
Table S1  
Root mean square error (RMSE), Akaike’s Information Criterion (AIC), and Bayesian 
Information Criterion (BIC) values for the four methods of analyzing the Moderate 
Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) 
time-series data from 2001 to 2014 in Northern China (best-smoothing method shown 
in bold). 

Evaluation Index Year 
Smoothing methods 

S-G D-L A-G Hants 

RMSE 

2001 0.01621 0.04263 0.06528 0.06561 
2002 0.02872 0.01133 0.04334 0.05570 
2003 0.02415 0.01984 0.63455 0.03997 
2004 0.03024 0.04007 0.06220 0.05264 
2005 0.04123 0.03784 0.06659 0.04805 
2006 0.04014 0.04905 0.03841 0.06060 
2007 0.02738 0.02948 0.03047 0.04889 
2008 0.02129 0.02688 0.03128 0.04285 
2009 0.02758 0.03275 0.03343 0.04092 
2010 0.04032 0.03125 0.03376 0.05024 
2011 0.03013 0.04099 0.03235 0.04365 
2012 0.02967 0.03810 0.07546 0.06658 
2013 0.01567 0.02735 0.19103 0.07375 
2014 0.02732 0.02864 0.04736 0.07523 

AIC 

2001 34.46572 42.98280 52.08547 45.36425 
2002 34.62564 43.75172 49.58512 44.29701 
2003 34.64456 44.15196 54.82135 44.89754 
2004 34.58740 43.13892 65.15824 41.13597 
2005 34.50929 44.10562 50.80354 44.94052 
2006 34.90605 44.67214 45.70052 43.08325 
2007 34.49780 44.12756 46.40414 43.69348 
2008 34.50678 43.94475 44.49352 41.92434 
2009 34.12584 42.59709 45.79601 42.56035 
2010 34.23542 43.14835 46.16710 44.62589 
2011 34.77632 43.81125 44.72584 41.79256 
2012 34.49780 43.53025 48.95726 43.59234 
2013 34.35832 43.53329 48.03586 41.52659 
2014 34.78923 42.77086 44.75356 42.35842 

BIC 

2001 70.35782 148.06528 168.56256 133.05127 
2002 71.53825 147.86549 166.49483 135.81342 
2003 70.05682 148.68529 171.45328 130.25415 
2004 70.35283 148.19647 191.56268 130.83156 
2005 70.54827 148.09534 188.56219 134.15618 
2006 70.24738 148.83486 171.54836 129.83186 
2007 70.19832 147.99286 170.30282 131.26250 
2008 70.75138 148.10682 166.52849 131.59426 
2009 70.94357 148.15394 167.43805 132.91256 
2010 70.83476 149.00150 168.08252 129.88750 
2011 70.88952 148.43895 166.05824 132.25904 
2012 70.68742 148.25615 174.93851 135.62492 
2013 70.78238 148.07625 172.89173 133.78219 
2014 70.25238 148.03594 165.67127 129.80968 

 



 

Table S2 Percentage of partial correlation coefficients between LSP and climatic 

factors. 

 Temperature Precipitation Solar radiation 

 Positive Negative Positive Negative Positive Negative 

SOS 

Winter 51.36% 48.64% 42.67% 57.33% 57.83% 42.17% 

Spring 37.67% 62.33% 43.12% 56.88% 51.73% 48.27% 

EOS 

Summer 52.33% 47.67% 59.03% 40.97% 58.42% 41.58% 

Autumn 47.57% 52.33% 64.43% 35.57% 36.75% 63.25% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S1. Distribution of meteorological stations across Northern China; red points 

represent stations for temperature and precipitation, and blue triangles represent 

stations for solar radiation. 

 

 



 

 

Figure S2. The time lag related to climatic factors for which the highest determination 
coefficients (R2) were obtained between phenophases (SOS (a) and EOS (b) from top 
to bottom, respectively) and climatic factors in Northern China. Tem, Pre and Sad 
represent mean temperature, total precipitation and total solar radiation, respectively. 

 

 

 

 



 

 

Figure S3. Climatic factors variation in Northern China from 2001 to 2014. Tem, mean annual 

temperature; Pre, annual cumulative precipitation; Rad, annual cumulative solar radiation. 
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Abstract: Land surface phenology (LSP) is a sensitive indicator of climate change. 

