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Abstract: This study advanced a rigorous spatial analysis of surface water-related environmental
health vulnerabilities in the California Bay-Delta region, USA, from 2000 to 2006. It constructed a
novel hazard indicator—“impaired water hazard zones”—from regulatory estimates of extensive
non-point-source (NPS) and point-source surface water pollution, per section 303(d) of the
U.S. Clean Water Act. Bivariate and global logistic regression (GLR) analyses examined how
established predictors of surface water health-hazard exposure vulnerability explain census block
groups’ proximity to impaired water hazard zones in the Bay-Delta. GLR results indicate the
spatial concentration of Black disadvantage, isolated Latinx disadvantage, low median housing
values, proximate industrial water pollution levels, and proximity to the Chevron oil refinery—a
disproportionate, “super emitter”, in the Bay-Delta—significantly predicted block group proximity to
impaired water hazard zones. A geographically weighted logistic regression (GWLR) specification
improved model fit and uncovered spatial heterogeneity in the predictors of block group proximity
to impaired water hazard zones. The modal GWLR results in Oakland, California, show how
major polluters beyond the Chevron refinery impair the local environment, and how isolated Latinx
disadvantage was the lone positively significant population vulnerability factor. The article concludes
with a discussion of its scholarly and practical implications.

Keywords: environmental health; environmental sociology; critical physical geography; intersectionality;
environmental inequality; toxic releases; water pollution; logistic regression; geographically weighted
regression; California

1. Introduction

1.1. Background

Recent research is advancing our understanding of different manifestations of “water
injustice” [1,2]. Typically, this category of environmental inequality “refers to the unequal distribution
of rights to access healthy and affordable water, the lack of meaningful participation in water
governance, and the misrecognition of culturally diverse ways of equitably and sustainably managing
the interactions between water systems and social systems” [3] (p. 576). California’s San Francisco Bay
and Sacramento—San Joaquin Delta (Bay-Delta) region (see Figure 1) has been an important site for the
study of water injustice in the United States. Case studies of successive Bay-Delta water management
and planning processes in the 2000s found that low-income and nonwhite people representing water
justice interests were systematically excluded from those processes [4,5]. People from those same
backgrounds, as well as those with limited education attainment and English-speaking ability, tend
to experience heightened risk of exposure to surface water-related environmental health hazards in
the Bay-Delta. The pathway to these exposure vulnerabilities include residential segregation near
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industrial water pollution sources [3], as well as subsistence fish consumption and low fish advisory
awareness [6,7].
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Figure 1. Map (A) California and Map (B) the six-county Bay-Delta study area.

A recent study of the “sociospatial dimensions” of water injustice in the Bay-Delta [3] built
on previous research in the region [4–7] with a cross-sectional analysis of disparate proximity to
surface water toxic releases in the year 2000. Disparate proximity is manifest in the nonrandom
distribution of specific social groups and environmental hazards, clustered near each other in
geographic space [8]. The earlier assessment of disparate proximity to surface water toxic releases in the
Bay-Delta [3] developed a novel environmental health hazard indicator—the surface water “cumulative
areal-weighted modeled hazard score” (CAWMHS)—that incorporated methodological innovations
of exposure assessment in the environmental inequality outcomes literature [9–13]. Surface water
CAWMHS models the relative health hazard posed to census geographies given their proximity to
surface water toxic release facilities with data from the U.S. Environmental Protection Agency’s (EPA)
Risk-Screening Environmental Indicators (RSEI) database, version 2.3 [14]. The RSEI database attaches
health-related hazard information to toxic releases that are self-reported by manufacturing facilities
with more than 10 employees to the U.S. EPA’s Toxic Release Inventory (TRI).

The previous assessment of the sociospatial dimensions of water injustice in the Bay-Delta
focused on the intersecting environmental health vulnerabilities associated with disparate proximity
to surface water CAWMHS in the region [3]. Importing insights from the sociological study of
intersectionality [15,16], intersectional environmental inequality outcomes research of that kind
focuses on how the spatial concentration of individuals identifying with multiple social identities
is associated with disparate proximity or unequal exposure to environmental hazards [17–20].
The benefit of this approach is that it moves beyond the classic environmental inequality debates
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over race and class, for example, to a view on how different low-income racial groups experience
segregation and environmental health hazard exposure [19]. This intersectional approach also
accords with survey research on racial differences in hazardous subsistence fish consumption rates
among the economically disadvantaged and those with limited English-speaking ability in the
Bay-Delta [6,7]. Previous research [3] found that factor variables representing the spatial concentration
of “Black disadvantage” (i.e., poor Blacks and Blacks without a high school diploma) and “isolated
Latino disadvantage” (i.e., poor Latinos, Latinos without a high school diploma, and primarily
Spanish-speaking households) were statistically significant and positive predictors of block group
exposure to surface water CAWMHS, net of other factors.

There were two other significant, negative predictors of block group-level surface water CAWMHS
in the Bay-Delta: Median housing values and proximity to the Chevron oil refinery in Richmond,
California [3]. The negative association between housing values and environmental hazard exposure
is fairly consistent in the environmental inequality outcomes literature [20,21]. It also accords with
expectations in the broader social science literature on uneven development, which focuses on how
the unequal spatial distribution of economic resources influences the health and wellbeing of people
and places [22,23]. Proximity to the Richmond Chevron oil refinery was treated as a statistical control
to account for the spatial clustering of surface water CAWMHS near this facility, which was the most
hazardous industrial polluter in the region [3].

1.2. Objectives and Hypotheses

The present study addresses three limitations in previous research on the sociospatial dimensions
of surface water-related environmental health vulnerabilities within the Bay-Delta region [3]. First,
surface water CAWMHS only includes industrial surface water toxic releases from the U.S. EPA RSEI
database. In addition, surface water CAWMHS does not account for the fate and transport of pollutants
as found in a number of hydrological analyses used for assessing total maximum daily loads (TMDL)
for U.S. waterways [24–29]. Accordingly, questions remain regarding the unequal spatial distribution
of a broader set of point and non-point-sources (NPS) in the region. Such sources are identified in lists
of “impaired water bodies,” which are maintained by states (e.g., California), per section 303(d) of the
U.S. Clean Water Act, and are subject to review by the U.S. EPA.

The 303(d) list of impaired waters represents waters that state agencies expect to violate water
quality standards. These expected violations occur despite the regime of federal technology-based
regulatory controls and permitting systems for point source discharges, such as those from
manufacturing facilities in the National Pollutant Discharge Elimination System. NPS discharges are
important contributors to water impairment beyond these point sources, but they are not under direct
federal jurisdiction. NPS discharges typically include urban runoff, agricultural pollution sources,
wastewater, and the lingering effects of historical resource extraction and massive water engineering
projects. The goal of the 303(d) list is to identify the point source and NPS pollutants present in any
given water body that lead to water quality violations then use a variety of strategies, particularly the
TMDL program, to create what is essentially a state-negotiated, federally-approved, permitted budget
for specific contaminant-source combinations [30]. The TMDL program has risen to prominence
recently with the U.S. EPA approving more than 37,000 pollutant- and water-body-specific TMDLs
between 2009 and 2012 [31].

In this study, I address the limited focus on industrial point-source hazards as a dependent variable
in previous research on the Bay-Delta [3]. I move beyond this focus using geographic information
systems (GIS) to create a new environmental health hazard indicator—“impaired water hazard
zones”—from California’s 303(d) list of impaired waters for 2006. I used the impaired water list from
2006 to maintain temporal comparability with data from 2000 that was used in previous research [3].
In so doing, I test three hypotheses derived from literature reviewed above regarding the intersecting
population vulnerability and uneven development factors that are associated with unequal risk of
exposure to surface water-related health hazards in the Bay-Delta. In one of these hypotheses—and
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throughout the remainder of this article—I deviate from earlier work on the Bay-Delta [3] and use the
gender-neutral term, “Latinx,” to refer to individuals that are typically identified as “Hispanic” or
with the gendered term, “Latino” [32]. The first set of hypotheses tested in this study are as follows:

Hypothesis 1 (H1): The Black disadvantage hypothesis states that the spatial concentration of socioeconomically
disadvantaged Blacks will be positively associated with block group proximity to impaired water hazard zones,
net of other factors.

Hypothesis 2 (H2): The isolated Latinx disadvantage hypothesis states that the spatial concentration of
socioeconomically disadvantaged Latinxs and primarily Spanish-speaking households will be positively associated
with block group proximity to impaired water hazard zones, net of other factors.

Hypothesis 3 (H3): The uneven development hypothesis states that housing values will be positively associated
with block group proximity to impaired water hazard zones, net of other factors. That is, low housing values will
be associated with block group proximity to impaired water hazard zones.

This study also develops an alternative conceptual framework than used in previous research [3],
which reconsiders the continuing significance of contemporary industrial sources of water injustice in
the Bay-Delta. In particular, it charts deeper connections between the sociospatial dimensions of water
injustice and the environmental-sociological literature on “disproportionality”. The disproportionality
perspective focuses on two ways in which power and privilege intertwine to produce unequal
environmental health vulnerabilities. The first dimension involves dominant social actors’ “privileged
access” to pollute or otherwise manipulate the biophysical environment to suit their interests [33].
Privileged access is legitimated through taken for granted or “privileged accounts”, which shift
regulatory and public scrutiny away from the polluting activity of dominant actors [33]. The present
study focuses on privileged access by examining “polluter disproportionality”, which refers to the
disproportionate share of environmental pollution (and their associated health implications) from a
small number of industrial producers [34–37].

