributed search over the registered CSW services and matching results
are presented to the user. However, it is a challenging task to use a centralized planning technique
for automatic composition in geoportals. The critical point is that, to be able to solve the composition
problem, the centralized AI planning techniques require accessing all available OWSs simultaneously.
Nevertheless, in geoportals, OWSs are registered in CSW services. To solve this problem, one may send
a loose search condition to every CSW service, retrieve required information about all available OWSs
from every CSW service, and then try to solve the composition problem on a single computational node.
However, retrieving all available OWSs and trying to solve an AI planning problem with a massive
amount of OWSs leads to a second challenge of the exponential growth of the search space as follows.

Although the AI planning techniques have proved to be the most promising solution for automatic
composition of web services (see Reference [13] for a detailed comparison of web service composition
techniques) and hence the automatic composition of OWSs, they still encounter serious problems
in terms of dealing with real-world scenarios. Considering the huge amount of published OWSs
over the internet, centralized AI planning techniques in which a planner agent is responsible for
solving the whole planning problem alone, are not efficient and feasible. That’s mainly because, as
the number of available OWSs increases, the search space of the AI planning grows exponentially
(see References [14–16]). Therefore, in real-world scenarios the centralized planning techniques are not
able to solve the automatic composition problem in an acceptable time.

To address these two mentioned problems, this article presents a novel solution for automatic
composition of OWSs. The solution proposes a new multi-agent artificial intelligence (AI) planning
algorithm in which OWSs are semantically annotated and registered in CSW services (Catalogue
Service for Web, [12]). The CSW services are considered as agents that work in a multi-agent system.
Unlike the centralized algorithms, the proposed algorithm utilizes the computational powers of the
distributed CSW services to solve the composition problem collaboratively. The solution is an extension
to the distributed architecture of geoportals [17–19]. In addition to being fast and scalable, this solution
is expected to be less vulnerable to the exponential growth in the search space of the composition
problem. The feasibility of the algorithm is demonstrated using a case study and a simulated testbed
of one hundred OWSs.

The remainder of this article is organized as follows. In Section 2, related studies on the automatic
composition of OWSs and other web service types are described, and current challenges in automatic

ISPRS Int. J. Geo-Inf. 2018, 7, 404 3 of 20

web service composition are highlighted. The proposed solution for automatic composition of OWSs
is thoroughly described in Section 3. Section 4 is dedicated to implementation and demonstration of
the results. Finally, Section 5 provides a discussion and Section 6 concludes the paper.

2. Related Studies

In the geospatial community, most studies have been concentrated on the manual or semi-automatic
composition of OWSs (see References [20–28]). However, automatic generation of composite OWSs
has received significant attention in recent years. Yue et al. [5] have utilized a HTN (Hierarchical
Task Network) planning technique to generate composite geospatial web services out of semantically
described OWSs. OWL-S (Semantic Markup for Web Services, [29]) was used as an underlying
technology to describe semantic aspects of OWSs. In another study, Cruz, Monteiro, and Santos [6]
presented a solution for the automatic composition of OWSs based on geodata quality. The OWSs
were semantically described by OWL-S and a backward planning algorithm was used to generate the
composite web service. Farnaghi and Mansourian [7] reported a study in which OWSs were semantically
described by a WSMO (Web Service Modeling Ontology, [30]) framework, and the composition process
was conducted using the Graphplan algorithm. In another study, Farnaghi and Mansourian [8] proposed
a comprehensive method for annotating OWSs using SAWSDL and WSMO-Lite (Lightweight Semantic
Descriptions for Services on the Web, [31]), and then used a planning algorithm to generate composite
OWSs. Du et al. [32] presented an architecture for the model-driven composition of OWSs, where the
quality of service (QoS) was considered as an affecting factor. Al-Areqi, Lamprecht, and Margaria [9]
reported a constraint-driven composition solution based on a web service modeling tool called
PROPHETS. The tool synthesizes web services based on a search algorithm by evaluating constraints
defined in SLTL (Semantic Linear Time Logic). However, to the best of the authors’ knowledge,
none of the proposed solutions for automatic composition of OWSs in the geospatial community were
compatible with the distributed architecture of geoportals. Instead, they are centralized and do not
have any solution for dealing with the huge amount of OWSs published over the internet.

In the information technology community, few studies have used multi-agent systems for the
automatic composition of web services to overcome the above-mentioned issue. Vaithiyanathan
and Govindharajan [33] proposed a system in which two agents cooperated with each other to
generate composite W3C (World Wide Web Consortium) web services. However, in their system,
the composition is done by one of the agents and the other agent is just responsible for the search
and discovery of available web services. Therefore, the processing overload of the web service
composition is not delegated to multiple agents. In two other studies, Küngas and Matskin [34] and
Charif and Sabouret [35] separately developed multi-agent systems to enable dynamic composition and
execution of W3C web services. Their systems were designed to dynamically execute the composition,
which meant that the output compositions were not registered in an orchestration engine, and hence
were not reusable in future. El Falou et al. [15] presented a distributed, multi-agent algorithm for
automatic generation of composite W3C web services. They utilized a multi-agent AI planning
algorithm to generate the composition. However, they focused on the syntactic aspects of W3C
web services, and semantic description of web services was not used in the composition algorithms.
These studies in the information technology community do not conform to the standards of OWSs that
are generally accepted in GIS communities, and therefore cannot be used for automatic composition
of OWSs.

3. Method

The conventional geoportals, based on the OGC (Open Geospatial Consortium) geoportal
architecture [11,36], leave users alone when there is no geospatial data or service that can satisfy the
users’ requirements [37]. To improve the functionality of the conventional geoportals with the ability
to automatically compose OWSs, this study proposes a solution based on multi-agent AI planning
techniques. Multi-agent AI planning is a coordination mechanism [38–41] wherein to coordinate

ISPRS Int. J. Geo-Inf. 2018, 7, 404 4 of 20

agents’ actions and avoid conflicts, a plan consisting of actions of all participating agents is generated,
so that execution of that plan leads to the satisfaction of the global goal of the system along with
the personal goal of every agent (for a detailed review of multi-agent AI planning techniques see
Reference [41]). The proposed solution in this study considers a geoportal as a collection of agents
that are working together with the same goal of satisfying the user’s need. Where the system cannot
find a proper OWS to address a user’s need, it tries to generate a composite web service through the
proposed multi-agent AI planning algorithm.

To thoroughly describe the proposed solution, the components of the system are briefly described,
first, from an architectural point of view in Section 3.1. Then, the semantic annotation mechanism
which has been adapted to describe different aspects of OWSs is reviewed in Section 3.2. To define
a proper notation for an in-depth description of the proposed composition algorithm, a conceptual
framework is defined afterward in Section 3.3. Finally, using the conceptual model, the AI planning
algorithm is comprehensively elaborated in Section 3.4.

3.1. Architecture

With the purpose of adding the ability of automatic OWS composition to geoportals, this study
suggested that three components of an OWS composition interface, an orchestration engine, and a
composition coordinator component should be added to the typical architecture of geoportals (Figure 1).
Additionally, the CSW services should be improved to be able to participate in the proposed multi-agent
AI planning algorithm.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 4 of 20

3. Method

The conventional geoportals, based on the OGC (Open Geospatial Consortium) geoportal
architecture [11,36], leave users alone when there is no geospatial data or service that can satisfy the
users’ requirements [37]. To improve the functionality of the conventional geoportals with the ability
to automatically compose OWSs, this study proposes a solution based on multi-agent AI planning
techniques. Multi-agent AI planning is a coordination mechanism [38–41] wherein to coordinate
agents’ actions and avoid conflicts, a plan consisting of actions of all participating agents is generated,
so that execution of that plan leads to the satisfaction of the global goal of the system along with the
personal goal of every agent (for a detailed review of multi-agent AI planning techniques see
Reference [41]). The proposed solution in this study considers a geoportal as a collection of agents
that are working together with the same goal of satisfying the user’s need. Where the system cannot
find a proper OWS to address a user’s need, it tries to generate a composite web service through the
proposed multi-agent AI planning algorithm.

To thoroughly describe the proposed solution, the components of the system are briefly
described, first, from an architectural point of view in Section 3.1. Then, the semantic annotation
mechanism which has been adapted to describe different aspects of OWSs is reviewed in Section 3.2.
To define a proper notation for an in-depth description of the proposed composition algorithm, a
conceptual framework is defined afterward in Section 3.3. Finally, using the conceptual model, the
AI planning algorithm is comprehensively elaborated in Section 3.4.