Understanding the variation in LSP under various impacts can improve our knowledge on 

ecosystem dynamics and biosphere-atmosphere interactions. Over recent decades, LSP 

derived from remote sensing data and climate change-related variation of LSP have been 

widely reported at regional and global scales. However, the smoothing methods of the 

vegetation index (i.e., NDVI) are diverse, and discrepancies among methods may result in 

different results. Additionally, LSP is affected by climate change and non-climate change 

simultaneously. However, few studies have focused on the isolated impacts of climate change 

and non-climate change on LSP variation. In this study, four methods were applied to 

reconstruct the MODIS enhanced vegetation index (EVI) dataset to choose the best smoothing 



result to estimate LSP. Subsequently, the variation in the start of season (SOS) and end of 

season (EOS) under isolated impacts of climate change were analyzed. Furthermore, the 

indirect effects of isolated impacts of non-climate change were conducted based on the 

differences between combined impact (the impacts of both climate change and non-climate 

change) and isolated impacts of climate change. Our results indicated that the Savitzky-Golay 

method is the best method of the four for smoothing EVI in Northern China. Additionally, 

SOS displayed an advanced trend under the impacts of both climate change and non-climate 

change (hereafter called the combined impact), isolated impacts of climate change, and 

isolated impacts of non-climate change, with mean values of –0.26, –0.07, and –0.17 days per 

year, respectively. Moreover, the trend of SOS continued after 2000, but the magnitudes of 

changes in SOS after 2000 were lower than those estimated over the last two decades of the 

twentieth century (previous studies). EOS showed a delayed trend under the combined 

impact and isolated impacts of non-climate change, with mean values of 0.41 and 0.43 days 

per year, respectively. However, EOS advanced with a mean value of –0.16 days per year 

under the isolated impacts of climate change. Furthermore, the absolute mean values of SOS 

and EOS trends under the isolated impacts of non-climate change were larger than that of the 

isolated impacts of climate change, indicating that the effect of non-climate change on LSP 

variation was larger than that of climate change. With regard to the relative contribution of 

climatic factors to the variation in SOS and EOS, the proportion of solar radiation was the 

largest for both SOS and EOS, followed by precipitation and temperature.  

Keywords: land surface phenology; MODIS; climate change; northern China 

 

1 Introduction  

Land surface phenology (LSP), which refers to the responses to inter- and intra-annual 

variations in climate, is a useful indicator in the study of the response of ecosystems to climate 

variability [1]. It has an important role in regulating regional and global carbon, water, and 

energy cycling [2,3]. Changes in the timing of LSP have  strong impacts on ecological 

processes, including the long-term distribution of tree species [4], plant competition [5], 

ecosystem functions [6], and even human activities (i.e., agriculture, forestry), human health 

(e.g., allergies), and tourism [7,8]. Moreover, the advances in spring compound shifts in the 

growing season length increase the survival and activity of harmful insects and pathogens [9]. 

Therefore, the phenology products have been widely applied to climatic change, farm 

management, and biomass monitoring [10,11]. 

Currently, there are four main methods for studying vegetation phenology: ground 

observation, satellite-based estimation, visible digital camera imaging [12,13], and bioclimatic 

models [14,15]. Among the four methods, the satellite-based method, which has high spatial 

and temporal resolution, is an unprecedented, powerful, integrative, and objective technique 

for monitoring and characterizing LSP and its relationship with climate factors across a variety 

of spatial and temporal scales [16]. However, the estimation of LSP for satellite-based methods 

is mainly based on smoothing or filtering VI (i.e., NDVI); nevertheless, there has not been a 

general method that has been applied universally until now [20] which increases the 

uncertainness of estimation of LSP. For instance, the magnitude of the SOS in temperate China 

was shown to range from –0.01 to –0.19 days per year across five different methods [21]. 

Additionally, high-magnitude biases in LSP have been found in the same region and/or over 

the same time period [21]. Due to the difficulties in separating the impacts of climate change 

and non-climate change on LSP effectively [22], the variation in LSP was mostly considered to 

be associated with climate change (i.e., increase temperature), despite the occurrence of 

simultaneous impacts of climate change and non-climate change. Therefore, simply attributing 

LSP variation to climate change is unjustified [23]. In addition, the measurement sensitivity of 

the LSP to climate change has mainly been based on an ordinary linear regression model [24-



26], which ignores the multicollinearity among climatic variables. These limitations have 

severely hindered our understanding of LSP variation and its correlation with impact factors 

(i.e., climatic factors). 

Northern China covers an extensive territory characterized by complex ecosystems and 

climatic zones. In recent decades, Northern China has experienced dramatic changes in climate 

such as the strongest El Niño events ever recorded [27], frequent occurrences of severe 

droughts [28], and intensive human activities (i.e., reforest, urbanization) [29]. These 

characteristics make northern China one of the most critical and sensitive regions in which to 

observe the variation of LSP and its correlations with impact factors. Considering the 

fundamental role of LSP and to improve our ability to develop predictive models, it is an 

urgency to determine whether trends in LSP have continued since 2000 compared with 

previous studies, and particularly to investigate the relationships between LSP and diverse 

climatic factors and non-climate change. Therefore, four smoothing methods (the Savitzky-

Golay method (S-G), the Double logistic function method (D-L), the Asymmetric Gaussian 

function method (A-G), and the Harmonic Analysis of Time Series method (HANTS)) were 

applied in this study to fitting VI data, and then chose the best smoothing results to estimate 

LSP, in order to (1) explore the variation of LSP in Northern China during 2001-2014; (2) isolate 

and quantify the impacts of climate change and non-climate change on LSP variation, and (3) 

characterize the relative contribution of climatic factors (i.e., mean temperature) on the 

variation of LSP. We hypothesize that the trends and magnitudes of LSP will change since 2000 

under the impacts of climate change and non-climate change in Northern China. 