From the disproportionality perspective, the significance of disparate proximity to the Chevron
oil refinery in Richmond is more than a mere control variable to account for the spatial clustering
of surface water-related health hazards in the Bay-Delta, as found in previous research [3]. Instead,
proximity to the Chevron refinery is an indicator of how marginalized communities, such as Richmond,
California and its neighbors [38,39], face significant environmental health threats from neighboring
“super emitters” [37] like Chevron. Indeed, Chevron and other major oil and gas producers
have gone to considerable lengths to challenge U.S. environmental law [40] and local protests to
secure “privileged access” to disproportionately pollute the biophysical environment of vulnerable
communities throughout the world [41–49].

The disproportionality perspective aligns with various components of critical physical geography.
Critical physical geography is committed to rigorously examining the material dimensions of
biophysical landscapes. Akin to intersectionality studies, critical physical geography is also centrally
concerned with exposing how human actions and multiple and sometimes intersecting social
inequalities (e.g., race, class, and/or linguistic ability) impact people’s experience of the biophysical
environment with implications for their health and wellbeing [50,51]. For example, McClintock [23,52]
found unequal concentrations of soil lead contamination and elevated childhood blood lead levels
in Oakland, California’s flatland areas, which are predominantly nonwhite, low-income, industrial,
and filled with pre-1940s housing stock. McClintock’s [23] historical study of Oakland revealed how
its unequal landscape of environmental health vulnerabilities is linked to a series of exclusionary land
use controls (i.e., racially-restrictive covenants), uneven development, and corporate advocacy and
regulatory acquiescence for the pervasive use of lead-based products, especially lead-based gas and
paint. The remnants of these lead-based environmental health hazards, despite their subsequent ban,
are found in the soils of Oakland’s nonwhite, low-income, and industrial neighborhoods that have
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been neglected while capital investment and redevelopment unfold elsewhere in the hills and suburbs
surrounding Oakland [23].

The regression analyses featured in this study test two additional hypothesis. They derive from
previous empirical findings [3], the disproportionality perspective in environmental sociology [33–37],
and the general framework of critical physical geography [23,50–52]. Importantly, these hypotheses
explicitly distinguish the effects of proximate cumulative industrial pollution sources, as represented in
the surface water CAWMHS, from proximity to the Richmond Chevron oil refinery. Doing so helps to
isolate the disproportionate effects that super emitters with privileged access to the environment have
on the sociospatial dimensions of water injustice in the Bay-Delta. In testing the following hypotheses,
I incorporate the U.S. EPA RSEI data from 2000 to 2006 to develop an updated indicator of surface
water CAWMHS than was found in the previous research [3]:

Hypothesis 4 (H4): The industrial point source pollution hypothesis states that surface water CAWMHS will
be positively associated with block group proximity to impaired water hazard zones, net of other factors.

Hypothesis 5 (H5): The super emitter hypothesis states that proximity to the Richmond Chevron oil refinery
will be positively associated with block group proximity to impaired water hazard zones, net of other factors.
That is, block groups near the Richmond Chevron oil refinery will also be near impaired water hazard zones.

Third, this study attends to the spatial non-stationarity of intersecting environmental health
vulnerabilities and polluter disproportionality that has yet to be examined in previous research.
Spatial non-stationarity in this context refers to how relationships between variables examined at
one spatial scale (e.g., the census block group) using the same method of assessing exposure can
vary across different geographic extents (e.g., the regional versus sub-regional scale) [53]. Since the
introduction of geographically weighted regression (GWR) techniques [54,55], studies have used
GWR to model spatial non-stationarity in a wide variety of multivariate statistical relationships.
These include applications of geographically weighted logistic regression (GWLR) to model local
variation in the predictors of binary outcomes spanning multiple subfields in human and physical
geography [56–68]. Within the environmental inequality outcomes literature, spatial non-stationarity
has been identified in the aggregate-level population vulnerability predictors of industrial air-toxic
releases in New Jersey, USA [69], estimated lifetime cancer risk from cumulative ambient air-toxic
pollution in Florida, USA [70], and vegetation land cover in shrinking and growing US cities [71].
GWR-based environmental inequality outcomes research has also uncovered spatial non-stationarity
in the effect of particulate matter and other environmental exposures on adverse childhood respiratory
conditions in the United Kingdom [72] and in the USA [73]. Given these insights, the present study
tests the following hypothesis regarding the predictors of disparate proximity to impaired water
hazard zones in the Bay-Delta:

Hypothesis 6 (H6): The spatial non-stationarity hypothesis states that the relationship between intersecting
population vulnerability, uneven development, proximate industrial point source pollution levels and sources,
and block group proximity to impaired water hazard zones will vary significantly at the block group level
throughout the Bay-Delta region.

This study is the first to couple global logistic regression (GLR) with GWLR to analyze the
extent of spatial non-stationarity in the relationship between intersecting population vulnerability
factors, uneven development, polluter disproportionality, and a binary environmental inequality
outcome (in this case, block group proximity to impaired water hazard zones). It used GLR to test the
hypotheses presented above regarding the predictors of census block groups’ proximity to impaired
water hazard zones throughout the Bay-Delta. The results from those analyses support previous
research on the sociospatial dimensions of water injustice in the Bay-Delta [3]. However, the GWLR
specification improved model fit and uncovered spatial non-stationarity in the predictors of block
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group proximity to impaired water hazard zones. As illustrated in the modal GWLR results in Oakland,
California, other industrial polluters (beyond the Richmond Chevron refinery) adversely affect the
local environment. Further, isolated Latinx disadvantage, rather than Black disadvantage, was the sole
positively significant intersecting population vulnerability predictor of census block groups’ proximity
to impaired water hazard zones. The article closes with a discussion of its future scholarly and practical
implications in light of these findings.

2. Materials and Methods

This study applies the interdisciplinary, critical physical geography “methodological
four-square” [51] to the analysis of impaired water hazard zones, as summarized in Figure 2. In testing
the six guiding hypotheses of this study, I draw on quantitative methods from (1) the biophysical
sciences to guide my spatial analysis of surface water health hazards (Box A, Figure 2), and (2) the social
sciences in my spatial analysis of intersecting environmental health vulnerabilities and their sources
(Box B, Figure 2). I supplement that quantitative approach with a qualitative, narrative description
of (1) surface water pollutants and their hazard levels (Box C, Figure 2); and (2) the anthropogenic
and biophysical sources of surface water pollutants (Box D, Figure 2). The remainder of this section is
primarily devoted to explaining the quantitative methods used in this study.
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2.1. Unit of Analysis

Census block groups defined for the year 2000 are the unit of analysis in this study. These areal
units, produced by the U.S. Census, typically span contiguous areas that aggregate census blocks
and contain between 600 and 3000 people. A benefit of using these units for the year 2000 is that
doing so maintains comparability between the present study and previous research on the sociospatial
dimensions of water injustice in the Bay-Delta [3]. In addition, census block groups are the smallest
unit of analysis for all data included in this study, and they provide more precision in population
exposure estimates than is possible with higher levels of aggregation, such as census tracts.

2.2. Dependent Variable

This study’s dependent variable is a binary measure of census block group proximity to impaired
water hazard zones in the Bay-Delta (1 = yes; 0 = no). Measuring proximity to an environmental hazard
is a crude measure for exposure in environmental inequality studies [10]. However, the proximity
approach is advocated because: (1) Research suggests there are psychological, community health,
and economic risks from being proximate to an environmental hazard [74,75]; and (2) proximity is one
of the best proxies available when unable to assess actual exposure [10,11]. Under these assumptions,
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research on air- [21,76] and land-based [11] environmental hazards typically use critical distances
between one and three miles to a hazard in assessments of disparate proximity.

A related approach is suggested for surface water hazards. The U.S. EPA determined the 6.4-km
(4-mile) distance to surface water hazards to be the “inner zone”, or plausible exposure zone, to
surface water hazards for its Hazard Ranking System for National Priority List sites [3,13]. I adapted
these guidelines for the present study by using ArcMap 10.4 to draw 6.4-km buffers around water
bodies identified in the 2006, 303(d), impaired water bodies list for California. Data on the impaired
water bodies were derived from the California State Water Resources Control Board’s (SWRCB) list of
impaired water bodies for 2006 [77,78]. I then intersected these buffers to construct the impaired water
hazard zones. These zones, shown in Figure 3, Map C, represent spaces that are simultaneously within
the 6.4-km plausible exposure zones to 37 segments of impaired minor water bodies (i.e., “rivers,
streams, and coastal shorelines”) (see Figure 3, Map A) and 69 segments of major water bodies
(i.e., “bays, harbors, estuaries, lakes, reservoirs, and tidal wetlands”) (see Figure 3, Map B). This spatial
analytic strategy provides a crude measure of census block group plausible exposure to surface waters
that were significantly polluted from point sources and NPS in the Bay-Delta as of 2006.
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As described in Section 3.1.1, the impaired water bodies analyzed in this study represent the
historical accumulation of a multiplicity of point and NPS pollutants in the surface waters of the
Bay-Delta. I assessed the disparate proximity of census block groups to impaired water hazard zones
with the commonly used “50 percent areal containment method” [3,10,11]. In the context of the present
study, this method involved calculating the extent to which at least 50 percent of a census block group’s
area intersected the impaired water hazard zones. Similar to previous research [3,10,11], I found this
approach produced less variation in the size of block groups contained in the impaired water hazard
zones than the comparable distance-based, boundary intersection method. The mean area of the
1637 block groups meeting the 50 percent areal containment threshold was 2.33 square kilometers
(0.90 square miles) (SD = 13.55 square kilometers/5.13 square miles). The mean area of the 1848 block
groups meeting the boundary intersection threshold was 4.98 square kilometers (1.92 square miles)
(SD = 27.21 square kilometers/10.51 square miles).