3.1. Architecture

With the purpose of adding the ability of automatic OWS composition to geoportals, this study
suggested that three components of an OWS composition interface, an orchestration engine, and a
composition coordinator component should be added to the typical architecture of geoportals (Figure
1). Additionally, the CSW services should be improved to be able to participate in the proposed multi-
agent AI planning algorithm.

Figure 1. Geoportal architecture with automatic composition capabilities.

In the architecture depicted in Figure 1, like any conventional geoportal, OWSs are registered in
CSW services. Using the search and discovery interface, users can specify the characteristics of the
desired geospatial data or services. The interface then executes a distributed search through the CSW
proxy component over the registered CSW services. If the search is successful, matching data and

Figure 1. Geoportal architecture with automatic composition capabilities.

In the architecture depicted in Figure 1, like any conventional geoportal, OWSs are registered
in CSW services. Using the search and discovery interface, users can specify the characteristics of
the desired geospatial data or services. The interface then executes a distributed search through the
CSW proxy component over the registered CSW services. If the search is successful, matching data
and services are presented to the user through the search and discovery interface, and in some cases,
the user can also visualize the output data or services on the map.

Where users cannot find proper data or service to satisfy their needs, they can use the composition
capabilities of the system. Using the OWS composition interface, an expert user will be able to
manually combine a list of selected OWSs, generate a composition, and register it into the orchestration

ISPRS Int. J. Geo-Inf. 2018, 7, 404 5 of 20

engine, so that the new composite web service can be executed. This architecture also enables the
user to generate composite OWSs automatically. In this regard, the user sends their requirements as a
composition goal to the composition coordinator component. The composition coordinator component
commences the proposed multi-agent AI planning algorithm (see Section 3.4) to automatically generate
a composition that satisfies the user’s goal. The output composite web service is then registered in the
orchestration engine as a new OWS.

3.2. Semantic Annotation of OWSs

Automatic generation of composite OWSs requires that a software component first locates the
available OWSs and evaluates their characteristics. To address these requirements, the OWSs have
to be described in a machine-readable and machine-understandable way [42]. This can be realized
through a syntactic and semantic description of OWSs. While the OGC implementation specifications
(see References [43–47]) address the syntactic aspects of OWSs, the semantic annotation can be used to
provide the semantic description.

In this study, an approach based on WSDL (Web Service Definition Language), SAWSDL (Semantic
Annotation for WSDL, [48]) and SPARQL (pronounced "sparkle", a recursive acronym for SPARQL
Protocol and RDF Query Language) [49], proposed by Farnaghi and Mansourian [8], was adapted
for semantic annotation of OWSs. Contrary to comprehensive and demanding top-down approaches
like OWL-S [50], SWSF [51], and WSMO [30], which assume the semantic description of a web service
is developed in parallel with the web service itself, the selected semantic annotation approach is
bottom-up, light-weight, and agile. Therefore, it is well suited for semantic annotation of available
services that are already implemented syntactically [8].

Based on the semantic annotation approach (Figure 2), the capability document of an OWS
is supported by a WSDL document, where service, interface, operations, and types of the OWS are
annotated through links to their respective semantic concepts, and lowering and lifting transformations
using SAWSDL. SAWSDL is a W3C recommendation standard, which supports adding semantic
annotations to WSDL documents. Using SAWSDL, the service element in the WSDL points to
ontological concepts in non-functional ontology and OWS classification ontology. The operations in
the WSDL document are marked by operation types in OWS classification ontology. Additionally,
the conditions upon which an operation can be executed and the information that will be added after
execution of the operation are defined by SPARQL [49] ask and update queries (see Section 3.3) as
condition and effect, respectively, and linked to the operation. The SPARQL queries are defined based
on the service ontology. The types that are used in the definition of operations in the WSDL document
are also annotated by ontological concepts defined in service ontology.

The conversion between the semantic and syntactic representation of each type is defined using
lowering and lifting transformations. Elements of service ontology, OWS classification ontology,
and non-functional ontology are all defined based on classes and properties from WSMO-Lite
ontology [31] and WSMO-Lite Extension ontology (for definition of condition, effect, functional
classification, and non-functional parameter); GML Coverage Profile ontology and GML Simple
Feature Profile ontology (for definition of geographical concepts, e.g., point, polyline, polygon, etc.);
and COSMO (COmmon Semantic Model, available at http://micra.com/COSMO/COSMO.owl)
top-level ontology and COSMO Extension ontology (for refereeing to real-world objects and
phenomena, e.g., river, mountain, land, etc.). The COSMO ontology was selected due to its ability
to provide broad semantic interoperability by integrating concepts from other foundation ontologies
including OpenCyc, SUMO, DOLCE, and BFO. MSO and OntoMap are the two other foundation
ontologies that could have been used in this sense.

http://micra.com/COSMO/COSMO.owl

ISPRS Int. J. Geo-Inf. 2018, 7, 404 6 of 20

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 6 of 20

Figure 2. Semantic Annotation of Open Geospatial Consortium Web Services (OWSs), (adapted from
Farnaghi and Mansourian [8] and modified).

3.3. A Conceptual Model for Automatic Composition of OWSs

To formally describe the proposed automatic composition algorithm, a conceptual model is
presented that defines different roles of the participating elements of the algorithm. The model
utilizes RDF (Resource Description Framework) language for representation of states in AI planning
and SPARQL ask and update queries for condition checking and state transitions. The conceptual
model supposes that several OWSs are registered in each CSW service. Each OWS is semantically
annotated (see Section 3.2) and CSW services are accessible by the composition coordinator
component. The formal representation of the model is as follows.

• 𝑅 = [𝑟, 𝑟ଵ, 𝑟ଶ, …] is a set of possible states. Each state 𝑟 ∈ 𝑅 is represented as an RDF graph.
• 𝑞 is a SPARQL ask query composed of one or more triple patterns that are connected by

conjunction and disjunction operators.
• 𝜁(𝑞, 𝑟) receives a SPARQL ask query, 𝑞, and an RDF graph representing a particular state, 𝑟. This

function executes 𝑞 on 𝑟 and returns 𝑡𝑟𝑢𝑒 if there exists at least a match for the query 𝑞 in the
graph 𝑟 and 𝑓𝑎𝑙𝑠𝑒 if there is not.

• 𝜀(𝑢, 𝑟) executes a SPARQL update operation, 𝑢, on an RDF graph representing a particular state, 𝑟, and returns the updated RDF graph, representing the new state.
• 𝑟 ∈ 𝑅 is the initial state.
• 𝑔 is a SPARQL ask query that represents the composition goal.
• 𝐶𝑁𝐹(𝑞) is a function that converts a SPARQL ask query, 𝑞, to a conjunctive normal form (CNF)

(see References [52,53]), where the query is represented as a conjunction of triple patterns.
• 𝑎 is an operation of an OWS service. Since OWSs are semantically annotated, each operation is

defined as 𝑎 = [𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑒𝑓𝑓𝑒𝑐𝑡].
o 𝑎. 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 , is a SPARQL ask query that determines whether 𝑎 is applicable to a

particular state.

Figure 2. Semantic Annotation of Open Geospatial Consortium Web Services (OWSs), (adapted from
Farnaghi and Mansourian [8] and modified).

3.3. A Conceptual Model for Automatic Composition of OWSs

To formally describe the proposed automatic composition algorithm, a conceptual model is
presented that defines different roles of the participating elements of the algorithm. The model
utilizes RDF (Resource Description Framework) language for representation of states in AI planning
and SPARQL ask and update queries for condition checking and state transitions. The conceptual
model supposes that several OWSs are registered in each CSW service. Each OWS is semantically
annotated (see Section 3.2) and CSW services are accessible by the composition coordinator component.
The formal representation of the model is as follows.

• R = [r0, r1, r2, . . .] is a set of possible states. Each state ri ∈ R is represented as an RDF graph.
• q is a SPARQL ask query composed of one or more triple patterns that are connected by conjunction

and disjunction operators.
• ζ(q, r) receives a SPARQL ask query, q, and an RDF graph representing a particular state, r.

This function executes q on r and returns true if there exists at least a match for the query q in the
graph r and f alse if there is not.

• ε(u, r) executes a SPARQL update operation, u, on an RDF graph representing a particular state, r,
and returns the updated RDF graph, representing the new state.