2 Materials and Methods 

2.1 Study Area 

The study area is located in China’s temperate zone. The climate zones include warm, 

middle and cold temperate from south to north, the mean annual temperature is between −4 

and 14°C and the total annual precipitation ranges from 200 mm in the Northwest to 1000 mm 

in the Southeast. The dominant vegetation types are deciduous conifer forest, deciduous broad-

leaved forest, temperate steppe, and temperate desert [30]. Due to the markedly seasonality 

and spatial heterogeneity in thermal and moisture conditions, vegetation phenology displays 

extensive temporal and spatial differences [30]. 

2.2 Data 

The MODIS surface reflectance (specifically, MOD09A1, version 6) with a spatial 

resolution of 0.5 km and a 8-day temporal resolution from 2001–2014 were used to in this study. 

All image data were reprojected from Sinusoidal to Asia North Albers Equal Area Conic, then 

subset to the study area. After the processing procedures (i.e., reprojection and imagery 

clipping), EVI value were calculated and pixels with EVI value less than 0.1 were excluded to 

mask non-vegetation further. Finally, LSP during 2001-2014 were estimated based on the EVI 

value mentioned above.  

Monthly meteorological data from 2001–2014, including temperature, precipitation and 

solar radiation, were acquired from the China Meteorological Data Sharing Service System 

(downloaded from http://data.cma.cn/, accessed on 16 May 2018). All meteorological data used 

in this study were verified by China’s Meteorological Information Center; thus, false or missing 

data from some of the stations were eliminated. There are 301 recordings for temperature and 

precipitation, and 48 recordings for solar radiation in Northern China (Figure S1) were used. 

The Kriging method, which was recognized as a better interpolation with lower bias than other 

interpolation methods [32], was then used for the spatial interpolation of climate data across 

the study area. The spatial resolution of climate date was 0.5 km × 0.5 km, which is consistent 

with MODIS EVI data. 

2.3 Comparison of EVI smoothing approaches 



 Four methods  namely the Savitzky–Golay method (S-G), the double logistic function 

method (D-L), the asymmetric Gaussian function method (A-G), and the Harmonic Analysis of 

Time Series method (HANTS), were applied to reconstructed EVI time-series data for each 

year, and the algorithms for the four methods are detailed in [33,34].  

Three statistical indicators, namely the root mean square error (RMSE), Akaike’s 

Information Criterion (AIC), and the Bayesian Information Criterion (BIC) were used to 

evaluate the performance of each method mentioned above. The three statistical indicators 

were calculated as (Equations (1) - (3)); the lower the values of the RMSE, AIC and BIC, the 

more preferable the method is.  

RMSE=√
∑ (𝐸𝑉𝐼∗(t) − 𝐸𝑉𝐼(𝑡))2𝑁

𝑖=1

𝑁
 (1) 

AIC=2k + N * ln(RSS) (2) 

BIC=N * ln(RSS)+k * ln(N) (3) 

where EVI(t) is the mean EVI value obtained from the four methods (assumed to be accurate) 

[20], 𝐸𝑉𝐼∗(𝑡) is the result of EVI smoothing, k is the number of free parameters, N is the number 

of time points, and RSS is the residual sum of squares between the mean EVI and the 

corresponding smoothing methods. 

Our results indicated that the S-G method was the best of the four (Table S1). Therefore, 

the EVI results from S-G method were then applied to extract LSP. 

2.4 Extraction of LSP 

TIMESAT software, which is widely used on regional and global scales [19,21], with the 

S-G filtering method, and an adaptation strength of 2.0, a seasonal parameter of 0.5, an S-G 

window size of 2, no spike filtering, and an amplitude season start and end of 20% was applied 

to estimate LSP (SOS and EOS). Furthermore, the interquartile range rule was applied to mask 

outliers for the date of SOS and EOS. For instance, date smaller than 25th percentile minus 1.5 

times interquartile or date greater than 75th percentile plus 1.5 times interquartile were 

excluded [35].  