2.3. Independent Variables

2.3.1. Intersecting Population Vulnerability Factors

I used two factor variables—Black disadvantage and isolated Latinx disadvantage—to maintain
comparability with previous research [3] and to test the Black disadvantage (H1) and isolated
Latinx disadvantage (H2) hypotheses stated above. Each factor represents “structural factors” of
environmental health vulnerability [68] that are salient in the Bay-Delta water environment [3–7].
These include poverty, limited educational attainment, and limited English-speaking ability, which are
uniquely correlated with each racial group at the census block group level. Specifically, Black
disadvantage, is composed of the percent of individuals whose 1999 income was below the federal
poverty level and the percent of individuals 25 years and over without a high school diploma that
identified as Black. Isolated Latinx disadvantage includes similar poverty and low educational
attainment measures for those identified as “Latino” or “Hispanic” in the 2000 census. However,
it also includes the percent of households who are linguistically isolated and are Spanish-speaking.
“Linguistically isolated households” are those in “which all members 14 years old and over speak a
non-English language and also speak English less than ‘very well’ (have difficulty with English)” [79]
(p. B-32).

These factor variables were constructed with separate Principal Component Analyses (PCAs) from
summary file 1 and 3 from the 2000 U.S. Census [3]. Each PCA produced unrotated factor solutions,
which were extracted by analyzing correlations between each component variable. This involved using
a maximum of 25 iterations, eigenvalues greater than 1.00, and listwise deletion for block groups with
missing values. The final factor scores are the standardized linear combination of loading weights
for each component produced with a regression method. Estimating the total variance explained by
each factor component informed validity assessments of each factor. The reliability of the factor results
were assessed with Cronbach’s alpha scores calculated from additional scale analyses.

Table 1 displays the reproduced PCA results for the two factor variables that were used in previous
research [3]. Those PCA results indicate the factors have high validity and reliability. The percent
of variance explained in the factor components ranged from 84.08 for isolated Latinx disadvantage
to 90.46 for Black disadvantage. Similarly, the Cronbach’s alpha scores for the factors ranged from
0.862 for isolated Latinx disadvantage to 0.892 for Black disadvantage. The factor loadings for each
factor were all greater than or equal to 0.882. Figures 4 and 5 present the spatial distribution of the two
intersecting population vulnerability factor variables. As shown in Figure 4, Black disadvantage levels
were mostly elevated in or near the urban centers of Sacramento, Alameda, and San Joaquin Counties.
Figure 5 illustrates how isolated Latinx disadvantage levels were elevated in the central section of the
region in addition to its urban centers of Sacramento, Alameda, and San Joaquin Counties.
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Table 1. Principal component analysis results for intersecting population vulnerability factor variables
[3].

Variables
Factor Loadings

Black Disadvantage Isolated Latinx Disadvantage

Percent racial group:
Poor 0.951 0.882

No H.S. diploma 0.951 0.946
Percent linguistically isolated households:

Spanish speaking 0.922

Cronbach’s alpha 0.892 0.862
Eigenevalue 1.809 2.522

% of total variance explained 90.458 84.082
N 3064 3061
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2.3.2. Uneven Development

Housing values are an aggregate-level indicator of uneven development [22]. They are also used
as indicators of environmental health vulnerability in the U.S. [19–21], and to surface water hazards
in the Bay-Delta [3]. Following previous research [3,20,21], I operationalized housing values as a
ratio of block group-to-county median housing values in 2000. For brevity, I refer to this variable as
relative median housing value. I use this variable in my test of the uneven development hypothesis (H3).
Figure 6 presents the spatial distribution of relative median housing value. An emergent theme from
Figures 4–6 is that Black disadvantage and isolated Latinx disadvantage overlapped in the Bay-Delta
region’s urban centers and to some extent in the center of the region. In addition, many, but not all,
of these spaces also had low relative median housing values.
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2.3.3. Contemporary Industrial Pollution Sources

I used an adapted measurement of the surface water CAWMHS [3] in my test of the industrial
point source pollution hypothesis (H5). From the RSEI database [14], I selected all facilities that
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were within 6.4 km from the six-county Bay-Delta region and that released toxins directly into the
surface waters (release code = 3) of the region from 2000 to 2006. The 6.4-km proximity threshold
maintains consistency with the 6.4-km plausible exposure zone used to construct the impaired water
hazard zones. The 2000–2006 period provides an updated assessment of the environmental health
hazard associated with surface water toxic releases from the 2000 snapshot used in earlier research [3].
This period also matches this study’s analysis of impaired waters in the Bay-Delta in 2006. I found that
51 facilities within 6.4 km of the Bay-Delta released toxins into the region’s surface waters from 2000 to
2006 and had available data within the RSEI database [14] to calculate the relative health hazard of
those toxic releases.

The modeled hazard scores for these surface water toxic releases were initially calculated in the
RSEI database by multiplying the pounds of toxic releases with their chemical-specific oral toxicity
weights [14] (pp. 14–15, 119, 163). The hazard scores do not incorporate the transport and fate
of chemicals and dose-response effects for proximate populations [12,14]. However, the benefit in
using the hazard scores is that they are not population-weighted. Accordingly, they mitigate against
inflated estimates of the association between the demographic composition of census geographies and
proximate environmental health hazard levels [3,12].

The RSEI-based modeled hazard scores are not associated with proximate census geographies.
Accordingly, I used the following equation to calculate the surface water CAWMHS for 2000 to 2006
for census block groups within the Bay-Delta:

y = [∑(HtPit)]/Ai, (1)

where y is surface water CAWMHS, H is the surface water modeled hazard score from the RSEI
database for surface water toxic releases from facility t, P is the proportion of area for block group i
that intersected the 6.4 km buffer to facility t, and A is the total area for block group i [3].

However, in contrast to previous research [3], I used the boundary intersection method [11]
to code census block groups as proximate to surface water toxic releases if any of their boundaries
intersect the 6.4-km plausible exposure zone buffer to industrial facilities that released toxins directly
into the Bay-Delta surface waters from 2000 to 2006. This deviation from previous work is based on
this study’s objective of using a wider geographic search parameter to test the industrial point source
pollution hypothesis (H5) and to model the relative environmental health hazard of proximate surface
water toxic releases for block groups that may also contribute to block groups being contained within
the impaired water hazard zones. Thus, the surface water CAWMHS for 2000 to 2006 in the present
study was created for block groups who intersected the 6.4-km surface water toxic release facility
buffer. It was calculated by multiplying the surface water modeled hazard score for a given facility
by the proportion of block group square meters that intersected the buffer to each facility, summing
those scores for each block group, and dividing that sum by the block group area. In my test of the
industrial point source pollution hypothesis, I use surface water CAWMHS, 2000–2006, in hundreds of
thousands (i.e., the 2000–2006 surface water CAWMHS divided by 100,000). I do so because of the large
raw values for this variable, and the effect of surface water CAWMHS on the likelihood of block group
50 percent areal containment in an impaired water hazard zone is more evident in 100,000 units than
in units of one.

Map A in Figure 7 displays the resulting spatial distribution of surface water CAWMHS from the
51 facilities that released surface water toxins in the Bay-Delta region from 2000 to 2006. That spatial
distribution overlaps to some extent with the spatial distribution of nonwhite disadvantage and median
housing values shown throughout the region in Figures 4–6. It also shows the Chevron terminal stations
to illustrate the hazardous reach that Chevron’s oil and gas production and distribution activities
have throughout the region beyond its oil refinery in Richmond. Indeed, when one adds in the RSEI
modeled hazard score of the Chevron terminal stations to that of its oil refinery, Chevron’s four facilities
were responsible for 77.78 percent of the 259,084,979.66 modeled hazard score of the combined surface
water toxins from the 51 facilities.
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Map B in Figure 7 visualizes the 6.4-km facility buffers used to calculate the 2000−2006 surface
water CAWMHS in the context of the Richmond and Berkeley, California area. It illustrates that
the Chevron oil refinery was not the lone emitter in that area, which was also the case in 2000 [3].
The 2000−2006 surface water CAWMHS helps to account for the spatial concentration of this
cumulative impact of multiple industrial point pollution sources. Nonetheless, the RSEI-based surface
water modeled hazard score for the Chevron oil refinery was 118.17-times more hazardous than the
combined RSEI-based surface water modeled hazard score for the four other facilities, as shown
in Figure 7, Map B. The new empirical details about the disproportionately high hazard levels
of the Richmond Chevron oil refinery’s surface toxic releases from 2000 to 2006 accord with the
disproportionality framework presented in Section 1.2. Accordingly, the final independent variable
used in this study is proximity to the Richmond Chevron oil refinery. I used it to test the super emitter
hypothesis (H5) and measured it as kilometers from the centroid of a block group to the centroid of the
Richmond Chevron oil refinery.

2.3.4. Statistical Techniques

I used bivariate and multivariate statistical techniques to assess the relationship between
intersecting population vulnerability, uneven development, contemporary industrial pollution factors,
and block group proximity to impaired water hazard zones. The bivariate analysis used SPSS 25 to
compare the mean differences between block groups given their 50 percent areal containment in the
impaired water hazard zones. The samples for each comparison of means varied from 3041 to 3073,
depending on the number of cases with non-missing values for each variable.
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The GLR model tested this study’s five guiding hypotheses (i.e., H1−H5) regarding the established
predictors of block group 50 percent areal containment in an impaired water hazard zone across the
spatial extent of all 3041 Bay-Delta block groups with non-missing data. The GLR model used the
following equation in SPSS 25 and in GWR 4.0.77:

Logit(P) = log
(

P
1−P

)
= α+ β1X1 + β2X2 + β3X3 + β4X4 + β5X5,

(2)

where log(P/1 − P) was the natural log of the P probability of block group 50 percent areal containment
in an impaired water hazard zone, α was the intercept, and β was the coefficient for the k number of X
independent variables [56,60,62,63,68].