• r0 ∈ R is the initial state.
• g is a SPARQL ask query that represents the composition goal.
• CNF(q) is a function that converts a SPARQL ask query, q, to a conjunctive normal form (CNF)

(see References [52,53]), where the query is represented as a conjunction of triple patterns.
• a is an operation of an OWS service. Since OWSs are semantically annotated, each operation is

defined as a = [condition, e f f ect].

ISPRS Int. J. Geo-Inf. 2018, 7, 404 7 of 20

◦ a.condition, is a SPARQL ask query that determines whether a is applicable to a
particular state.

◦ a.e f f ect, is a SPARQL update query that inserts some triples to the RDF graph of the
underlying state. The added triples describe the information that will be added after the
execution of the operation.

• Given an operation a, and a state, r ∈ R, a is applicable to r if ζ(a.condition, r) returns true.
Applying a on r will be done by the execution of a.e f f ect on r and will result in a new state
rnew = ε(a.e f f ect, r).

• π = A1 � A2 � . . . � Ak
∣∣∣Ai = {a1, . . . , ani} is a partial-ordered plan, represented as an ordered

sequence of sets of OWSs operations. Each set is composed of OWS operations.
• E(π, r) executes a partial-ordered plan, π, on a particular state, r, and generates a result state.

π can be executed on r if all operations in its first set are applicable to r. Execution starts from the
first set. All operations in the first set are executed on r using ε(a.e f f ect, r) and a result state is
generated. Then the operations of the second set are executed on the result state of the first set.
This sequetional execution of operations of a set on the result state of the previous set continues
to the last set in π. π is a valid partial-ordered plan, if every operation in each set is executable on
the result state of the previous set.

• Solving the automatic composition problem is to find a valid partial-ordered plan, where its
execution on the initial state, r0, results in a final state, r f , so that the goal, g, is satisfied and

ζ
(

g, r f

)
= true.

• cc is the composition coordinator component. This component implements the following methods:

◦ GenerateMultiAgentPlan(r, g) receives an initial state, r, a goal, g, and returns a valid
partial-ordered plan, if there is any, as the result of the multi-agent AI planning algorithm.

◦ GetRegisteredCswAgents() returns the list of registered CSW services as
[
CA1, CA2, . . .

]
.

• CAi is a CSW service, which in addition to the standard operations of CSW services [12]
implements the following methods:

◦ GetRegisteredOWSOperators() returns a list of every operation of OWSs which are
registered in CAi in the form of Ai =

[
ai

1, ai
2, . . .

]
. These operations are considered

as actions of the AI planning model.
◦ GenerateExecutablePartialOrderedPlans(rc) is a method that receives a state, rc, and the

goal, g, and tries to find every possible executable partial-ordered plan composed of the
operations in Ai and are executable on rc.

Based on this conceptual model, Section 3.4 describes the automatic composition algorithm.

3.4. Automatic Composition Algorithm

The proposed algorithm is a distributed descendant of A* heuristic search algorithm. As a generic,
best-first search algorithm, A* tries to solve a problem by searching among all possible paths to the
goal, where the search is guided through a heuristic function that calculates cost of every path in
the graph and forces the algorithm to pursue the path with minimum cost that appears to lead most
quickly to the goal.

The proposed algorithm perceives the composition as a pathfinding problem in a graph,
where states are the nodes and partial-ordered plans are the links. The algorithm runs in a multi-agent
environment where a composition coordinator component directs the search within the graph,
and multiple CSW agents are responsible for expanding the search graph. None of the agents has
complete knowledge of the search space, each CSW agent only knows the operations of their OWSs,
and the composition coordinator agent has no knowledge of OWSs registered in the CSW services.

ISPRS Int. J. Geo-Inf. 2018, 7, 404 8 of 20

3.4.1. Composition Coordinator Component

The automatic composition algorithm starts when the Generate Multi Agent Plan method of
the composition coordinator component is called. Figure 3 shows the corresponding pseudo code.
The algorithm receives the initial state r0, and the composition goal, g, as inputs, and tries to generate a
plan that can satisfy g. The composition coordinator component first retrieves the list of all registered
CSW services by calling the Get Registered Csw Agents method. Then it generates an initial search node
initNode, with an empty plan, state r0, and infinitive cost. It creates an open set openSet, which will
contain the search nodes that have not yet been expanded, and a closed set, closedSet, which includes
all the search nodes that have been recently expanded (lines 1 to 5, Figure 3). In this step, the open set
only includes the initial state and the closed set is empty. The algorithm starts a loop which continues
whilst the open set is not empty (lines 6 to 24, Figure 3). Within the loop, the algorithm first calculates
the cost for every node in the open set using f (node, g) = c(node) + h(node, g), where:

• c(node) calculates the cost of reaching from the initial state to a state of interest, node.State. In the
composition, it is expected to reach the goal state by applying a minimum number of OWS
operations. To model this condition, in Equation (1), Sigmoid function is applied on the number
of operations that compose the plan of the node. Sigmoid function was used, so that the output
value is between 0 and 1.

• h(node, g) is a heuristic function that estimates the cost to go from node.State to the goal state,
g. When the state of a search node has satisfied more RDF triples in the SPARQL ask query of
the goal, it is more likely that expansion of that node will lead the algorithm to the final state.
Therefore, Equation (2) counts the number of triples in the CNF form of g that are not satisfied in
node.State and divide it by the total number of triples in the CNF form of g.

c(node) =
1

1 + e−(# operations in node.Plan−x0)
(1)

h(node, g) =
triples o f CNF(g) not satis f ied by state node.State

triples o f CNF(g)
(2)

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 9 of 20

Figure 3. Pseudo code of GenerateMultiAgentPlan algorithm.

Figure 4. Pseudo code of the deordering algorithm.

Figure 5. A simple example of the composition procedure.

3.4.2. CSW Component

To be able to work in the proposed multi-agent AI planning algorithm, a CSW service has to
provide a 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑠 method. The method receives a current state 𝑟,
and returns a list of partial-ordered plans executable on 𝑟. The developed tree expansion algorithm
is represented in Figure 6. Starting from 𝑟, the algorithm creates an initial node; an open set (with
initial node as its only member); a closed set; and a list of executable partial-ordered plans (lines 2 to
6, Figure 6). While the open set is not empty, the algorithm randomly selects a current node from the

Figure 3. Pseudo code of GenerateMultiAgentPlan algorithm.

The output of the cost function is a value between 0 and 2, and nodes with lower costs are more
likely to lead to the final state. Having the costs, the node with minimum cost in the open set is considered
as the current search node (lines 7 to 9, Figure 3). If the current node satisfies the goal condition, the plan

ISPRS Int. J. Geo-Inf. 2018, 7, 404 9 of 20

of that node is chained with the plans of its successive parents, a deordering algorithm (Figure 4) [54]
is applied on the resulting plan, and the resulting plan is returned as the composition plan (lines 10 to
14, Figure 3). The deordering algorithm tries to move data retrieval operations which do not rely on the
execution of the previous operations, to the initial steps of a partial-ordered plan.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 9 of 20

Figure 3. Pseudo code of GenerateMultiAgentPlan algorithm.

Figure 4. Pseudo code of the deordering algorithm.

Figure 5. A simple example of the composition procedure.

3.4.2. CSW Component

To be able to work in the proposed multi-agent AI planning algorithm, a CSW service has to
provide a 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑠 method. The method receives a current state 𝑟,
and returns a list of partial-ordered plans executable on 𝑟. The developed tree expansion algorithm
is represented in Figure 6. Starting from 𝑟, the algorithm creates an initial node; an open set (with
initial node as its only member); a closed set; and a list of executable partial-ordered plans (lines 2 to
6, Figure 6). While the open set is not empty, the algorithm randomly selects a current node from the

Figure 4. Pseudo code of the deordering algorithm.

If the current node does not satisfy the goal, the current node is supposed to be expanded by the
CSW services. First, the current node is removed from the open set and added to the closed set. Then the
partial-ordered plans, which are executable on the state of the current node current.State, are generated
by each CSW agent through calling the GenerateExecutablePartialOrderedPlans method. Having the
partial-ordered plans, the current node is expanded, and new search nodes are created and added to
the open set (lines 16 to 24, Figure 3). To expand the current node using an executable partial-ordered
plan, the received plan π, is applied on the state of the current node, current.State. The result state r,
along with π are used to create a new search node, newNode, which is added to the open set afterwards
(lines 21 to 24, Figure 3). This best node selection, condition checking, and expansion mechanism
continuous till the goal state is reached or there is no search node for expansion in the open set.
Figure 5 figuratively shows a simplified execution of the algorithm, where two CSW agents work with
a composition coordinator to expand the search graph and find the composition plan.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 9 of 20

Figure 3. Pseudo code of GenerateMultiAgentPlan algorithm.