2.5 Change Trend Analysis 

The trends of LSP (SOS and EOS) during the period 2001–2014 were calculated at pixel level 

using a robust, non-parametric Mann–Kendall (M–K) trend analysis [36]. This method does not 

require the independence and normality of the time series data [17]. Previous studies reported 

that the M-K test statistic Z was approximately normally distributed when the sample size was 

greater than eight [36]. A positive or a negative Z value indicated an increasing or a decreasing 

trend, respectively, which were all monotonic [36]. The trends of LSP were tested at a 

significance level of α = 0.05. Additionally, the rate of change of LSP was calculated based on 

the Theil–Sen median slope estimator, which is more appropriate for assessing the rate of 

change in short or noisy time series. 

2.6 Time-lag Effect Analysis 

Previous studies have observed a time-lag effect between vegetation growth and climate 

variability on a monthly scale [38]. The effects of lagged months during the preseason and 

growing season (see [26] for details) with one-month steps between LSP and climatic factors 

were calculated based on a partial least-squares regression (PLS) model. The month with the 

highest determination coefficient (R2) of the estimated regression model was regarded as the 

lagged month for each climatic factor [38]. For each year of the analysis, we defined the 

preseason period as May to the preceding November, and the growing season was considered 

to be June to October, in accordance with the LSP results mentioned above.Our results 

indicated that nearly 80% of the total pixels displayed a four month time-lag effect between 



climatic factors (temperature, precipitation, and solar radiation) and the SOS, while for the 

EOS, the percentage was nearly 100% (Figure S2). 

2.7 Isolated Effects of Climate Change and non-climate change on Trends of LSP. 

To identify the isolated impacts of climate change on LSP variation, the mean temperature, 

cumulative precipitation, and cumulative solar radiation based on a four-month time-lag effect 

were first calculated. Then, the first-difference method, which calculates the differences 

between two consecutive years and is regarded as a common de-trending technique for 

reducing the impacts of long-term trends caused by technological improvements or other 

effects [39,40], was applied to calculate the difference values (𝛥Val = 𝑉𝑎𝑙𝑡+1 - 𝑉𝑎𝑙𝑡) of LSP and 

climatic factors between two consecutive years (year t and year (t+1)). Thirdly, a PLS model 

was used at the pixel level to reduce the multiple colinearity among climate factors, and the 

corresponding coefficients of the model were considered to represent the sensitivity of LSP to 

the corresponding climatic factors. The multiple regression model was established as follows: 
𝛥𝑃ℎ𝑒 =  𝛥𝑅𝑎𝑑 ×  𝑆𝑒𝑛𝑅𝑎𝑑 +  𝛥𝑇𝑒𝑚 ×  𝑆𝑒𝑛𝑇𝑒𝑚 +  𝛥𝑃𝑟𝑒 ×  𝑆𝑒𝑛𝑃𝑟𝑒 + 𝑖𝑛𝑡𝑒                 (4) 

where 𝛥𝑃ℎ𝑒, 𝛥𝑅𝑎𝑑, ΔTem, and 𝛥𝑃𝑟𝑒 represent the first difference of LSP, the solar radiation, 

temperature, and precipitation, respectively; 𝑆𝑒𝑛𝑅𝑎𝑑 , 𝑆𝑒𝑛𝑇𝑒𝑚  and 𝑆𝑒𝑛𝑃𝑟𝑒  represent the 

sensitivity of LSP to solar radiation (days/(MJ m-2)), temperature (days/℃), and precipitation 

(days/mm), respectively; and inte is the intercept of the partial least squares regression model. 

Finally, the isolated effects of climate change and the isolated effects of non-climate change 

on the trends of LSP were calculated directly and indirectly, respectively [24]. The calculation 

was as follows: 
Trecli_phe =  SenRad  ×  TreRad + SenTem  ×  TreTem + SenPre  ×  TrePre           (5) 

𝑇𝑟𝑒𝑛𝑜𝑛_𝑐𝑙𝑖 =  𝑇𝑟𝑒𝑝ℎ𝑒 −  𝑇𝑟𝑒𝑐𝑙𝑖_𝑝ℎ𝑒                                            (6) 

where 𝑇𝑟𝑒𝑐𝑙𝑖_𝑝ℎ𝑒  and 𝑇𝑟𝑒𝑛𝑜𝑛_𝑐𝑙𝑖  represent the trend of LSP under the isolated impacts of 

climate change and non-climate change, respectively; 𝑇𝑟𝑒𝑝ℎ𝑒 represent the trend of LSP under 

the combined impact of climate change and non-climate change. TreRad, TreTem, and TrePre 

represent the trends of the monthly cumulative solar radiation, monthly mean temperature, 

and monthly cumulative precipitation, respectively. The other parameters are defined the same 

as in Equation (4). 