The GWLR model tested H1, H2, H3, H4, and H5 at varying spatial extents within the Bay-Delta
region. In so doing, the GWLR model also tested this study’s sixth hypothesis (H6), which posited
spatial non-stationarity in the predictors of block group 50 percent areal containment in an impaired
water hazard zone. The GWLR model calculated local regression parameters using the following
equation in GWR 4.0.77:

Logit(P(ui, vi)) = log
(

P(ui , vi)
1− P(ui , vi)

)
= α(ui, vi) + β1X1(ui, vi) + β2X2(ui, vi) + β3X3(ui, vi) + β4X4(ui, vi) + β5X5(ui, vi),

(3)

where each model parameter from the GLR model (Equation (2)) was estimated at the centroid of each
ith block group (ui, vi) (i = 1, 2, . . . , 3041) that was included in the analysis [56,60,62,63,68].

Previous GWR-based environmental inequality outcomes studies featuring irregular-shaped
areal units of analysis, like those used in the present study, implemented an adaptive kernel to
identify the optimal number of neighbors to include in each GWR equation [70,72]. Such an approach
is advantageous over a fixed bandwidth method because it accounts for the density of the data
throughout the study region [69,70]. That is, the kernel adapts and becomes larger in rural areas with
large block groups and smaller in urban areas with small block groups. I used the adaptive bi-square
weighting function, defined as follows:

wij =

[
1 −

(
d2

ij
b

)]2
if dij < b

wij = 0 otherwise,
(4)

where i was the GWLR block group, j was one of i’s k nearest neighbors and GWLR sample data point,
b was meters to the kth nearest neighbor, dij was the optimal meters between block groups i and j,
and wij was the weight value of block group i [70,80].

I identified the optimal number of neighbors with the golden section search function in GWR
4.0.77. This process involved a series of statistical tests that minimized the Akaike Information
Criterion (AIC) for each iteration of the GWLR model in a manner that simultaneously considered
model goodness-of-fit and degrees of freedom [60,67,70]. The smallest AIC valued was obtained with
1682 nearest neighbors for each GWLR equation.

I evaluated multicollinearity, spatial autocorrelation, and model fit in the GLR and GWLR
models with established diagnostic tests [53,62,66,68]. Multicollinearity refers to strong correlations
between two or more independent variables (e.g., correlation coefficient >0.7 or <−0.7), which causes
redundancy, instability, and imprecision in model coefficients [53,81]. Correlation matrices of the
independent variables in the GLR model and of the independent variable coefficients in the GWLR
model using SPSS 25 showed no signs of multicollinearity. Spatial autocorrelation refers to the
non-random spatial distribution (e.g., clustering or dispersion) of attribute values [20]. When present,
it indicates spatial dependence exists and the regression assumption of independent observations
is violated [53]. Following previous research [68], I assessed the regression residuals from each
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model for spatial autocorrelation using multiple spatial weights matrices up to the 1682-nearest
neighbor bandwidth used in the GWLR model with Moran’s I in GeoDa 1.4.5 and ArcMap 10.4.
I compared overall goodness-of-fit of the GLR and GWLR models with the percent deviance explained
and AIC statistics. Lower AIC values and higher percent deviance explained indicate better model
fit [57,58,62,63,65–68,80].

Summarizing and mapping local estimates and their associated significance levels further
illustrates the degree of non-stationarity in GWR models [60,67,68]. I mapped the percent of local
deviance explained at the block group level because it is the local model fit statistic from the GWLR
analysis in GWR 4.0.77 [80]. In my evaluation of the GWLR results, I also mapped the local odds
ratios for each of the five predictors of block group proximity to impaired water hazard zones by their
Studentized t-values and p-values. Earlier GWR-based environmental inequality outcomes research
used the critical t-value of 1.96 to denote significant local estimates at the p < 0.05 level [70]. However,
doing so ignores problems of abnormally distributed estimates, multiple testing for each block group,
and spatial autocorrelation of the estimates. Together, these problems increase the false discovery rate
(FDR) and the likelihood of incorrectly classifying significant results [82].

More recent research is attentive to these issues of abnormality, multiplicity, and spatial
dependence [20,58,61,65]. Guided by this work, I used the 1.96 and FDR-corrected critical t-value
thresholds in the process of classifying the GWLR results in the Bay-Delta. The FDR correction is a
Bonferroni technique, calculated by initially determining the number of “seemingly independent tests”
for each GWLR local coefficient:

v = n − r(n − 1), (5)

where v is the number of seemingly independent tests, r was the Moran’s I for the GWLR local
coefficient, and n was the number of tests [20,82]. I divided the standard p-value of 0.05 by the
number of seemingly independent tests to determine the FDR-corrected p-value for each GWLR
coefficient estimate. I then assessed the extent to which each GWLR local coefficient’s t-value met
the critical t-value of the FDR-corrected significance level for a two-tailed test. Doing so involved
using the “TINV(a,df )” inverse Student’s t-distribution function in Microsoft Excel 2016, where a
was the FDR-corrected significance level and df was equal to 3041 − 1 = 3040 degrees of freedom.
The resulting FDR-corrected critical t-values ranged from ±4.18 to ±4.27. The maps displaying the
GWLR results classify the odds ratios as not significant (−1.96 < t < 1.96) and significant at the ±1.96
and ±FDR-corrected thresholds. This presentation of the GWLR results maintains comparability with
previous GWR-based research on environmental inequality outcomes [70]. This new visualization
strategy also contributes to a growing literature that uses FDR-correction techniques in the presentation
of GWLR results [58,61,65].

3. Results

3.1. Narrative Description of Surface Water Pollutants

3.1.1. Impaired Water Bodies, 2006

Table 2 summarizes select characteristics of 554 impairments linked to the impaired minor and
major water bodies analyzed in this study. As of 2006, 88.3 percent (N = 489) of those impairments
needed a TMDL. Only 10.5 percent (N = 58) were being addressed by U.S. EPA-approved TMDLs,
while 1.3 percent (N = 7) were being addressed by actions other than TMDLs. Fifty-eight percent of
all impairments had proposed (N = 265; 47.8%) or U.S. EPA-approved (N = 58; 10.5%) completion
dates. The average date of completion for those impairments was 2012 with a minimum of 2002 and
maximum of 2020. In total, 59 unique pollutants were associated with the impaired waters. Mercury
was the most frequent pollutant (N = 99; 17.9%) of all 554 impairments. A 2010 study found that
this notable pollutant was present in locally caught fish, disproportionately consumed by nonwhite
individuals, at levels that exceed federal environmental and public health guidelines [6].
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Table 2. Surface water impairments by source category and frequency in the Bay-Delta, 2006.

Source Category Impairments
Proposed/U.S.

EPA-Approved
Completion Date

N Unique
Pollutants 1

N % TMDL Required N Mean

Agriculture 107 83.2 38 2013.6 22
Urban runoff 92 63 21 2015.3 16

Unknown sources 87 88.5 44 2011.7 33
Unspecified NPS 2 63 100 62 2012.7 7
Resource extraction 42 95.2 18 2013.1 4

Industrial wastewater 36 100 34 2009.6 14
Atmospheric deposition 34 100 33 2013.6 3
Municipal wastewater 26 96.2 26 2011.3 13

Miscellaneous 19 100 19 2012.8 3
Natural sources 17 100 17 2011.5 2

Unspecified point source 9 100 9 2013.1 6
Construction/Land

Development 8 100 0 — 3

Hydromodification/
Groundwater 7 100 1 2010 6

Non-boating recreational/
tourism activity runoff 7 100 1 2006 1

Total 554 88.3 323 2012.4 59
1 Most common pollutant was mercury, comprising 17.9% of all 554 impairments. 2 NPS, non-point-source.

Table 2 also summarizes impairments by source category. As shown in the table, agricultural
activity (i.e., general agricultural activity, return water flows, irrigation tail water, and dairy runoff) was
the most common single source of impairment (19.3%) in the Bay-Delta. Thirteen other single sources
contributed to impairments in the region. In order of their prevalence, they include urban runoff,
unknown sources, unspecified NPS, resource extraction (including mine tailings and surface mining),
industrial (point source) wastewater, atmospheric deposition, municipal wastewater (i.e., combined
sewer overflow and municipal point sources), miscellaneous sources, natural sources, unspecified
point sources, construction or land development, hydromodification or groundwater pollutants,
and non-boating recreational and tourism activity runoff. Unspecified NPS, resource extraction,
industrial wastewater, atmospheric deposition, municipal wastewater, and natural sources mostly
contributed to mercury impairments that present significant and unequal environmental health
threats in the region. A related pollutant—mercury sediment—was the most common pollutant
from unspecified point sources.

On average, the proposed or approved completion dates for impairment remediation actions
by source category ranged from 2006 to 2015. Additional analyses of more recent SWRCB data
showed that 56 of the 554 impairments (10.1%) on the 2006 303(d) list of impaired waters included
in this study were not on the 2010 list of impaired waters. One possible explanation for 12 of those
56 impairments is that they had completion dates between 2004 and 2008, and they achieved their
impairment remediation goals by 2010. It is unclear why the remaining 44 impairments were no longer
listed on the 2010 list, as their impairment remediation completion dates were either after 2010 or were
not established on the 2006 list.

3.1.2. Surface Water CAWMHS, 2000 to 2006

The SWRCB [77,78] 2006 data on impaired water bodies suggest that contemporary industrial
point sources contribute to water impairments in the Bay-Delta. Section 2.3.3 and Figure 7 focused
primarily on the super emitter, Richmond Chevron oil refinery, and other polluting Chevron facilities,
in the context of describing the spatial distribution of surface water CAWMHS from 2000 to 2006
in the region. Table 3 classifies the summed modeled hazard scores from the RSEI data [14] of the
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Bay-Delta surface water toxic release facilities from 2000 to 2006 by their two-digit standard industrial
classification. Summarizing the data in this way helps to develop a better sense of the type of
manufacturing activities of major industrial point sources that disproportionately pollute the surface
waters in the region during the study period.