Figure 4. Pseudo code of the deordering algorithm.

Figure 5. A simple example of the composition procedure.

3.4.2. CSW Component

To be able to work in the proposed multi-agent AI planning algorithm, a CSW service has to
provide a 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑃𝑙𝑎𝑛𝑠 method. The method receives a current state 𝑟,
and returns a list of partial-ordered plans executable on 𝑟. The developed tree expansion algorithm
is represented in Figure 6. Starting from 𝑟, the algorithm creates an initial node; an open set (with
initial node as its only member); a closed set; and a list of executable partial-ordered plans (lines 2 to
6, Figure 6). While the open set is not empty, the algorithm randomly selects a current node from the

Figure 5. A simple example of the composition procedure.

3.4.2. CSW Component

To be able to work in the proposed multi-agent AI planning algorithm, a CSW service has to
provide a GenerateExecutablePartialOrderedPlans method. The method receives a current state rc,
and returns a list of partial-ordered plans executable on rc. The developed tree expansion algorithm

ISPRS Int. J. Geo-Inf. 2018, 7, 404 10 of 20

is represented in Figure 6. Starting from rc, the algorithm creates an initial node; an open set (with
initial node as its only member); a closed set; and a list of executable partial-ordered plans (lines 2 to 6,
Figure 6). While the open set is not empty, the algorithm randomly selects a current node from the
open set, removes the current node from the open set, and then adds it the closed set (lines 8 to 11).
The operations that are applicable to the state of the current node and do not exist in the plan of the
current node are selected afterwards (lines 12 to 16, Figure 6). Having a list of applicable operations,
the current node is expanded by the applicable operations and the new nodes are added to the list
of executable partial-ordered plans (lines 17 to 23, Figure 6). Finally, the algorithm returns the list of
executable partial-ordered plans to the composition coordinator.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 10 of 20

open set, removes the current node from the open set, and then adds it the closed set (lines 8 to 11).
The operations that are applicable to the state of the current node and do not exist in the plan of the
current node are selected afterwards (lines 12 to 16, Figure 6). Having a list of applicable operations,
the current node is expanded by the applicable operations and the new nodes are added to the list of
executable partial-ordered plans (lines 17 to 23, Figure 6). Finally, the algorithm returns the list of
executable partial-ordered plans to the composition coordinator.

Figure 6. Pseudo code of 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑂𝑟𝑑𝑒𝑟𝑒𝑑 𝑃𝑙𝑎𝑛𝑠 method of Catalogue Service
for Web (CSW).

4. Implementation

The proposed multi-agent AI planning algorithm for automatic composition of OWSs was
developed and implemented in this study. The composition coordinator component and the CSW
service have been written in Java programming language. The RDF handling functionalities along
with the SPARQL 1.1 support have been provided through Apache Jena API. OWSs have been
implemented in GeoServer.

4.1. Case study: Site Selection for Sheltering

To demonstrate the applicability of the proposed solution, the problem of site selection for
sheltering after an earthquake based on spatial data and processes, which are available online
through OWSs, is selected as the case study. It is assumed that participating disaster management
organizations have published their spatial data and functionalities through OWSs in two separate
CSW services: Regional CSW of Tehran and National CSW of Iran SDI. These CSW services are
registered in the geoportal of the Emergency Management Organization (EOC) of Tehran. Table 1
shows each of the CSW services and the registered OWSs of the participating organizations.

Having access to the CSW services and the OWSs, a disaster management planner in the EOC
of Tehran must be able to ask the composition coordinator agent to automatically generate a
composite web service based on the atomic OWSs registered in the CSW services. The output web
service must return polygon features with the following characteristics:

• The polygons can be vacant areas, parks, or forests.
• The area within the selected polygon features should be flat.
• The selected polygons should not be adjacent to damaged areas.

Figure 6. Pseudo code of Generate Executable Partial Ordered Plans method of Catalogue Service for
Web (CSW).

4. Implementation

The proposed multi-agent AI planning algorithm for automatic composition of OWSs was developed
and implemented in this study. The composition coordinator component and the CSW service have been
written in Java programming language. The RDF handling functionalities along with the SPARQL 1.1
support have been provided through Apache Jena API. OWSs have been implemented in GeoServer.

4.1. Case study: Site Selection for Sheltering

To demonstrate the applicability of the proposed solution, the problem of site selection for
sheltering after an earthquake based on spatial data and processes, which are available online through
OWSs, is selected as the case study. It is assumed that participating disaster management organizations
have published their spatial data and functionalities through OWSs in two separate CSW services:
Regional CSW of Tehran and National CSW of Iran SDI. These CSW services are registered in the
geoportal of the Emergency Management Organization (EOC) of Tehran. Table 1 shows each of the
CSW services and the registered OWSs of the participating organizations.

Having access to the CSW services and the OWSs, a disaster management planner in the EOC of
Tehran must be able to ask the composition coordinator agent to automatically generate a composite
web service based on the atomic OWSs registered in the CSW services. The output web service must
return polygon features with the following characteristics:

• The polygons can be vacant areas, parks, or forests.
• The area within the selected polygon features should be flat.
• The selected polygons should not be adjacent to damaged areas.

ISPRS Int. J. Geo-Inf. 2018, 7, 404 11 of 20

Table 1. CSW services along with registered OWSs.

CSW
Registered OGC Web Services

Web Service Organization Type Description

Regional CSW of
Tehran

wfsMun Tehran Municipality WFS
This service presents the municipal
data.
Layers: Parcel, Park, Vacant Land, etc.

wfsEOC Emergency Operation
Center (EOC) of Tehran WPS

This service returns a polygon of
affected areas with dense building
damage.
Layers: Affected_Area

wpsEOC_EvacuationPlanning Emergency Operation
Center (EOC) of Tehran WFS

This service handles the site selection
processes. In the case of sheltering, it
receives various input datasets and
calculates suitable evacuation
sheltering sites.

National CSW of
Iran SDI

wfsFRW Forest and Watershed
Management Organization WFS

This service presents the spatial data
from the Forest and Watershed
management organization.
Layers: Forest_Park, Watershed, Land
Cover, etc.

wcsNCC National Cartographic
Center WCS

This service presents the elevation
data for the entire country as
coverage data.
Layers: DEM

wpsNCCSurface National Cartographic
Center WPS

This service performs all of the
surface operations, including slope,
aspect, contour, hillshade,
and viewshed generation.

wpsNCCCT National Cartographic
Center WPS

This service performs coordinate
transformations. It provides two
processes: ProjectFeatureDataset and
ProjectCoverageDataset.

Considering the specified characteristics of the evacuation site, the disaster management planner
sends their initial state and composition goal to the composition coordinator component. Figure 7
depicts the RDF graph of the initial state, which defines the bounding box of the study area and
required spatial reference system. The SPARQL ask query that defines the user goal by expressing
the characteristics of the desired output sites is shown in Figure 8. Figures 9 and 10 represent the
condition and effect of project feature operation of wpsNCCCT WPS (Web Processing Service) service
(Table 1), respectively.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 11 of 20

Table 1. CSW services along with registered OWSs.

CSW
Registered OGC Web Services
Web Service Organization Type Description

Regional
CSW of
Tehran

wfsMun Tehran
Municipality

WFS This service presents the municipal data.
Layers: Parcel, Park, Vacant Land, etc.

wfsEOC
Emergency
Operation Center
(EOC) of Tehran

WPS
This service returns a polygon of affected
areas with dense building damage.
Layers: Affected_Area

wpsEOC_EvacuationPlanning
Emergency
Operation Center
(EOC) of Tehran

WFS

This service handles the site selection
processes. In the case of sheltering, it
receives various input datasets and
calculates suitable evacuation sheltering
sites.

National
CSW of
Iran SDI

wfsFRW

Forest and
Watershed
Management
Organization

WFS

This service presents the spatial data from
the Forest and Watershed management
organization.
Layers: Forest_Park, Watershed, Land
Cover, etc.

wcsNCC
National
Cartographic
Center

WCS
This service presents the elevation data
for the entire country as coverage data.
Layers: DEM

wpsNCCSurface
National
Cartographic
Center

WPS

This service performs all of the surface
operations, including slope, aspect,
contour, hillshade, and viewshed
generation.

wpsNCCCT
National
Cartographic
Center

WPS

This service performs coordinate
transformations. It provides two
processes: ProjectFeatureDataset and
ProjectCoverageDataset.