2.8 Relative Contribution of Climatic Factors to the Variation of LSP 

The relative contribution of each climatic factors to the trends of LSP were calculated as 

follows: 

𝑅𝑒𝑙𝑖 =  
|𝑆𝑒𝑛𝑖×𝑇𝑟𝑒𝑖|

∑ |𝑆𝑒𝑛𝑖×𝑇𝑟𝑒𝑖|𝑚
1

× 100%                             (7) 

where 𝑅𝑒𝑙𝑖  represents the relative contribution of factor i to trends of LSP; 𝑇𝑟𝑒𝑖  represents 

the trend of factor i; m is the number of climatic factors, with m = 3 in this study; 𝑆𝑒𝑛𝑖  

represents the sensitivity of LSP to climate i. 

 

3 Results 

3.1 Trends of LSP 

3.1.1 Impacts of both Climate Change and non-cliamte change on LSP Variation 

The temporal trends of LSP under the impacts of both climate change and non-climate 

change (hereafter called the combined impact) in Northern China in 2001–2014 are displayed 

(Figure 1). Under the combined impact, an advanced SOS mostly occurred in Northeastern 

China and the North China Plain (Figure 1a), accounting for 68.85% of the total pixels (Figure 

1b). However, pixels with a positive (i.e., delayed) trend in SOS accounted for 31.15% of the 



total pixels, which mainly occurred in west of Northern China (Figure 1a). The average trend 

for the SOS under the combined impact was –0.27 days per year, and negative (i.e., advanced) 

trends for SOS mainly occurred between –0.8 and 0 days per year, while the values of positive 

trends mainly occurred between 0 and 0.5 days per year (Figure 1b). In terms of the EOS, a 

delayed EOS, mainly distributed in the northwest of Northern China and the North China Plain 

(Figure 1c), accounted for 72.21% of the total pixels (Figure 1d). However, the negative trends 

of EOS were mainly scattered in the northeast of Northern China (Figure 1c). The EOS was 

delayed with a mean value of 0.41 days per year, and the magnitude of positive trends mainly 

ranged from 0 to 0.5 days per year (Figure 1d). 

 

 

Figure 1. Trends of the start of season (SOS, a) and end of season (EOS, c) under the impacts of 

climate change and non-climate change. (b) and (d) show the corresponding frequency 

distributions of SOS and EOS, respectively. 

3.1.2 Isolated Impacts of Climate Change and non-climate change on LSP Variation 

Under the isolated impacts of climate change on SOS, approximately 53.89% of the total 

pixels displayed a negative (i.e., advanced) trend, and these were mostly scattered in west and 

south of Northern China (Figure 2a,b). In contrast, pixels with a positive SOS trend accounted 

for 46.11%, and they were mainly dispersed in the northwest and northeast of Northern China. 

SOS advanced with a mean value of –0.07 days per year under the isolated impacts of climate 

change, and the absolute values of the negative trends and positive trends for SOS both mainly 

ranged from 0 to 0.3 days per year (Figure 2b). Over the whole study region, about 61.61% of 

the total pixels displayed a negative trend for the SOS under the isolated impacts of non-climate 

change, and they mainly occurred in the northeast of Northern China (Figure 2c,d), while 

positive SOS trends accounted for approximately 38% of the total pixels, and these were mainly 
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distributed in the west of Northern China. SOS advanced with a mean value of –0.17 days per 

year under the isolated impacts of non-climate change, and the magnitude of negative trends 

for the SOS mainly ranged from –1.5 to 0 days per year, while the positive trends for the SOS 

were mainly between 0 and 0.5 days per year. 

 

 

Figure 2. Isolated impacts of climatic factors (a) and non-climate factors (c) on the variation in 

the SOS. (b) and (d) are the corresponding frequency distributions for climatic factors (a) and 

non-climate factors (c), respectively.  

Under the isolated impacts of climate change on EOS, approximately 60% of the total 

pixels displayed a negative trend, and they were mainly distributed in the east, south and west 

of Northern China (Figure 3a,b). EOS advanced with a mean value of 0.16 days per year, and 

the negative trend values mainly ranged from –0.3 to 0 days per year (Figure 3b). During the 

study period, the EOS trends under the isolated impacts of non-climate change were similar to 

those of the combined impact, with an average delayed trend of 0.43 days per year. The positive 

trends in the EOS under isolated impacts of non-climate change accounted for 71.95% of the 

total pixels, and they mainly occurred in the west, south, and east of Northern China (Figure 

3c,d). In contrast, the negative trends in the EOS were mainly distributed in the north and 

northeast of Northern China (Figure 3c). The magnitude of the positive trends mainly ranged 

from 0 to 0.5 days per year, while the magnitude of the negative trends for the EOS were mainly 

between –0.3 and 0 days per year (Figure 3d). 
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Figure 3. Isolated impacts of climatic factors (a) and non-climate factors (c) on the variation in 

EOS. (b) and (d) are the corresponding frequency distributions for climatic factors (a) and non-

climate factors (c), respectively. 