Of the 14 industrial classes responsible for the region’s surface water toxic releases from 2000 to
2006, the petroleum refining and coal products industry was clearly the most hazardous. This finding
supports previous research on surface water toxic releases in the Bay-Delta in 2000 [3]. In this case,
from 2000 to 2006, the petroleum refining and coal products industry was responsible for 79.95% of the
total 259,084,979.66 modeled hazard score of the combined surface water toxins from the 51 facilities.
The Richmond Chevron oil refinery was the most hazardous polluter. It accounted for 89.53% of the
summed modeled hazard score for the petroleum refining and coal products industry and 71.58% of
all modeled hazard scores from Bay-Delta surface water toxic releases from 2000 to 2006. This result is
consistent with the conceptual framework presented in Section 1.2, the preliminary patterns of surface
water CAWMHS summarized in Section 2.3.3, and the claims by water justice advocates in the region
during the study period [83].

Nine other notable facilities constituted the remainder of the top ten disproportionately hazardous
polluters in the region. Specifically, the transportation equipment industry-leading, John Boyd
Enterprises/JB Radiator Specialties radiator shop in Sacramento, was the second-most hazardous
polluter. The Valero Energy Corporation’s oil refinery in Benicia was second to the Richmond Chevron
oil refinery within its industry and was the third-most hazardous polluter. Chevron’s three terminals
in Martinez, Sacramento, and Tracy (see Figure 7, Map A) led the wholesale trade—nondurable
goods industry and were, respectively, the fourth-, fifth-, and sixth-most hazardous polluters.
The Tyco Electronics Corporation’s rubber and plastics manufacturing facility is located in Menlo
Park (San Mateo County) and outside the Bay-Delta six-county study area. However, this industry
leader was within the 6.4-km plausible exposure zone to the Bay-Delta and was the seventh-most
hazardous polluter in the region’s surface waters. The Tesoro Corporation’s refinery in Martinez was
the third-most hazardous in the petroleum refining and coal products industry class and was the
eighth-most hazardous polluter in the Bay-Delta. Lastly, the British Petroleum terminal in Richmond
and the McWane, Inc./AB&I metal foundry in Oakland were, respectively, the ninth- and tenth-most
hazardous polluters in the region.

As discussed above, mercury pollutants are important historical and contemporary contributors
to surface water impairment, fish contamination, and associated environmental health risk in the
Bay-Delta. However, the contemporary industrial point sources of such pollutants in the region have
not been identified in previous research [3–7]. Table 4 summarizes polluter disproportionality with
respect to the RSEI [14] modeled hazard score and pounds of mercury emissions in the Bay-Delta
surface waters from nine facilities included in this study. For reference, the table also displays the
overall rank of each facility’s RSEI [14] modeled hazard score for its total surface water toxic releases
from 2000 to 2006. As shown in the table, four of the top ten polluting facilities were also sources
of toxic mercury emission during the study period. The Richmond Chevron oil refinery once again
tops the list for having the most hazardous levels of mercury releases, as well as for emitting the most
pounds of mercury into the Bay-Delta surface waters. Table 4 also illustrates how some industrial point
sources in the region—such as Hayward’s AERC recycling center and Stockton’s FPL Energy/POSDEF
Power electric power facility—are predominant sources of mercury pollutants despite having moderate
or low overall hazard levels for their surface water toxic releases.
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Table 3. Surface water toxic releases by industry classification and Risk-Screening Environmental
Indicators (RSEI) [14] modeled hazard score, 2000−2006.

Two-Digit Standard
Industry Classification N Facilities

RSEI [14] Modeled Hazard Score
of Toxic Releases

Most Hazardous Organization—City
(Percent (%) Total Industry RSEI [14]

Modeled Hazard Score)Total Per facility

Petroleum Refining and
Coal Products 6 207,140,792.54 34,523,465.42 Chevron Co. Refinery—

Richmond (89.53%)

Transportation Equipment 3 26,703,872.31 8,901,290.77 John Boyd Enterprises/JB Radiator
Specialties, Inc.—Sacramento (96.79%)

Wholesale
Trade—Nondurable

Goods
6 17,653,062.30 2,942,177.05 Chevron Co. Avon Terminal—Martinez

(38.97%)

Primary Metal Industries 5 3,043,414.14 608,682.83 McWane, Inc./AB&I
Foundry—Oakland (44.36%)

Rubber and Miscellaneous
Plastics Products 1 2,213,128.40 2,213,128.40 Tyco Electronics Corp.—

Menlo Park (100.00%)

Chemicals and Allied
Products 9 1,293,418.39 143,713.15 Criterion Catalysts & Technologies,

L.P.—Pittsburg (86.76%)

Electric, Gas, and Sanitary
Services 6 372,455.30 62,075.88

Air Products & Chemicals,
Inc./Stockton Cogen CO.—

Stockton (77.60%)

National Security and
International Affairs 2 255,605.10 127,802.55 U.S. Dept. of Energy National

Laboratory—Livermore (99.29%)

Food and Kindred
Products 2 199,093.23 99,546.62 C&H Sugar CO.—Crockett (99.99%)

Fabricated Metal Products 4 76,673.00 19,168.25 Shaw Group Inc. / Shaw Pipe Shields
Inc.—Vacaville (93.91%)

Paper and Allied Products 1 47,097.95 47,097.95 Gaylord Container Corp.—
Antioch (100.00%)

Electronic and Other
Electric Equipment 4 44,967.00 11,241.75 Viktron California—Stockton (73.39%)

Engineering &
Management Services 1 36,000.00 36,000.00

U.S. Dept. of Energy Lawrence
Livermore National Laboratory
Experimental Test Site (S300)—

Tracy (100.00%)

Stone, Clay, and Glass
Products 1 5400.00 5400.00 National Gypsum Co.—

Richmond (100.00%)

Totals 51 259,084,979.66 5,080,097.64 Chevron Co. Refinery—
Richmond (71.58%)

The top ten hazardous surface water toxic release facilities and those facilities that were sources
of mercury emissions from 2000 to 2006 reside in major cities and industrial areas of the Bay-Delta.
However, the majority of them, including the Richmond Chevron oil refinery, were located closer
to the west side of the region, near the San Francisco Bay. As illustrated below, this spatial
distribution of disproportionately hazardous toxic release facilities near the San Francisco Bay area
has important implications for understanding the sociospatial dimensions of water injustice and the
spatial non-stationarity in the predictors of block group proximity to impaired hazard zones in the
Bay-Delta region.
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Table 4. Surface water toxic release facility ranked by RSEI [14] modeled hazard score for mercury
releases and total releases, 2000–2006.

Facilities by RSEI [14] Modeled
Hazard Score Rank for Mercury

Releases
(City)

Mercury Releases All Surface Water Toxic Releases Percent of Overall
Modeled Hazard Score

Associated with Mercury
Releases

Pounds
RSEI [14]
Modeled

Hazard Score

Overall
Hazard Rank

RSEI [14]
Modeled

Hazard Score

1. Chevron oil refinery
(Richmond) 3.0000 30,000.00 1 185,456,128.24 0.0162

2. FPL Energy/POSDEF Power
electric power facility
(Stockton)

0.6779 6779.00 22 49,298.00 13.7511

3. Valero Energy oil refinery
(Benicia) 0.2000 2000.00 3 19,435,900.20 0.0103

4. Tesoro oil refinery
(Martinez) 1.0000 1000.00 8 1,973,689.00 0.0507

5. AERC recycling center
(Hayward) 0.0028 28.02 46 28.02 100.0000

6. Air Products &
Chemicals/Stockton CoGen
coal-fired power station
(Stockton)

0.0021 20.70 16 289,012.08 0.0072

7. McWane Inc./AB&I foundry
(Oakland) 0.0004 3.77 10 1,350,003.77 0.0003

8. Shell oil refinery
(Martinez) 1.3000 0.00 23 48,016.00 0.0000

9. ConocoPhillips oil refinery
(Rodeo) 1.1300 0.00 18 227,009.60 0.0000

3.2. Block Groups by Containment in Impaired Water Hazard Zones

Table 5 compares the means of the population vulnerability, uneven development,
and contemporary industrial pollution source variables for block groups by their 50 percent areal
containment within an impaired water hazard zone. The table shows that impaired water hazard
zones were, on average, more likely composed of socioeconomically disadvantaged Blacks and
socioeconomically disadvantaged and primarily Spanish-speaking Latinxs. In addition, block groups
contained in the impaired water hazard zones had, on average, lower housing values, higher surface
water CAWMHS, and they clustered near the Chevron oil refinery.

Table 5. Comparison of block group means by 50 percent areal containment within a 2006, 303(d),
impaired water hazard zone.

Variables
Block Group 50 Percent Areal Containment in

Impaired Water Hazard Zone

Yes No

Population vulnerability
Black disadvantage, 2000 0.14 −0.16

N 1633 1431
Isolated Latinx disadvantage, 2000 0.14 −0.16

N 1631 1430

Uneven development
Relative median housing value, 2000 0.95 1.08

N 1617 1424

Contemporary industrial pollution sources
Kilometers to Richmond Chevron refinery 54.26 74.76

Surface water CAWMHS, 2000–2006
(100,000 s) 105.45 17.04

N 1637 1436
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3.3. Descriptive Statistics for Predictors of Block Group Containment in Impaired Water Hazard Zones

Table 6 displays the descriptive statistics for the variables used in the GLR and GWLR analyses
with an analytical sample of 3041 census block groups with non-missing data. The table provides
greater context to the visual presentation of the predictors mapped using varying sample sizes
in Figures 4–7, and to the regression results summarized below. The standardized population
vulnerability factor variables similarly had means of zero and standard deviations near 1. However,
the minimum (−0.50) and maximum (8.54) values of Black disadvantage were elevated in contrast
to those for isolated Latinx disadvantage (−0.72 and 6.91, respectively). Despite both variables
having very low positive Moran’s I values, these statistics further indicate beyond the PCA results
(see Section 2.3.1) that “structural” [84] and “intersecting” [3] environmental health vulnerabilities
were perhaps more prevalent and spatially concentrated among Blacks in the Bay-Delta in 2000.
Also, this sample of 3041 block groups, on average, approximated a 1:1 ratio of median housing
values at the block group level to the county level (i.e., mean relative median housing value = 1.01),
and marginally significant dispersion of those housing values throughout the region. Nonetheless,
uneven development in the region was reflected in the minimum relative median housing values of 0.04
and maximum relative median housing values of 7.09. The descriptive statistics for the contemporary
industrial pollution source variables indicate that surface water CAWMHS for 2000 to 2006 was only
slightly clustered (Moran’s I = 0.014), but proximity to the Richmond Chevron refinery approached
high clustering (Moran’s I = 0.636). Yet, as suggested by Figure 7 and Table 6, surface water CAWMHS
reached its maximum values in close proximity to the Richmond Chevron refinery and the Chevron
terminals and associated industrial areas in Martinez, Sacramento, and Tracy.

