Air Pollution Dispersion Modelling Using Spatial Analyses
Abstract
:1. Introduction
1.1. Particulate Pollution
1.2. Land Use Regression Modelling
1.3. Gaussian Dispersion Modelling
1.4. Objectives and Hypothesis
2. Data Sources
2.1. Air Pollution Data
2.2. Pollution Source Data
2.3. Gaussian Model Results
2.4. Land Use Data
3. Methodologies and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PM | Particulate Matter |
LUR | Land Use Regression |
US EPA | United States Environmental Protection Agency |
WHO | World Health Organization |
GIS | Geographic Information Systems |
SAVIAH | Small Area Variations in Air quality and Health |
PAH | Polycyclic Aromatic Hydrocarbons |
CHMI | Czech Hydrometeorological Institute |
EEA | European Environment Agency |
References
- Obroučka, K. Ochrana ovzduší I.: Látky znečišťující ovzduší; VŠB-TU Ostrava: Ostrava, Czech Republic, 2003. [Google Scholar]
- World Health Organisation. Ambient (Outdoor) Air Quality and Health. 2017. Available online: http://www.who.int/mediacentre/factsheets/fs313/en/ (accessed on 12 January 2017).
- United States Environmental Protection Agency. Particulate Matter (PM) Basics. 2017. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 12 January 2017).
- Aus DEE. Australian Government: Department of the Environment and Energy. Particulate Matter (PM10 and PM2.5). 2017. Available online: http://www.npi.gov.au/resource/particulate-matter-pm10-and-pm25 (accessed on 12 January 2017).
- Integrovaný Registr Znečišťování. Polétavý Prach (PM10). 2017. Available online: http://www.irz.cz/node/85 (accessed on 12 January 2017).
- Zajusz-Zubek, E.; Mainka, A.; Korban, Z.; Pastuszka, J.S. Evaluation of highly mobile fraction of trace elements in PM10 collected in Upper Silesia (Poland): Preliminary results. Atmos. Pollut. Res. 2015, 6, 961–968. [Google Scholar] [CrossRef]
- Francová, A.; Chrastný, V.; Šillerová, H.; Vítková, M.; Kocourková, J.; Komárek, M. Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. Environ. Pollut. 2016, 220, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Grynkiewcz-Bylina, B.; Rakwic, B.; Pastuszka, J.S. Assessment of Exposure to Traffic-Related Aerosol and to Particle-Associated PAHs in Gliwice, Poland. Pol. J. Environ. Stud. 2015, 14, 117–123. [Google Scholar]
- Pavlíková, I.; Jančík, P. Metallurgical source-contribution analysis of annual average concentration: A dispersion modeling approach in Moravian-Silesian region. Metalurgija 2013, 52, 497–500. [Google Scholar]
- Zákon, č. 201/2012 Sb., o ochraně ovzduší. In Sbírka Zákonů; 2 May 2012. Available online: https://portal.gov.cz/app/zakony/zakonPar.jsp?idBiblio=77678&nr=201~2F2012&rpp=15#local-content (accessed on 12 January 2017).
- Vyhláška, č. 330/2012 Sb. o způsobu posuzování a vyhodnocení úrovně znečištění, rozsahu informování veřejnosti o úrovni znečištění a při smogových situacích. In Sbírka Zákonů; 8 October 2012. Available online: https://portal.gov.cz/app/zakony/zakonPar.jsp?idBiblio=78340&nr=330~2F2012&rpp=15#local-content (accessed on 12 January 2017).
- Hoek, G.; Beelen, R.; De Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land—Use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Kryza, M.; Szymanowski, M.; Dore, A.J.; Werner, M. Application of a land—Use regression model for calculation of the spatial pattern of annual NOx air concentrations at national scale: A case study for Poland. Procedia Environ. Sci. 2011, 7, 98–103. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Wilhelm, M.; Ritz, B. Use of generalized additive models and cokriging of spatial residuals to improve land—Use regression estimates of nitrogen oxides in Southern California. Atmos. Environ. 2012, 55, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Zíková, N.; Chalupa, D.C.; Rich, D.Q.; Ferro, A.R.; Hopke, P.K. Hourly land-use regression models based on low-cost PM monitor data. Environ. Res. 2018, 167, 7–14. [Google Scholar] [CrossRef]
- Son, Y.; Osornio-Vargas, Á.R.; O’Neill, M.S.; Hystad, P.; Texcalac-Sangrador, J.L.; Ohman-Strickland, P.; Meng, Q.; Schwander, S. Texcalac-Sangrador, Pamela Ohman-Strickland, Qingyu Meng, Stephan Schwander, Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Sci. Total Environ. 2018, 639, 40–48. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Benson, P. CALINE3–A Versatile Dispersion Model for Predicting Air Pollutant Levels Near Highways and Arterial Streets; Technical Report; US EPA: Washington, DC, USA, 1979.