3.2 Relative Contribution of Climatic Factors to LSP Variation 

The relative contribution of climatic factors to the variation in LSP are illustrated in Figure 

4. Among the three climatic factors, the impact of cumulative solar radiation on SOS was larger 

than those of mean temperature and cumulative precipitaiton. Approximately 35.77% of the 

total pixels displayed that the relative contribuion of cumulative solar radiation to the SOS was 

the largest, and these were mainly dispersed in the east, west, and middle of Northern China 

(Figure 4a). Over 32% of the total pixels showed that the relative contribution of cumulative 

precipitaion was the largest, and these were mostly scattered around desert areas and 

grassland areas (Figure 4a). For the remaining areas, the relative contribution of the mean 

temperature was the largest, and this was mainly distributed in the northwest and south of 

Northern China (Figure 4a). In terms of the relative contributions of climatic factors to the EOS, 

the proportion and spatial pattern for each climatic factor were similar to those of the SOS. 

Over 36.62% of the total pixels displayed that the relative contribution of cumulative solar 

radiation was the largest, and these were mainly distributed in the east and middle of Northern 

China (Figure 4b). Approximately 30.73% of the total pixels showed that the relative 

contribution of cumulative precipitaion was the largest, and these were mostly scattered 

around desert areas and the Northeast China Plain (Figure 4b). For the remaining areas, the 

mean temperature was the most important, which was mostly distributed in mountainous 

regions, such as the Great Khingan, Lesser Khingan, Changbai Moutain, and Tianshan 

Mountains (Figure 4b). 
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Figure 4. Relative contributions of climatic factors to the variation in the SOS (a) and EOS (b), 

respectively. Tem, temperature; Pre, precipitation; Rad, solar radiation. 

4 Discussion 

4.1 Temporal Variation in LSP 

The SOS displayed advanced trends under the combined impact, isolated impacts of 

climate change, and isolated impacts of non-climate change, with mean values of –0.26, –0.07, 

and –0.17 days per year, respectively. The trends for the SOS were in line with previous 

findings [46,47]. Interestingly, the effect of non-climate change on SOS variation was larger 

than that of climate change. Additionally, the magnitude of changes in the SOS after 2000 (this 

study) was less than that estimated over the last two decades of the twentieth century (previous 

studies), and this is supported by previous studies [44,46,48,49] that showed that the slope of 

SOS variation has decreased due to the deceleration of strong warming in recent decades [30] 

or because of changes in winter chilling or fire regimes on a regional scale [46,49]. Previous 

studies reported that winter chilling requirements and the photoperiod are also known to play 

important roles in SOS. If chilling temperatures are not required before the end of winter in the 

previous year, the SOS may be delayed despite a continued warming in the current spring. 

Additionally, strong photoperiod control may also limit the degree to which the SOS can 

advance in the future [50,51]. In Northern China, during the period of 2001–2014, over 51% of 

the total pixels showed a positive relationship between the winter temperature and the SOS 

(Table S2). Additionally, the winter temperature displayed a decreasing trend (Figure S3), 

which satisfied the winter chilling requirement for leaf-out. Furthermore, solar radiation and 

precipitation in spring showed increasing trends (Figure S3), meeting both the material and 

water requirements for vegetation growth and resulting in an advanced trend for the SOS in 

Northern China during the period of 2001–2014. Notably, our results showed that the trends in 

the SOS continued after 2000, negating our first hypothesis; however, the magnitude of changes 

in SOS slowed compared with previous studies conducted in the last two decades, partly 

affirming our second hypothesis. In terms of the EOS, it showed delayed trends under the 

combined impact and isolated impacts of non-climate change, with mean values of 0.41 and 

0.43 days per year, respectively, which is consistent with previous studies [20,26,46,52]. 

However, the EOS advanced with a mean value of –0.16 days per year under the isolated 

impacts of climate change. Our results displayed negative relationships between the EOS and 

both the autumn temperature and autumn solar radiation, accounting for approximately 52% 

and 63% of the total pixels, respectively (Table S2). Therefore, the advanced trend of the EOS 

under the isolated impacts of climate change may be due to the increasing trends of both 

temperature and solar radiation in autumn (Figure S3), both of which increase 

evapotranspiration and limit water supply for vegetation growth and then accelerate leaf 

coloration changes or leaf fall. The positive relationship between autumn precipitation and EOS 

illustrated this conclusion (Table S2). Additionally, our results indicated that the impact of non-
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climate change on EOS variation is larger than that of climate change. Although an advanced 

trend of EOS was found under the isolated impacts of climate change, the EOS was ultimately 

delayed under the combined impact. 