Considering the specified characteristics of the evacuation site, the disaster management planner
sends their initial state and composition goal to the composition coordinator component. Figure 7
depicts the RDF graph of the initial state, which defines the bounding box of the study area and
required spatial reference system. The SPARQL ask query that defines the user goal by expressing
the characteristics of the desired output sites is shown in Figure 8. Figures 9 and 10 represent the
condition and effect of project feature operation of wpsNCCCT WPS (Web Processing Service) service
(Table 1), respectively.

Figure 7. Initial state for composing OWSs Figure 7. Initial state for composing OWSs

ISPRS Int. J. Geo-Inf. 2018, 7, 404 12 of 20

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 12 of 20

Figure 8. User goal for composing OWSs.

Figure 9. Condition of NCC_CT_WPS Execute Project Feature operation.

Figure 8. User goal for composing OWSs.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 12 of 20

Figure 8. User goal for composing OWSs.

Figure 9. Condition of NCC_CT_WPS Execute Project Feature operation. Figure 9. Condition of NCC_CT_WPS Execute Project Feature operation.

ISPRS Int. J. Geo-Inf. 2018, 7, 404 13 of 20

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 13 of 20

Figure 10. Effect of NCC_CT_WPS Execute Project Feature operation.

4.2. Planning Results

The composition coordinator component and both CSW services were implemented in a test
environment (Figure 11 shows the initial settings of the execution environment). Providing the initial
state and the composition goal of the case study as input arguments, the GenerateMultiAgentPlan
method of the composition coordinator component was called.

Figure 11. Initial settings of the execution environment.

The composition coordinator was able to find a valid plan after interaction with CSW agents.
Figure 12 shows the resultant plan.

Figure 10. Effect of NCC_CT_WPS Execute Project Feature operation.

4.2. Planning Results

The composition coordinator component and both CSW services were implemented in a test
environment (Figure 11 shows the initial settings of the execution environment). Providing the initial
state and the composition goal of the case study as input arguments, the GenerateMultiAgentPlan
method of the composition coordinator component was called.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 13 of 20

Figure 10. Effect of NCC_CT_WPS Execute Project Feature operation.

4.2. Planning Results

The composition coordinator component and both CSW services were implemented in a test
environment (Figure 11 shows the initial settings of the execution environment). Providing the initial
state and the composition goal of the case study as input arguments, the GenerateMultiAgentPlan
method of the composition coordinator component was called.

Figure 11. Initial settings of the execution environment.

The composition coordinator was able to find a valid plan after interaction with CSW agents.
Figure 12 shows the resultant plan.

Figure 11. Initial settings of the execution environment.

The composition coordinator was able to find a valid plan after interaction with CSW agents.
Figure 12 shows the resultant plan.

ISPRS Int. J. Geo-Inf. 2018, 7, 404 14 of 20

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 14 of 20

Figure 12. Result plan.

4.3. Translation to BPEL and Execution

The output plan was translated to an XML-based orchestration language called BPEL [55]. Using
BPEL, the composite web service can be described and then an orchestration engine will able to
execute the composite web service. In this study, the output plan was automatically translated into a
BPEL process document. The BPEL document was registered in the Java Business Integration (JBI)
runtime over the GlassFish server. The JBI runtime environment includes the BPEL Service Engine,
which provides functionalities for executing BPEL processes. The JBI environment presents the
composite OWS as a web service. Providing the required inputs, the web service was executed and
returned appropriate sites for sheltering.

4.4. Performance Demonstration

Since the number of available OWSs in the case study was limited and there was no testbed of
semantically described OWSs in the geomatics community, a service simulator program was
developed that could produce computer-generated OWSs. Using the simulated OWSs the feasibility
of the proposed multi-agent planning algorithm in dealing with real-world, complex circumstances
was tested. The goal of the test was to demonstrate how adding new CSW services to the geoportal
could increase the performance of the composition generation process.

The service simulator program was developed so that it can generate OWSs, and then
semantically annotate them based on predefined templates. A list of ninety-two tuples, each
including the required information for generation of a simulated OWS was compiled. Each tuple
contained a combination of information, including service type from OWS classification ontology,
feature type from Geography Markup Language (GML) [56] ontology or GML-coverage profile
ontology, class name from the fundamental ontology or the domain ontology, spatial reference
identifier, and a random bounding box. The service simulator application looped through the list and
by replacing the required information of each tuple, generated ninety-two OWSs.

Figure 12. Result plan.

4.3. Translation to BPEL and Execution

The output plan was translated to an XML-based orchestration language called BPEL [55].
Using BPEL, the composite web service can be described and then an orchestration engine will
able to execute the composite web service. In this study, the output plan was automatically translated
into a BPEL process document. The BPEL document was registered in the Java Business Integration
(JBI) runtime over the GlassFish server. The JBI runtime environment includes the BPEL Service
Engine, which provides functionalities for executing BPEL processes. The JBI environment presents
the composite OWS as a web service. Providing the required inputs, the web service was executed and
returned appropriate sites for sheltering.

4.4. Performance Demonstration

Since the number of available OWSs in the case study was limited and there was no testbed
of semantically described OWSs in the geomatics community, a service simulator program was
developed that could produce computer-generated OWSs. Using the simulated OWSs the feasibility
of the proposed multi-agent planning algorithm in dealing with real-world, complex circumstances
was tested. The goal of the test was to demonstrate how adding new CSW services to the geoportal
could increase the performance of the composition generation process.

The service simulator program was developed so that it can generate OWSs, and then semantically
annotate them based on predefined templates. A list of ninety-two tuples, each including the required
information for generation of a simulated OWS was compiled. Each tuple contained a combination of
information, including service type from OWS classification ontology, feature type from Geography
Markup Language (GML) [56] ontology or GML-coverage profile ontology, class name from the
fundamental ontology or the domain ontology, spatial reference identifier, and a random bounding box.

ISPRS Int. J. Geo-Inf. 2018, 7, 404 15 of 20

The service simulator application looped through the list and by replacing the required information of
each tuple, generated ninety-two OWSs.

The test process utilized the ninety-two simulated OWSs along with the eight OWSs of the case
study as the testbed. A network of six virtual nodes with Ubuntu 16.04.3 operating systems on
Oracle VirtualBox virtualization software, where each node had two gigabytes of RAM and two CPUs,
were used so that on the first node the composition coordinator component was installed and on the
five other nodes, five CSW services were deployed. The test started with the composition coordinator
node and two CSW service nodes, where each CSW service had fifty OWSs registered in it. The initial
state and the goal state of the case study were sent to the composition coordinator component and the
execution time was saved. In the next step, another CSW service node was added, the one hundred
OWSs were registered in the three CSW services and the execution time was saved. This process
continued to the point all five CSW service nodes were used.

To account for unwanted effects from the background processing of the operating systems and
the virtualization software, the test process was run 20 times. Figure 13 presents the execution results
of the different settings of the CSW services for 20 iterations. For the combination of one coordinator
node, two CSW services, and one hundred registered OWSs, on average, the system was able to solve
the composition problem in 20 s, which is a reasonable time for a web services composition task. As the
number of CSW nodes increased, the composition time of the system of one hundred OWSs reduced
exponentially, so that for five CSW services the average execution time was 0.3 s. This reduction proved
that by using the computational power of CSW services, the proposed distributed OWS composition
solution horizontally scaled up by adding new nodes. Therefore, it is less vulnerable to the exponential
growth of the search space and would be able to deal with complex problems of the real world.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW 15 of 20

The test process utilized the ninety-two simulated OWSs along with the eight OWSs of the case
study as the testbed. A network of six virtual nodes with Ubuntu 16.04.3 operating systems on Oracle
VirtualBox virtualization software, where each node had two gigabytes of RAM and two CPUs, were
used so that on the first node the composition coordinator component was installed and on the five
other nodes, five CSW services were deployed. The test started with the composition coordinator
node and two CSW service nodes, where each CSW service had fifty OWSs registered in it. The initial
state and the goal state of the case study were sent to the composition coordinator component and
the execution time was saved. In the next step, another CSW service node was added, the one
hundred OWSs were registered in the three CSW services and the execution time was saved. This
process continued to the point all five CSW service nodes were used.