Table 6. Descriptive statistics for variables used in the global logistic regression (GLR) and
geographically weighted logistic regression (GWLR) analyses of block group 50 percent areal
containment within a 2006, 303(d), impaired water hazard zone (N = 3041).

Variables Mean SD Min. Max. Moran’s I 1

Population vulnerability
Black disadvantage, 2000 0.00 0.99 −0.50 8.54 0.022 ***

Isolated Latinx disadvantage, 2000 0.00 1.00 −0.72 6.91 0.003 ***

Uneven development
Relative median housing value, 2000 1.01 0.52 0.04 7.09 −0.001 ***

Contemporary industrial pollution sources
Kilometers to Richmond Chevron Refinery 63.83 39.96 1.26 139.20 0.636 ***

Surface water CAWMHS, 2000–2006 (100,000 s) 64.61 291.37 0.00 1870.25 0.014 ***
1 The spatial autocorrelation analysis of the independent variables used a 1682-nearest neighbor spatial weights
matrix and 9999 permutations; *** Pseudo p < 0.001 (two-tailed test).

3.4. Global Predictors of Block Group Containment in Impaired Water Hazard Zones

Table 7 summarizes the GLR analysis that modeled the global predictors of block group
containment in the impaired water hazard zones. The regression coefficients (B), standard errors
(S.E.), and p-values presented in Table 7 for each independent variable indicate the extent to which
those results support this study’s guiding hypotheses. The odds ratios (OR) indicate the net effect that
a one-unit increase in the value of each respective independent variable has on the logged odds of
block group containment in an impaired water hazard zone.

Of the two intersecting population vulnerability hypotheses, the isolated Latinx disadvantage
hypothesis (H2) received the strongest support with the highly significant coefficient for isolated Latinx
disadvantage. The odds ratio for this variable suggests that, net of other factors, a one-point increase
in isolated Latinx disadvantage was associated with a 36.2-percent increase in the odds of block group
containment in an impaired water hazard zone. The Black disadvantage hypothesis (H1) receives
moderate support with a significant GLR coefficient for Black disadvantage (p < 0.05). The odds ratio
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for Black disadvantage suggests a one-point increase in Black disadvantage was associated with a
11.1-percent increase in the odds of block group containment in an impaired water hazard zone, net of
other factors.

The results presented in Table 7 offer contrasting levels of support for the three remaining
hypotheses guiding this portion of the analysis. The negative coefficient for relative median housing
values is signed as expected, but it is not significant and thus does not support the uneven development
hypothesis (H3). In contrast, the significant and positive coefficient for 2000–2006 surface water
CAWMHS supports the industrial point source pollution hypothesis (H4). Net of other factors, a
one-hundred-thousand-point increase in 2000–2006 surface water CAWMHS was associated with
0.2-percent increase in the odds of block group containment in an impaired water hazard zone. Lastly,
the significant and negative coefficient for kilometers to the Richmond Chevron refinery supports the
super emitter hypothesis (H5). A one-kilometer increase in the distance from the block group centroid
to the Richmond Chevron refinery was associated with a 1.3-percent decrease in the odds of block
group containment in an impaired water hazard zone, net of other factors.

Table 7 provides initial GLR model diagnostics, while Table 8 in Section 3.5 compares
goodness-of-fit statistics between the GLR and GWLR models. The significant Chi-square for the GLR
model, shown in Table 7, indicates that the independent variables as a set reliably predict block group
disparate proximity to an impaired water hazard zone. Further, the Nagerlkerke R2 statistic suggests
the GLR model as a whole accounts for 14.8 percent of the variance in the logged odds of block group
50 percent areal containment in an impaired water hazard zone. This means there are likely other
factors not accounted for in the GLR model that influenced the likelihood of block group containment
in an impaired water hazard zone in 2006.

Table 7. GLR results for block group 50 percent areal containment within a 2006, 303(d), impaired
water hazard zone on population vulnerability, uneven development, and contemporary industrial
pollution sources (N = 3401 block groups).

Variables B S.E. OR 95% C.I. for OR

Population vulnerability
Black disadvantage, 2000 0.106 * 0.049 1.111 1.009−1.224

Isolated Latinx disadvantage, 2000 0.309 *** 0.047 1.362 1.242−1.494

Uneven development
Relative median housing value, 2000 −0.127 0.084 0.881 0.747−1.038

Contemporary industrial pollution sources
Kilometers to Richmond Chevron refinery −0.013 *** 0.001 0.987 0.985−0.989

Surface water CAWMHS, 2000–2006 (100,000 s) 0.002 *** 0.001 1.002 1.001−1.003
Intercept 1.058 *** 0.117 2.881

Model diagnostics
−2 log likelihood 3845.220
Model chi-square 358.244 ***

Degrees of freedom 5
Nagerlkerke R2 0.148

* p < 0.05; *** p < 0.001 (two-tailed test).

3.5. Local Predictors of Block Group Containment in Impaired Water Hazard Zones

The GWLR model exhibits improved goodness-of-fit when compared to the GLR model. As shown
in Table 8, the AIC and deviance dropped by 343.91 and 369.78 points, respectively, and the percent
deviance explained increased 0.088 points from the GLR to the GWLR specification. Figure 8 maps
the percent local deviance explained—the local model fit statistic for the GWLR [80]. The figure
demonstrates that the median percent local deviance explained was 0.14. In addition, only the 25th
percentile of percent local deviance explained values, which ran through the north-central, central,
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and south-central portions of the region, were less than or about equal to the percent deviance explained
in the GLR. The percent local deviance explained for the local models of the remaining 75 percent of
the 3041 block groups included in the GWLR analysis exceeded the percent deviance explained for the
GLR model. The GWLR model fit improved considerably on the west-central and east-central poles of
the region. These results indicate the presence of spatial non-stationarity in the predictors of block
group containment in an impaired water hazard zone and thus support the spatial non-stationarity
hypothesis (H6).

Spatial autocorrelation tests of the GLR and GWLR residuals demonstrates the GWLR better
accounts for the spatial structure of the data, which further illustrates its improved model fit.
Figure 9 displays the spatial distribution of the regression residuals from both models. The spatial
autocorrelation analysis involved calculating Moran’s I statistics with 9999 permutations at 200-nearest
neighbor interval bandwidths, up to the optimal 1682-nearest neighbor bandwidth used in the GWLR
model. As shown in Figure 10, the Moran’s I values consistently approached zero at each interval,
and they were non-significant at the 1682-nearest neighbor bandwidth. These results indicated the
lack of spatial dependence, especially in the GWLR model.

Table 8. Comparison of model goodness-of-fit statistics.

Model Deviance df Deviance/df Percent Deviance
Explained AIC Number of

Parameters

GLR 3845.22 3035 1.27 0.085 3857.22 6
GWLR 3475.44 3019 1.15 0.173 3513.31 18.94

GLR, global logistic regression; GWLR, geographically weighted logistic regression; AIC, Akaike information
criterion; df, degrees of freedom.
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Table 9 summarizes the local coefficient estimates and significance values from the GWLR
analysis. The median values of each independent variable coefficient in the GWLR model are signed
in the same direction and approximate similar magnitudes as those in the GLR model. However,
the table displays considerable variation in the direction and significance of association between each
independent variable and the likelihood of block group containment in an impaired water hazard
zone. This variation is illustrated in the extent to which the t-values for each independent variable
coefficient fell within the ranges of non-significant (−1.96 < t < 1.96), moderately significant (t < −1.96
or t > 1.96), or highly significant (t < negative FDR-corrected t-value or t > positive FDR-corrected
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t-value). For example, a moderate level (45.22%) of the local GWLR coefficients for Black disadvantage
were positive and highly significant (t > 4.18, p < 0.00003). Those results lend strong support the Black
disadvantage hypothesis (H1), but the remaining local coefficients for Black disadvantage did not.
Figure 11, Map A, displays the significance levels and odds ratios for Black disadvantage, indicating
that highly significant and increased likelihood (odds ratios > 1) of block group containment in an
impaired hazard zone were found in the central and east portions of the region and distant from the
Richmond Chevron oil refinery.

Table 9 displays noteworthy variations in the direction and significance of association between
other independent variables and the likelihood of block group containment in an impaired water
hazard zone from the GWLR model. In particular, zero block groups had local coefficients for isolated
Latinx disadvantage that had a negative and highly or moderately significant association with the
likelihood of block group containment in an impaired water hazard zone. The remaining local
coefficients for isolated Latinx disadvantage were non-significant (22.10%), positive and moderately
significant (63.56%), or positive and highly significant (14.34%; t > 4.27; p < 0.00002). The latter share of
results for isolated Latinx disadvantage provided strong support for the isolated Latinx disadvantage
hypothesis (H2). As shown in Figure 11, Map B, the highly significant and increased likelihood (odds
ratios > 1) of block group containment in an impaired hazard zone for every one-unit increase in
isolated Latinx disadvantage were found in the east portions of the region near Sacramento and at
particularly high levels around the Richmond Chevron oil refinery. These GWLR results contrast with
those for Black disadvantage.