Although the variation direction of LSP in Northern China was consistent with previous 

studies (except for the EOS trend under the isolated impacts of climate change), the magnitudes 

of both the SOS and EOS were diverse compared to previous studies [21,25,46]. This may have 

result from differences in the study period and study methods. For instance, Zhu et al. [53] 

revealed that the SOS in North America advanced by 0.27, 0.35, and 0.13 days per year, and the 

EOS was delayed by 0.78, 0.42 and 0.55 days per year from 1982 to 1991, 1982 to 1999, and 1982 

to 2006, respectively. Liu et al. [54] illustrated that the EOS was delayed by 0.12 days per year 

from 1982 to 2011 in temperate China, and similarly to Yang et al. [46] calculated 0.13 days per 

year for the EOS delay in temperate China from 1982 to 2010. However, both of these are much 

less than that of Piao et al. [26], which illustrated a delayed EOS with a rate of 0.37 days per 

year in temperate China during the period 1982–1998. Moreover, the discrepancies among 

methods may have resulted in different magnitudes in phenophase (i.e., SOS). For instance, the 

magnitude of SOS in temperate China ranged from –0.01 to –0.19 days per year across five 

different methods [21]. The SOS was delayed at a rate of 0.03 and 0.13 days per year using the 

TIMESAT method [55] and piecewise logistic method [53], respectively. These results indicate 

the presence of relatively large uncertainties in the noise filtering of the vegetation index (i.e., 

EVI) time-series data, and a substantial influence in threshold setting for the onset date [21,56]. 

Therefore, it is critical to choose an appropriate method and threshold for onset date extraction 

in a specific region, especially for vast areas with diverse vegetation types and/or harsh 

environments [56].  

4.2 Relative Contribution of Impact Factors to LSP 

In terms of the relative contribution of climatic factors to SOS, 35.77% of the total pixels 

were dominated by cumulative solar radiation, and these were mainly dispersed in the east, 

west, and middle of Northern China. This is because an increasing trend of cumulative solar 

radiation (Figure S3) in winter and spring is usually accompanied by abundant sunlight 

intensity and sufficient materials and energy, which enhance the photosynthetic capacity and 

promote vegetation growth. In addition, increased solar radiation may result in the melting of 

seasonal snow, which may lead to a higher soil moisture content to support vegetation growth. 

The negative relationship between the SOS and precipitation in both winter and spring 

demonstrated the conclusion mentioned above (Table S2). Precipitation is one of the critical 

climatic factors that regulates vegetation growth in arid and semi-arid areas. Therefore, the 

relative contribution of cumulative precipitation accounted for approximately 32.22% of the 

total pixels, and these were mostly scattered around desert areas and grassland areas, which is 

in line with previous studies [29,58,59]. This may be related to precipitation in that area is 

already deficient, with root systems for grassland that are shallow and soil profiles that are 

superficial; thus, the ability of grassland in this area to hold soil moisture is limited [60]. A 

decreasing trend in temperature and an increasing trend in precipitation in spring (Figure S3) 

decreased evapotranspiration and provided sufficient water for vegetation growth and 

advanced the SOS. The relative contribution of the annual mean temperature to SOS variation 

was lower than that of the other two climatic factors, accounting for approximately 32.01% of 

the total pixels, which were mainly distributed in the northwest and south of Northern China. 

This response pattern occurred because the thermal requirement is essential for vegetation leaf 

onset in the Northwest of Northern China due to the lower temperatures in spring resulting 

from the high elevation. Additionally, the impacts of the Siberian high pressure are coldness 

and dryness. In contrast, in the south of Northern China, forest is the dominant vegetation type, 

and chilling requirements in winter and a warmer temperature in spring are more important 

than other climatic factors in regulating leaf onset [8]. However, the continuous decreasing 

trend of temperature that occurred throughout winter and spring (Figure S3) identified 



temperature as a critical factor in regulating forest SOS variation in the south of Northern 

China. 

Regarding the relative contribution of climatic factors to the EOS, the proportion of 

cumulative solar radiation was the largest, accounting for 37% of the total pixels, which were 

mainly distributed in the east and middle of Northern China. This is because the increasing 

trend for solar radiation in autumn (Figure S3) provides sufficient materials and energy for 

vegetation photosynthesis. Additionally, the increasing trends for temperature and 

precipitation in autumn (Figure S3) mitigate the importance of low temperature and water 

deficiency that may restrict vegetation growth in autumn. Similar to SOS, the largest relative 

contribution to precipitation occurred around the desert areas. This indicates that leaf coloring 

or senescence may be more dependent on the water supply for desert vegetation. For the 

remaining areas, such as the Great Khingan, Lesser Khingan, Changbai Moutain and Tianshan 

Mountains, temperature contributed the most to the regulation of vegetation senescence due 

to the low temperatures resulting from the high elevation, and thermal requirements were 

shown to be more important than other climatic factors for vegetation growth. 