To account for unwanted effects from the background processing of the operating systems and
the virtualization software, the test process was run 20 times. Figure 13 presents the execution results
of the different settings of the CSW services for 20 iterations. For the combination of one coordinator
node, two CSW services, and one hundred registered OWSs, on average, the system was able to solve
the composition problem in 20 s, which is a reasonable time for a web services composition task. As
the number of CSW nodes increased, the composition time of the system of one hundred OWSs
reduced exponentially, so that for five CSW services the average execution time was 0.3 s. This
reduction proved that by using the computational power of CSW services, the proposed distributed
OWS composition solution horizontally scaled up by adding new nodes. Therefore, it is less
vulnerable to the exponential growth of the search space and would be able to deal with complex
problems of the real world.

Figure 13. Execution time for different number of CSW nodes.

5. Discussion

The proposed solution in this study was able to address the two critical challenges of the
automatic composition of OWSs in geoportals mentioned in the introductory section. The algorithm
is distributed and compatible with the distributed architecture of geoportals. It does not need to fetch
the information about all registered OWSs in the CSW nodes to a central node and generate a vast
search space. Instead, the computational powers of CSW nodes are exploited, so that with the help of
a coordinator component, CSW nodes can collaboratively solve the composition problem. While the
case-study showed that the system could solve the automatic composition problem in a real-world
scenario, the performance demonstration in a simulation environment proved that by adding new
CSW nodes to the geoportal, the performance of the algorithm increased exponentially, which meant
that the system was horizontally scalable.

Figure 13. Execution time for different number of CSW nodes.

5. Discussion

The proposed solution in this study was able to address the two critical challenges of the automatic
composition of OWSs in geoportals mentioned in the introductory section. The algorithm is distributed
and compatible with the distributed architecture of geoportals. It does not need to fetch the information
about all registered OWSs in the CSW nodes to a central node and generate a vast search space.
Instead, the computational powers of CSW nodes are exploited, so that with the help of a coordinator
component, CSW nodes can collaboratively solve the composition problem. While the case-study
showed that the system could solve the automatic composition problem in a real-world scenario,
the performance demonstration in a simulation environment proved that by adding new CSW nodes

ISPRS Int. J. Geo-Inf. 2018, 7, 404 16 of 20

to the geoportal, the performance of the algorithm increased exponentially, which meant that the
system was horizontally scalable.

To apply the proposed solution in any geoportal, we need to add a composition
coordinator component that implements the automatic composition algorithm (Section 3.4.1),
and also force the CSW services that are registered in the geoportal to implement the
Generate Executable Partial Ordered Plans method and its underlying algorithm (Section 3.4.2),
in addition to the standard methods of CSW. This additional method of CSW services can be considered
as a possible extension to the CSW standard in future revisions or simply be provided through a
standard WPS [46] interface. In this condition, the geoportal will be able to automatically compose the
semantically annotated OWSs using the proposed solution. Meanwhile, a motivating resolution
for widespread adoption of the proposed solution is to extend opensource geoportal software,
e.g., GeoNetwork (https://geonetwork-opensource.org/), GeoNode (http://geonode.org/), pyCSW
(http://pycsw.org/) and Deegree (https://www.deegree.org/), and add the required functionalities
to them, so that they can be easily implemented in spatial data infrastructures. Among available
opensource geoportal software, GeoNetwork seems to be more appropriate to be extended because it
already has broad supports for working with SPARQL and RDF.

In the proposed solution, geospatial aspects of OWSs are semantically annotated using GML
and GML-coverage profile ontology, and SPARQL is used as the query language. Meanwhile,
GeoSPARQL [57] has been developed and commonly accepted in the geospatial community for
handling semantic geospatial data. GeoSPARQL provides a framework for the semantic description of
geospatial features based on GML and OGC Simple Feature [58] ontologies, along with a SPARQL
query interface. With these in mind, a question may arise as to why GeoSPARQL were not used in
this study? The proposed solution of this study works based on the update functionalities of SPARQL
1.1 Update Standard (see https://www.w3.org/TR/sparql11-update/ and Section 4.3 of the paper).
At the time of writing this article, there was no semantic web engine that supported both GeoSPARQL
and SPARQL 1.1 Update standard. Therefore, GeoSPARQL was not used for the definition of the
conditions and effects of OWSs in the case study. However, as soon as the leading semantic web
engines, e.g., Apache Jena, support GeoSPARQL, the developed system can be modified to work with
GeoSPARQL. This is just a discussion about possible tools and does not influence the approach used in
this study.

To evaluate the performance of a web service composition solution, researchers typically use a
testbed of sample web services (see References [59–61]). However, in the geospatial community, there is
no testbed of semantically annotated OWSs to be used for evaluation of the proposed composition
methods. Owing to this limitation, other researchers, e.g., Yue et al. [5], Cruz, Monteiro, and Santos [6],
Du et al. [32], Al-Areqi, Lamprecht, and Margaria [9], have proved the feasibility of their OWS
composition solution using case studies with limited numbers of OWSs. However, there are still issues
related to the test of the performance. To address these issues, in this study, a service simulator program
was developed to simulate a testbed of 100 OWSs. The simulated services on six computational nodes
were utilized to test the ability of the algorithm to deal with real-world circumstances. However,
generation of a standard testbed of semantically annotated OWSs with thousands of OWSs seems to
be necessary to be considered by the geospatial community. Such testbeds will provide the ability to
benchmark and compare the performances of proposed OWS composition solutions in future.

Based on OGC Catalog Service Standard [36], CSW can be cascaded by other CSW services.
Additionally, an OWS may be published through multiple CSW services. The complexity resulting
from multiple access points to an OWS service and repetition of OWSs in CSW services, should be
addressed in the future extension of the proposed solution. Utilization of a URI (Unified Resource
Identifier) as a global identifier of OWSs as proposed in the linked data principals [62] can be an
answer in this regard. Including the global identifier of OWSs in the partial-ordered plans that are
communicated between the composition coordinator component and the CSW nodes, will help the

https://geonetwork-opensource.org/
http://geonode.org/
http://pycsw.org/
https://www.deegree.org/
https://www.w3.org/TR/sparql11-update/

ISPRS Int. J. Geo-Inf. 2018, 7, 404 17 of 20

CSW nodes to distinguish the same OWSs, and therefore avoid using OWSs that have already been
added to the composition by other nodes.

The proposed algorithm in this study, was developed based on A* algorithm. Using a heuristic
function to lead the search protects the algorithm from the explosion of the search space and expansion
of the search tree in arbitrary directions. Using an open set containing all search nodes that have not
yet been explored ensures the completeness of the algorithm. Nissim and Brafman [40] proved that a
similar distributed A* algorithm was both complete and optimal.

The proposed algorithm does not use semantic similarity measures and semantic matching
techniques to detect similar concepts, which have been defined with different terminologies.
Addressing the requirement for similarity recognition in the composition process is an important
issue that should be considered as another future work. Additionally, considering data quality
and quality of service in the multi-agent AI planning algorithm is a future work for this research.
This approach should also be implemented on a large-scale geoportal so that its pros and cons can be
thoroughly evaluated.

6. Conclusions

This article presents a solution for automatic composition of OWSs. A multi-agent AI planning
algorithm has been introduced which exploits the computational power of CSW services to generate
composite web services out of atomic OWSs. The proposed solution delegates the processing overload
of the web service composition to the CSW service nodes. The solution horizontally scales up by
registering new CSW service nodes. Therefore, it is less vulnerable to the exponential growth of the
search space of the AI planning algorithms. It is also an extension to the distributed architecture
of geoportals, which has been widely exploited in the geospatial community, and is therefore an
appropriate choice to be implemented and used in real-world scenarios.

To demonstrate the functionality of the proposed solution, a prototype system was developed.
The system was used to solve geospatial web service composition problems in a case-study related
to site selection for sheltering after an earthquake. In a collaboration among the components of the
geoportal, including the CSW services, the geoportal was able to automatically generate the requested
composition out of the OWSs which were registered in the CSW services. The performance of the
solution was also tested in a simulation environment with one hundred OWSs and five CSW services.
The test showed that the solution was fast and horizontally scalable, so that by adding new CSW
services, the execution time reduced exponentially.

Implementation of the proposed solution in futuristic spatial data infrastructures and resource
publishing environments, e.g., the European INSPIRE Geoportal or the NSDI Clearinghouse of the
United States, can facilitate the process of dissemination, integration, and utilization of spatial data
and functionality from various sources, which eventually leads to providing value-added services for
users. Additionally, the proposed multi-agent algorithm can be used in cloud computing environments
as a broker that helps consumers to compose the data and functionalities out of the pool of services
provided by service providers.