Table 9. Summary statistics for the GWLR results for block group 50 percent areal containment
within a 2006, 303(d), impaired water hazard zone on population vulnerability, uneven development,
and contemporary industrial pollution source factors (N = 3401 block groups).

Variables
Model Coefficients Percent of Block Groups by Significance Level of t-Value

Min. Median Max. FDR
t-Value

t < −FDR
t-Value

t <
−1.96

−1.96 <
t < 1.96 t > 1.96 t > +FDR

t-Value

Population vulnerability
Black disadvantage, 2000 −0.251 0.224 2.340 4.18 1.41 34.30 13.84 5.23 45.22

Isolated Latinx
disadvantage, 2000 −0.217 0.274 0.449 4.27 0.00 0.00 22.10 63.56 14.34

Uneven development
Relative median housing

value, 2000 −0.956 −0.193 0.407 4.25 1.41 34.92 36.57 27.10 0.00

Contemporary industrial
pollution sources

Kilometers to Richmond
Chevron Refinery −0.071 −0.026 0.046 4.20 81.52 4.83 8.42 3.85 1.38

Surface water CAWMHS,
2000–2006 (100,000 s) −0.012 0.005 0.019 4.19 10.29 1.64 30.29 55.44 2.33

Intercept −2.932 1.793 4.034 4.24 1.32 0.39 17.43 20.29 60.57

FDR, false discovery rate.

The GLR model did not support the uneven development hypothesis (H3). Yet, 1.41% of the
GWLR local coefficients for relative median housing values were negative and highly significant
(t < −4.25; p < 0.00002), which provided some support for that hypothesis.

The GWLR provided varying levels of highly significant results for the contemporary industrial
pollution source variables. As shown in Table 9, 2.33% of the GWLR local coefficients for surface water
CAWMHS were positive and highly significant (t > 4.19; p < 0.00003), which provided limited, but
strong, support for the industrial point source pollution hypothesis (H4). As shown in Figure 12, Map
A, the highly significant and increased likelihood (odds ratios > 1) of block group containment in
an impaired hazard zone for every one-hundred-thousand-unit increase in surface water CAWMHS
occurred in the north-west, central, and central-east portions of the region and distant from the
Richmond Chevron refinery.
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In contrast, 88.52% of the GWLR local coefficients for kilometers to the Richmond Chevron refinery
were negative and highly significant (t < −4.20; p < 0.0003). These results provided relatively extensive
support for the super emitter hypothesis (H5). Figure 12, Map B, shows that those highly significant
results occurred along the western and eastern sections of the region. The findings for the western
section accord with the clustering of proximity to the Richmond Chevron refinery and concentration
of impaired water hazard zones near the San Francisco Bay area. However, the similarly negative and
highly significant results for proximity to the Richmond Chevron refinery on the eastern section of
the region are counterintuitive. Those unexpected results, and all other GWLR-related results, are the
product of the local sample points (i.e., the focal block group and its 1682 nearest neighbors) that are
used to generate the local estimates [62]. Further, the highly significant results for kilometers to the
Richmond Chevron refinery on the eastern expanse of the Bay-Delta should be considered in light of
the relative lack of impaired water hazard zones (see Figure 3) and low levels of local model fit in that
portion of the Bay-Delta (see Figure 8). Indeed, only 261 (35%) of the 745 block groups that had highly
significant and negative results for kilometers to the Richmond Chevron refinery on the eastern section
of the region reached the threshold of 50-percent areal containment in an impaired water hazard zone.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  24 of 34 
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I derived the modal GWLR results by examining patterns in the direction and associated
significance thresholds of t-values for each local independent variable and intercept coefficient from
the GWLR model. I identified 473 block groups as having the most common t-value thresholds and
significance levels for their GWLR model predictors of block group 50-percent areal containment
in an impaired water hazard zone. Those modal results exhibited the following pattern: α(ui, vi)

(t > 4.24; p < 0.00002) + β1(ui, vi)· Black disadvantage (t < −1.96; p < 0.05) + β2(ui, vi) · isolated Latinx
disadvantage (t > 1.96; p < 0.05) + β3(ui, vi)· relative median housing value (t < −1.96; p < 0.05) +
β4(ui, vi)· kilometers to the Richmond Chevron refinery (t < −4.20; p < 0.00003) + β5(ui, vi) surface
water CAWMHS (t > 4.24; p < 0.00002).

Figure 13 classifies block groups by their modal GWLR result status. Of the 473 block groups
that had the modal GWLR results, 388 (82.03%) successfully predicted block group containment in an
impaired water hazard zone. The 85 unsuccessful cases occurred near the Fairfield-Vallejo area and
Moraga, as well as on the periphery of the 388 successful cases from Oakland to Freemont, along the
western border of Alameda County (see Figure 13, Map A). Map B in Figure 13 highlights the block
group in Oakland’s Oak Tree neighborhood that had the smallest GWLR residual (i.e., 0.04) and was
thus most representative of the modal GWLR results [85].

Table 10 summarizes the GWLR results for the representative Oak Tree block group. The percent
local deviance explained of 0.15 was just above the median percent local deviance explained across the
GWLR results. The GWLR results for this block group are mostly consistent with the GLR and GWLR
results presented above with one important exception. Specifically, isolated Latinx disadvantage
was the lone positively significant intersecting population vulnerability factor for this block group.
This result can be expected given the elevated levels of isolated Latinx disadvantage (5.458) in contrast
to the low levels of Black disadvantage (−0.161) in this block group.
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Table 10. Representative block group from modal GWLR results for block group 50 percent areal
containment within a 2006, 303(d), impaired water hazard zone on population vulnerability, uneven
development, and contemporary industrial pollution source factors.

Variables

Representative Block Group:
Oak Tree Neighborhood in Oakland

(ID: 060014062013)

Value
GWLR Results

B S.E. t-Value Sig. OR

Population vulnerability
Black disadvantage, 2000 −0.161 −0.183 0.056 −3.288 0.001 0.833

Isolated Latinx disadvantage, 2000 5.458 0.371 0.093 3.985 6.9 × 10−5 1.450

Uneven development
Relative median housing value, 2000 0.573 −0.263 0.126 −2.091 0.037 0.769

Contemporary industrial pollution sources
Kilometers to Richmond Chevron Refinery 21.950 −0.042 0.005 −9.268 3.5 × 10−20 0.958

Surface water CAWMHS, 2000–2006 (100,000 s) 1350.166 0.008 0.002 3.297 9.9 × 10−4 1.008
Intercept 2.041 0.216 9.459 6.0 × 10−21 7.695

Model diagnostics
Percent local deviance explained 0.150

The modal GWLR results in Oakland illustrate the spatial non-stationarity manifest in the
intersecting population vulnerability predictors of block group proximity to impaired water hazard
zones in the Bay-Delta. Such findings become evident when using GWLR techniques as found in the
present study, rather than solely using global models like GLR. The modal GWLR results also show how
major polluters beyond the super-emitting, Richmond Chevron refinery, impair the local environment
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and contribute to spatial forms of intersecting environmental health vulnerabilities. As shown in
Figure 13 and Table 10, the Oak Tree block group is significantly close to the disproportionately
hazardous Richmond Chevron refinery.

Figure 13, Map B, further elaborates on the results presented in Table 10. Specifically, the Oak
Tree block group, and other block groups contained in the impaired water hazard zones of the
Oakland-Alameda-Piedmont area, were subjected to significantly high levels of surface water
CAWMHS from 2000 to 2006 from other nearby industrial pollution sources. Three surface water
toxic release facilities affiliated with E-D Coat, Inc.; the Pennzoil-Quaker State Co., and the Lesaffre
Yeast Corp. are plotted in Figure 13, Map B, with gray points. Respectively, they were the 43rd,
45th, and 48th most hazardous polluters in the Bay-Delta surface waters. Out of these three minor
surface water polluters, the E-D Coat, Inc., metal finishing plant in Oakland is an established local
environmental health threat.

The E-D Coat, Inc., plant consistently released toxic zinc emissions into nearby surface waters
every year from 2000 to 2006 [14]. In 2002, E-D Coat, Inc., and the owner of its metal finishing plant,
were fined the maximum of $385,000 for U.S. Clean Water Act violations; the owner pled guilty to
felony violations for illegally dumping toxic wastewater into Oakland’s sewer system [86]. In 2012,
authorities found that E-D Coat continued to illegally discharge wastewater into local sewers, and in
2017, this facility was ordered by authorities to clean up improperly stored and corroding hazardous
waste tanks filled with zinc solutions and other toxins because they posed a threat to local air quality
and groundwater [86].

The most prominent polluter within the Oak Tree impaired water hazard zone, however, was the
McWane, Inc./AB&I metal foundry. This surface water toxic release facility is plotted with a black
point in Figure 13, Map B. As described above, this facility was the tenth-most hazardous polluter and
one of the nine contemporary sources of toxic mercury releases in the Bay-Delta from 2000 to 2006.
The personnel at this facility are noteworthy for their “election malfeasance” in the early 2000s, as well
as for their violation of Oakland’s campaign laws by laundering political donations in the 2012 and
2014 elections [87]. In the environmental context, this facility continues to garner media attention for
being one of the Bay Area’s “top toxic releasers”, behind the Richmond Chevron refinery and others in
the region, who are permitted to emit toxic releases into the region’s air and water [88]. According
to the regional toxics inventory program coordinator of the U.S. EPA, the extent to which those toxic
releases are “harmful to the public or not depends on a whole lot of factors” [88].