4.3 Limitations 

The different magnitudes and trends among phenophases (i.e., SOS) at the pixel level may 

be related to the diverse responses and adaptations to climate factors and non-climate factors 

(i.e., anthropogenic activities) and spatially uneven changes in climate change and non-climate 

change [47,54]; however, the relatively sparse distribution of climate data, especially for solar 

radiation, may also result in some ambiguity and error in the variation of LSP under the 

isolated effects of climate change and non-climate change. Additionally, the diverse changes in 

phenophases (i.e., SOS) may also result from calculation errors (i.e., from VI smoothing) to 

some extent. Furthermore, this study only considered three climate variables to calculate the 

LSP variation under the isolated impacts of climate change; however, other factors, such as 

natural disturbances (i.e., wildfires, pest, plant disease, droughts and floods) and other climate-

related factors (i.e., winter chilling temperature, soil temperature and moisture, sunshine 

duration, CO2 concentrations, and nitrogen enrichment and deposition), may also affect LSP 

variation [19,61], and should be considered in future studies. Moreover, cropland with two 

growing seasons was included in the study region, but only the first growing season was 

considered. Therefore, the impacts of climate change and non-climate change on the second 

growing season of cropland should be conducted in the future. In addition, the variation in LSP 

was impacted by both climate change and non-climate change (i.e., anthropogenic activities) 

simultaneously, so determination of the isolated effects of these two factors on LSP per se is 

difficult [23]. The method applied in this study to isolate climate change and non-climate 

change was based on the hypothesis that vegetation growth is impacted by climate change and 

non-climate change factors; after the removal of climate change impacts, the effects of non-

climate change on vegetation change could be identified [62]. Obviously, this method is not 

effective, and it did not distinguish different types of non-climate change (anthropogenic 

activities vs. vegetation succession and competition) on vegetation growth despite the fact that 

this method has been widely used to isolate the effects of climate change and non-climate 

change such as anthropogenic activities not only to measure net primary production variation 

but also, to measure  NDVI variation and vegetation phenology variation [24,57,63-65]. 

Therefore, it is necessary to identify the effects of different types of non-climate change factors 

such as species coexistence, afforestation and deforestation on LSP variation in the future. 

5. Conclusions 

In this study, land surface phenology (LSP) in Northern China during the period 2001–

2014 was estimated, and the estimation and field observations were compared. Additionally, 

the trends for the SOS and EOS under the combined effect, isolated effect of climate change, 

and isolated effect of non-climate change were analyzed, respectively. Our results showed that 



the Savitzky-Golay method was the best of the four for smoothing the enhance vegetation index 

(EVI) in Northern China. . In terms of the trends for the SOS and EOS under different impact 

factors, the SOS advanced under the combined impact, isolated impacts of climate change, and 

isolated impacts of non-climate change. The EOS was delayed under the combined impact and 

isolated impacts of non-climate change. However, an advanced trend for the EOS occurred 

under the isolated impacts of climate change. Furthermore, our results indicated that the 

absolute mean values of the SOS and EOS trends under the isolated impacts of non-climate 

change were larger than those of the isolated impacts of climate change, which indicates that 

the effect of non-climate change (i.e., anthropogenic activities) on LSP variation was larger than 

that of climate change. With regard to the relative contribution of climatic factors to the 

variation in the SOS and EOS, solar radiation had the largest effect on the SOS and EOS, 

followed by precipitation and temperature. 

Supplementary Materials: Table S1: Root mean square error (RMSE), Akaike’s Information Criterion 
(AIC), and Bayesian Information Criterion (BIC) values for the four methods of analyzing the Moderate 
Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) time-series data from 
2001 to 2014 in Northern China; Table S2 Percentage of partial correlation coefficients between LSP and 
climatic factors; Figure S1. Distribution of meteorological stations across Northern China; red points 
represent stations for temperature and precipitation, and blue triangles represent stations for solar 
radiation; Figure S2. The time lag related to climatic factors for which the highest determination 
coefficients (R2) were obtained between phenophases (SOS (a) and EOS (b) from top to bottom, 
respectively) and climatic factors in Northern China. Tem, Pre and Sad represent mean temperature, total 
precipitation and total solar radiation, respectively; Figure S3: Frequency distribution and the percentages 
of correlations (pixels at p < 0.05, in parentheses) between phenological parameters (SOS and EOS from 
left to right, respectively) and climate factors (temperature, precipitation and solar radiation from up to 
down, respectively) were shown; Figure S4. Climatic factors variation in Northern China from 2001 to 
2015. Tem, mean annual temperature; Pre, annual cumulative precipitation; Rad, annual cumulative solar 
radiation. 
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