Author Contributions: M.F. participated in the conceptualization of the study, proposing the method,
development of the prototype, testing and writing the text. A.M. contributed to the research design, discussing
the results, reviewing and revising the text.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial Web service
chains. Comput. Geosci. 2007, 33, 649–665. [CrossRef]

http://dx.doi.org/10.1016/j.cageo.2006.09.003

ISPRS Int. J. Geo-Inf. 2018, 7, 404 18 of 20

2. Klusch, M. Semantic web service coordination. In CASCOM: Intelligent Service Coordination in the Semantic
Web; Schumacher, M., Schuldt, H., Helin, H., Eds.; Birkhäuser: Basel, Switzerland, 2008; pp. 59–104.

3. Bartalos, P.; Bieliková, M. Fast and Scalable Semantic Web Service Composition Approach Considering
Complex Pre/Postconditions. In Proceedings of the 2009 IEEE Congress on Services, International Workshop
on Web Service Composition and Adaptation, Los Angeles, CA, USA, 6–10 July 2009.

4. Kumar, S. A Multi-Agent Negotiation-Based Approach to Selection and Composition of Semantic Web
Services. In Agent-Based Semantic Web Service Composition, SpringerBriefs in Electrical and Computer Engineering;
Springer: New York, NY, USA, 2012; pp. 37–56.

5. Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P.; Gong, J. Semantic Web Services-based process planning for earth
science applications. Int. J. Geogr. Inf. Sci. 2009, 23, 1139–1163. [CrossRef]

6. Cruz, S.A.B.; Monteiro, A.M.V.; Santos, R. Automated geospatial Web Services composition based on geodata
quality requirements. Comput. Geosci. 2012, 47, 60–74. [CrossRef]

7. Farnaghi, M.; Mansourian, A. Automatic composition of WSMO based geospatial semantic web services
using artificial intelligence planning. J. Spat. Sci. 2013, 58, 235–250. [CrossRef]

8. Farnaghi, M.; Mansourian, A. Disaster planning using automated composition of semantic OGC web services:
A case study in sheltering. Comput. Environ. Urban Syst. 2013, 41, 204–218. [CrossRef]

9. Al-Areqi, S.; Lamprecht, A.-L.; Margaria, T. Constraints-Driven Automatic Geospatial Service Composition:
Workflows for the Analysis of Sea-Level Rise Impacts. In Computational Science and Its Applications—ICCSA
2016: 16th International Conference, Beijing, China, 4–7, July 2016, Proceedings, Part III; Gervasi, O., Ed.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 134–150.

10. Ghallab, M.; Nau, D.S.; Traverso, P. Automated Planning: Theory and Practice; Elsevier: Amsterdam,
The Netherlands; Morgan Kaufmann: Boston, FL, USA, 2004.

11. Nebert, D.D. Developing Spatial Data Infrastructures: The SDI Cookbook—Version 2.0; Global Spatial Data
Infrastructure (GSDI): Paris, France, 2004.

12. Nebert, D.; Whiteside, A.; Vretanos, P.A. OpenGIS Catalogue Services Specification, Version 2.0.2. OGC
07-006r1. 2007. Retrieved 25 January 2013. Available online: http://www.opengeospatial.org/standards/cat
(accessed on 6 August 2018).

13. Baryannis, G.; Plexousakis, D. Automated Web Service Composition: State of the Art and Research Challenges;
Tech. Rep. 409; ICS-FORTH: Heraklion, Greece, October 2010.

14. El Falou, M.; Bouzid, M.; Mouaddib, A.-I.; Vidal, T. A complete and optimal distributed algorithm based
on global heuristic for Web services composition. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Istanbul, Turkey, 10–13 October 2010.

15. El Falou, M.; Bouzid, M.; Mouaddib, A.-I.; Vidal, T. A distributed multi-agent planning approach for
automated web services composition. Web Intell. Agent Syst. 2012, 10, 423–445. [CrossRef]

16. Lin, S.-Y.; Lin, G.-T.; Chao, K.-M.; Lo, C.-C. A Cost-Effective Planning Graph Approach for Large-Scale Web
Service Composition. Math. Probl. Eng. 2012, 2012, 783476. [CrossRef]

17. Maguire, D.J.; Longley, P.A. The emergence of geoportals and their role in spatial data infrastructures.
Comput. Environ. Urban Syst. 2005, 29, 3–14. [CrossRef]

18. Bernard, L.; Kanellopoulos, I.; Annoni, A.; Smits, P. The European geoportal—-one step towards the
establishment of a European Spatial Data Infrastructure. Comput. Environ. Urban Syst. 2005, 29, 15–31.
[CrossRef]

19. Beaumont, P.; Longley, P.A.; Maguire, D.J. Geographic information portals—A UK perspective.
Comput. Environ. Urban Syst. 2005, 29, 49–69. [CrossRef]

20. Alameh, N. Service chaining of interoperable geographic information web services. IEEE Internet Comput.
2002, 7, 22–29. [CrossRef]

21. Lemmens, R.; De By, R.; Gould, M.; Wytzisk, A.; Granell, C.; Van Oosterom, P. Enhancing Geo-Service
Chaining through Deep Service Descriptions. Trans. GIS 2007, 11, 849–871. [CrossRef]

22. Lutz, M.; Lucchi, R.; Friis-Christensen, A.; Ostländer, N. A Rule-Based Description Framework for the
Composition of Geographic Information Services. In GeoSpatial Semantics; Fonseca, F., Rodríguez, M.,
Levashkin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4853, pp. 114–127.

23. Di, L.; Yue, P.; Yang, W.; Yu, G.; Zhao, P.; Wei, Y. Ontology-Supported Automatic Service Chaining for
Geospatial Knowledge Discovery. In Proceedings of the American Society of Photogrammetry and Remote
Sensing, Tampa, FL, USA, 7–11 May 2007.

http://dx.doi.org/10.1080/13658810802032680
http://dx.doi.org/10.1016/j.cageo.2011.11.020
http://dx.doi.org/10.1080/14498596.2013.815148
http://dx.doi.org/10.1016/j.compenvurbsys.2013.06.003
http://www.opengeospatial.org/standards/cat
http://dx.doi.org/10.3233/WIA-2012-0255
http://dx.doi.org/10.1155/2012/783476
http://dx.doi.org/10.1016/S0198-9715(04)00045-6
http://dx.doi.org/10.1016/S0198-9715(04)00049-3
http://dx.doi.org/10.1016/S0198-9715(04)00048-1
http://dx.doi.org/10.1109/MIC.2003.1232514
http://dx.doi.org/10.1111/j.1467-9671.2007.01079.x

ISPRS Int. J. Geo-Inf. 2018, 7, 404 19 of 20

24. Gone, M.; Schade, S. Towards Semantic Composition of Geospatial Web Services–Using WSMO instead of
BPEL. Int. J. Spat. Data Infrastruct. Res. 2008, 3, 192–214.

25. Friis-Christensen, A.; Lucchi, R.; Lutz, M.; Ostländer, N. Service Chaining Architectures for Applications
Implementing Distributed Geographic Information Processing. Int. J. Geogr. Inf. Sci. 2009, 23, 561–580.
[CrossRef]

26. Supavetch, S.; Chunithipaisan, S. Interface Independent Geospatial Services Orchestration. Inf. Technol. J.
2011, 10, 1126–1137. [CrossRef]

27. Hofer, B.; Mäs, S.; Brauner, J.; Bernard, L. Towards a knowledge base to support geoprocessing workflow
development. Int. J. Geogr. Inf. Sci. 2017, 31, 694–716. [CrossRef]

28. Wiemann, S. Formalization and web-based implementation of spatial data fusion. Comput. Geosci. 2017, 99
(Suppl. C), 107–115. [CrossRef]

29. Sheshagiri, M.; des Jardins, M.; Finin, T. A Planner for Composing Services Described in DAML-S.
In Proceedings of the ICAPS’03 Workshop on Planning for Web Services, Trento, Italy, 10 June 2003.

30. Roman, D.; Keller, U.; Lausen, H.; de Bruijn, J.; Lara, R.; Stollberg, M.; Polleres, A.; Feier, C.; Bussler, C.;
Fensel, D. Web service modeling ontology. Appl. Ontol. 2005, 1, 77–106.

31. Vitvar, T.; Kopecky, J.; Viskova, J.; Fensel, D. Wsmo-Lite Annotations for Web Services. In Proceedings of the
5th Annual European Semantic Web Conference (ESWC 2008), Tenerife, Spain, 1–5 June 2008.