The modal GWLR results in Oakland suggest some “structural” [84] factors that contribute to
the environmental health threat of surface water toxic release facilities in the Bay-Delta. Specifically,
the spatial concentration of intersecting environmental health vulnerabilities near super emitters, like
the Richmond Chevron refinery, and other prominent emitters, like the McWane, Inc./AB&I foundry,
create conditions for surface water toxic releases to be harmful to the public. Further, as shown in
Figure 13, Map B, there is a clear pathway, accessible by foot or car, from the Oak Tree block group to
the popular Alameda Rock Wall fishing location that was identified in a 2000 regulatory environmental
health study of seafood consumption in the San Francisco Bay [89]. Of the anglers surveyed in that
study and who consumed the fish they caught, Asian, African American, and “Latino” anglers had
higher rates of fish consumption above local health advisory recommendations than “Caucasian”
anglers [89]. The modal GWLR results indicate that some of those anglers may have originated from
the Latinx, socioeconomically disadvantaged, and primarily Spanish-speaking Oak Tree block group
and other similarly disadvantaged block groups in that area’s impaired water hazard zone.

4. Discussion

Studies spanning the environmental health and inequality literature are increasingly focusing
on the problem of “water injustice”, specifically its sociospatial dimensions that put people and
places at heightened risk of exposure to a number of water-related environmental health hazards [1–3].
Previous scholarship on disparate proximity to environmental health hazards in the surface waters of
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California’s Bay-Delta region marked an important contribution to this emerging body of research [3].
That study developed a novel environmental health hazard indicator—the surface water CAWMHS
based on surface water toxic releases from industrial point source emitters in the U.S. EPA RSEI
database [14]. It also deployed an intersectional lens that was attentive to the environmental
health vulnerabilities of various nonwhite populations living in subsistence in the region [6,7].
It found that spatial concentrations of socioeconomically disadvantaged Blacks, along with similarly
disadvantaged Latinxs and primarily Spanish-speaking households, low housing values, and proximity
to the extremely hazardous Richmond Chevron oil refinery were significant predictors of residential
proximity to hazardous levels of surface water toxic releases in the Bay-Delta in 2000 [3].

The present study advanced research on the sociospatial dimensions of water injustice within the
Bay-Delta while contributing to the broader geographic study of environmental health vulnerability in
the United States. In particular, it integrated the surface water CAWMHS measure and intersectionality
lens from prior work [3] into a new conceptual and multi-methodological framework that accounted
for point and non-point sources of surface water pollution embodied in impaired water hazard zones.

The disproportionality perspective in environmental sociology, and the general principles of
critical physical geography, were central to this new framework. The disproportionality perspective
reframes the abstract phenomenon of spatial clustering of environmental health hazards near major
industrial sources as a problem of privileged access to pollute the biophysical environment by
dominant “super emitters” as they pursue their interests [33–37]. Critical physical geography
provides an over-arching standpoint from which to organize the new framework because of its
commitment to rigorous examination of the complex and intertwining material and social dimensions
of biophysical landscapes, which has implications for the health and wellbeing of humans and various
non-human actors in the biophysical environment [50–52]. Furthermore, critical physical geography’s
interdisciplinary orientation guides researchers as they combine qualitative and quantitative analytical
techniques from the biophysical and social sciences in mixed-method studies of power and inequalities
in coupled human-natural systems [51].

This study used its intersectionality, disproportionality, and critical physical geography lens
to provide the first examination of the spatial non-stationarity of intersecting environmental health
vulnerabilities and polluter disproportionality, in general, and in the context of surface water-related
environmental health hazards, in particular. The present study supports previous research that
demonstrates GWLR generally offers a better model fit when compared to global models like the
GLR. Likewise, this study supports the notion that GWLR is a powerful tool for uncovering spatial
non-stationarity in the predictors of binary outcomes [56–73].

The modal GWLR results from this study for the likelihood of block group containment in
an impaired water hazard zone occurred in a similar place where the critical physical geography
perspective has been applied. That is, McClintock’s [23] critical physical geographic analysis
of Oakland’s “flatlands” focused on the problem of its urban soil lead contamination [52].
Such work illustrated how lead-contaminated soils in Oakland’s nonwhite, low-income, and industrial
neighborhoods are historical products of exclusionary and uneven development, and corporate
advocacy and regulatory support for pervasive use of lead-based products. The present study adds
to these insights by showing how surface water-related environmental health vulnerabilities are
concentrated in Oakland’s Latinx, socioeconomically disadvantaged, and primarily Spanish-speaking
block groups that neighbor popular fishing locations and prominent industrial polluters with the
privileged access to the region’s waters.

Research suggests it will likely take decades or longer to address the historical and contemporary
effects of the numerous point source and NPS pollutants that permeate the impaired Bay-Delta
waters [83,90–95]. Therefore, some claim “outreach and education are the only viable methods
of immediate exposure reduction,” and this must be done in a manner that is sensitive to the
different cultures and linguistic capabilities of at risk populations who tend to be non-English
speaking [7] (p. 418). Outreach and education efforts are evidenced in the multiplicity of fish
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advisories posted in the Bay-Delta region, which urge fishers to “Eat fish safely” [3], as well as in other
media and government-supported community-based campaigns throughout California. For example,
the California EPA, the umbrella organization for the SWRCB, awarded 32 environmental justice
small grants, totaling $574,467, to a variety of local organizations between 2005 and 2007. Funding
for education, outreach, and public participation was usually an essential component of the awarded
grants. Furthermore, addressing water quality and food contamination in the Bay-Delta region and
other California impaired waters “was the main issue addressed by grant recipients (N = 13) and
received the most funding” at $216,673 or 37.72 percent of the total grant funds [96] (p. 268).

Some are critical of outreach and education measures for not doing enough to protect public and
environmental health in the region. To be sure, outreach and education coexist with a regulatory context
of water quality control from state and federal entities (e.g., the U.S. EPA and California SWRCB).
Nonetheless, advocates claim this dynamic places an unfair burden on the individual consumer,
especially those living and fishing in subsistence conditions who are often Black and Latinx, and/or
have limited English-speaking ability. This sentiment was expressed in policy statements about the
need for land use reform to channel industrial surface water polluters, like the Chevron Refinery in
Richmond, away from marginalized neighborhoods [3,97].

Previous research suggests that GWR analyses are powerful tools to guide targeted efforts to
address various environmental health and inequality problems [70]. The present study couples
the intersectionality, disproportionality, and critical physical geography perspectives with GWLR
techniques in a manner that could inform future policy-relevant research within and beyond the
Bay-Delta. Specifically, this study’s approach shifts away from the typical focus on outreach and
education campaigns or pollution permits. Instead, it emphasizes the need to identify priority
areas, such as impaired water hazard zones, for targeted governmental and nongovernmental
interventions into the spatially-varying factors that contribute to the spatial concentration of
intersecting environmental health vulnerabilities and polluters’ disproportionate impact on the
biophysical environment.

Despite the novel contributions of this study, it has important scholarly and practical limitations.
First, this study analyzed population vulnerability data from the 2000 U.S. Census of population and
housing and surface water health-hazard data from 2000 to 2006. As discussed in Sections 1.2 and 2.3.3
above, the purpose of doing so was to maintain comparability with prior research [3], while addressing
the limited pollution source and temporal focus in that research. In addition, the 2000 population and
housing data is the closest temporal match to the 2000–2006 hazard data possible. Nonetheless, there
remains the possibility that census block group composition changed by some unmeasurable amount
during the 2000–2006 period within the Bay-Delta. Accordingly, the results of the present study must
be interpreted with caution in light of this uncertainty in block group changes during the study period.

Second, a broader set of indicators could be assessed in future research to expand the
study of water-related environmental health hazards beyond those analyzed in the present study.
A good starting point for this line of inquiry would be to use more recent population, housing,
and environmental health hazard indicators from the California Communities Environmental Health
Screening Tool (CalEnviroScreen) [98–100]. Specifically, sociospatial analyses comparable to that
found in the present study on the CalEnviroScreen’s drinking water contamination index, and its
indicators of proximate groundwater pollution threats and impaired water body pollutants, can
expand our understanding of the sociospatial dimensions of water injustice from surface waters
to drinking water and groundwater systems within the Bay-Delta and elsewhere in California.
Future research along these lines could also compare an updated measurement of the impaired
water hazard zone for 2010 and 2014–2016, for example, with the impaired water body pollutant
indicator in CalEnviroScreen. Such analysis could begin addressing important questions about how
and why the impaired water body pollutant indicator in CalEnviroScreen has unexpected patterns
of association with other CalEnviroScreen indicators of environmental health hazard and population
vulnerability [98,100].
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There are particularly pressing set of questions that could also be addressed in future research
given California’s focus on “cumulative impacts” assessment [98–100] and its 2012 landmark legislation
that recognized the human right to water in the state. While CalEnviroScreen includes a broader set of
water-related health hazards than used in the present study, none of those indicators are paired with
the detailed information on impaired water body pollutant and their sources that were analyzed in the
present study. Such information could be integrated into CalEnviroScreen from the SWRCB database
to make it more readily available for the public, per California’s commitments to environmental justice
and the human right to water. Furthermore, CalEnviroScreen uses the air-toxic U.S. EPA RSEI health
hazard indicator. However, it contains no comparable information about the relative health hazard of
surface water toxic releases from the RSEI database nor does it include any detailed information about
the pollution sources from the RSEI data that is applicable to California. A clear implication from the
present study is that to more fully understand the sociospatial dimensions of water-related health
hazards—including their unequal distribution along multiple and intersecting lines of environmental
health vulnerability—one must also account for the disproportionate impacts of super emitters.
Likewise, such analyses must attend to issues of spatial autocorrelation and non-stationarity, which are
illuminated with global and local regression models. As this study illustrates, the GWLR model better
fit the data, uncovered spatial non-stationarity in the predictors of block group proximity to impaired
water hazard zones, and thus sheds new light on the sociospatial dimensions of water injustice in
California’s Bay-Delta.
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