32. Du, W.; Fan, H.; Li, J.; Wang, H. Model-driven geospatial web service composition. In Proceedings of the
ISPRS Technical Commission VI Symposium, Wuhan, China, 19–21 May 2014; Volume XL-6.

33. Vaithiyanathan, R.; Govindharajan, T.A. User preference-based automatic orchestration of web services
using a multi-agent. Comput. Electr. Eng. 2015, 45, 68–76. [CrossRef]

34. Küngas, P.; Matskin, M. Semantic Web Service Composition Through a P2P-Based Multi-agent Environment.
In Agents and Peer-to-Peer Computing; Despotovic, Z., Joseph, S., Sartori, C., Eds.; Springer: Berlin/Heidelberg,
Germay, 2006; Volume 4118, pp. 106–119.

35. Charif, Y.; Sabouret, N. Dynamic service composition enabled by introspective agent coordination.
Auton. Agents Multi-Agent Syst. 2013, 26, 54–85. [CrossRef]

36. Nebert, D.; Voges, U.; Bigagli, L. OGC Catalogue Services 3.0—General Model. OGC 12-168r6. 2016.
Retrieved 1 May 2018. Available online: http://docs.opengeospatial.org/is/12-168r6/12-168r6.html
(accessed on 6 August 2018).

37. Mansourian, A.; Omidi, E.; Toomanian, A.; Harrie, L. Expert system to enhance the functionality of
clearinghouse services. Comput. Environ. Urban Syst. 2011, 35, 159–172. [CrossRef]

38. Jennings, N.R. Coordination techniques for distributed artificial intelligence. In Foundations of Distributed
Artificial Intelligence; O’Hare, G., Jennings, N.R., Eds.; John Wiley & Sons: New York, NY, USA, 1996;
pp. 187–210.

39. Weerdt, M.D.; Mors, A.T.; Witteveen, C. Multi-agent planning: An introduction to planning and coordination.
In Proceedings of the European Agent Systems Summer School, Barcelona, Spain, 6–10 July 2005.

40. Nissim, R.; Brafman, R.I. Multi-agent A* for parallel and distributed systems. In Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012;
Volume 3.

41. Torreño, A.; Onaindia, E.; Komenda, A.; Štolba, M. Cooperative Multi-Agent Planning: A Survey.
ACM Comput. Surv. CSUR 2017, 50, 84. [CrossRef]

42. Sirin, E. Automated Composition of Web Services Using AI Planning Techniques. Master’s Thesis, University
of Maryland, College Park, MD, USA, 2004.

43. Beaujardiere, J.D.L. Web Map Service, Version 1.3. OGC 04-024. 2004. Retrieved 10 October 2012. Available
online: http://www.opengeospatial.org/standards/wms (accessed on 6 August 2018).

44. Vretanos, P.A. Web Feature Service Implementation Specification, Version 1.1.0. OGC 04-094. 2005.
Retrieved 25 October 2012. Available online: http://www.opengeospatial.org/standards/wfs (accessed on
6 August 2018).

45. Evans, J.D. Web Coverage Service (WCS). Version 1.0.0. OGC 03-065r6. 2003. Retrieved 10 October 2012.
Available online: http://www.opengeospatial.org/standards/wcs (accessed on 6 August 2018).

46. Schut, P. OpenGIS Web Processing Service, Version 1.0.0. OGC 05-007r7. 2007. Retrieved 27 January 2013.
Available online: http://www.opengeospatial.org/standards/wps (accessed on 6 August 2018).

http://dx.doi.org/10.1080/13658810802665570
http://dx.doi.org/10.3923/itj.2011.1126.1137
http://dx.doi.org/10.1080/13658816.2016.1227441
http://dx.doi.org/10.1016/j.cageo.2016.10.014
http://dx.doi.org/10.1016/j.compeleceng.2015.03.021
http://dx.doi.org/10.1007/s10458-011-9182-5
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html
http://dx.doi.org/10.1016/j.compenvurbsys.2010.06.003
http://dx.doi.org/10.1145/3128584
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wps

ISPRS Int. J. Geo-Inf. 2018, 7, 404 20 of 20

47. Babitski, G.; Bergweiler, S.; Hoffmann, J.; Schön, D.; Stasch, C.; Walkowski, A. Ontology-based Integration of
Sensor Web Services in Disaster Management. In GeoSpatial Semantics; Janowicz, K., Raubal, M., Levashkin, S.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5892, pp. 103–121.

48. Kopecky, J.; Vitvar, T.; Bournez, C.; Farrell, J. SAWSDL: Semantic Annotations for WSDL and XML Schema.
IEEE Internet Comput. 2007, 11, 60–67. [CrossRef]

49. Prud’hommeaux, E.; Seaborne, A. SPARQL Query Language for RDF. W3C Recommendation. 2008.
Retrieved 9 October 2012. Available online: http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
(accessed on 6 August 2018).

50. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.;
Parsia, B.; Payne, T. OWL-S: Semantic markup for web services. W3C Member Submission. 2004. Retrieved 15
October 2012. Available online: http://www.w3.org/Submission/OWL-S/ (accessed on 6 August 2018).

51. Fensel, D.; Bussler, C. The Web Service Modeling Framework WSMF. Electron. Commer. Res. Appl. 2002, 1,
113–137. [CrossRef]

52. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River,
NJ, USA, 2010.

53. Whitesitt, J.E. Boolean Algebra and Its Applications; Courier Corporation: North Chelmsford, MA, USA, 2012.
54. Backstrom, C. Computational Aspects of Reordering Plans. J. Artif. Intell. Res. 1998, 9, 99–137. [CrossRef]
55. Alves, A.; Arkin, A.; Askary, S.; Barreto, C.; Bloch, B.; Curbera, F.; Ford, M.; Goland, Y.; Guízar, A.; Kartha, N.;

et al. Web Services Business Process Execution Language Version 2.0. OASIS Standard. 2007. Retrieved
10 October 2012. Available online: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
(accessed on 6 August 2018).

56. Brink, L.V.D.; Portele, C.; Vretanos, P.A. Geography Markup Language (GML) Simple Features Profile. 2010.
Retrieved 15 July 2012. Available online: http://www.opengeospatial.org/standards/gml (accessed on 6
August 2018).

57. Perry, M.; Herring, J. OGC GeoSPARQL—A Geographic Query Language for RDF Data. OGC 11-052r4, OGC
Implementation Standard. 2012. Retrieved 25 January 2018. Available online: http://www.opengeospatial.
org/standards/geosparql (accessed on 6 August 2018).

58. Herring, J.R. OpenGIS®Implementation Standard for Geographic Information. OGC 06-103r4, OpenGIS
Implementation Standard. 2011. Retrieved 25 January 2018. Available online: http://www.opengeospatial.
org/standards/sfa (accessed on 6 August 2018).

59. Yeganeh, S.H.; Habibi, J.; Rostami, H.; Abolhassani, H. Semantic web service composition testbed.
Comput. Electr. Eng. 2008, 36, 805–817. [CrossRef]

60. SemWebCentral. OWLS-TC: OWL-S Service Retrieval Test Collection. Latest Version OWLSTC 4.0
(OWLS-TC4) Published on 21 September 2010. First Version of OWLS-TC Was Created by Benedikt Fries,
Mahboob Khalid, Matthias Klusch (DFKI) and Published at Semwebcentral on 11 April 2005. Available
online: http://projects.semwebcentral.org/projects/owls-tc/ (accessed on 6 August 2018).

61. Cabral, L.; Li, N. Building the WSMO-Lite Test Collection on the SEALS Platform. In Proceedings of the 9th
Extended Sematic Web Conference 2012 (ESWC 2012), Heraklion, Greece, 27–31 May 2012; Volume 843.

62. Bizer, C.; Heath, T.; Berners-Lee, T. Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 2009, 5, 1–22.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MIC.2007.134
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/Submission/OWL-S/
http://dx.doi.org/10.1016/S1567-4223(02)00015-7
http://dx.doi.org/10.1613/jair.477
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://dx.doi.org/10.1016/j.compeleceng.2008.04.007
http://projects.semwebcentral.org/projects/owls-tc/
http://dx.doi.org/10.4018/jswis.2009081901
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies
	Method
	Architecture
	Semantic Annotation of OWSs
	A Conceptual Model for Automatic Composition of OWSs
	Automatic Composition Algorithm
	Composition Coordinator Component
	CSW Component

	Implementation
	Case study: Site Selection for Sheltering
	Planning Results
	Translation to BPEL and Execution
	Performance Demonstration

	Discussion
	Conclusions
	References