- ADMS. Cambridge Environmental Research Consultants. ADMS-Urban Model. 2017. Available online: http://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html (accessed on 12 January 2017).
- AERMOD. Aermod: Description of Model Formulation. United States Environmental Protection Agency|US EPA. 2014. Available online: https://www3.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf (accessed on 1 January 2018).
- The Copernicus Atmosphere Monitoring Service (CAMS). The Copernicus Atmosphere Monitoring Service. 2018. Available online: http://https://atmosphere.copernicus.eu/ (accessed on 1 January 2018).
- Bubník, J.; Keder, J.; Macoun, J. SYMOS 97—Systém Modelování Stacionárních Zdrojů; Český Hydrometeorologický ústav: Praha, Czech Republic, 1998; ISBN 80-85813-55-6. [Google Scholar]
- Air Silesia. Air Silesia—Výstupy. 2013. Available online: http://www.air-silesia.eu/cz/a1170/V_stupy.html (accessed on 12 January 2017).
- European Environment Agency. Annual Mean Particulate Matter (PM10) 2010, Based on Daily Average with Percentage of Valid Measurements ≥ 75 % in μg/m3. 2013. Available online: http://www.eea.europa.eu/data-and-maps/figures/annual-mean-particulate-matter-pm10 (accessed on 12 January 2017).
- ČHMÚ. Znečištění Ovzduší a Atmosférická Depozice v Datech, Česká Republika 2010. 2011. Available online: http://portal.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2010_enh/cze/index_CZ.html (accessed on 12 January 2017).
- WIOŚ Katowice. Informacje o Stanie środowiska w Województwie śląskim w 2010 roku. 2013. Available online: http://www.katowice.pios.gov.pl/index.php?tekst=monitoring/informacje/stan2010/i (accessed on 12 January 2017).
- European Environment Agency. CORINE Land Cover. 2015. Available online: http://www.eea.europa.eu/publications/COR0-landcover (accessed on 12 January 2017).
- Air TRITIA. Air TRITIA—Interreg Central Europe. 2018. Available online: http://www.interreg-central.eu/Content.Node/AIR-TRITIA.html (accessed on 11 January 2018).
Country | Pollution Sources | No. of Sources | Emissions [t/y] |
---|---|---|---|
Czechia | Industrial | 2025 | 2315 |
Domestic heating | 21824 | 1589 | |
Car traffic | 56057 | 961 | |
Poland | Industrial | 1598 | 13400 |
Domestic heating | 33301 | 8610 | |
Car traffic | 55745 | 911 |
Factor | Identifier | Distances | Weighing | Unit |
---|---|---|---|---|
Emissions from industrial sources | IS | 100, 200, 500, 1000, 2000 | U,W | t/y |
Length of roads | LR | 100, 200, 500, 1000, 2000 | U,W | m |
Average traffic intensity weighted by length of road sections | TI | 100, 200, 500, 1000, 2000 | U,W | car/day |
Emissions from domestic heating | DH | 100, 200, 500, 1000, 2000 | U,W | t/y |
Distance to the nearest road | NR | m | ||
Grass covered land | GCL | 100, 200, 500, 1000, 2000 | U,W | % of area |
Forested land | FL | 100, 200, 500, 1000, 2000 | U,W | % of area |
Built-up land | BL | 100, 200, 500, 1000, 2000 | U,W | % of area |
Open soil | OSL | 100, 200, 500, 1000, 2000 | U,W | % of area |
Pollution from industrial sources | M_IS | μg/m3 |
Pollution from domestic heating | M_DH | μg/m3 |
Pollution from road traffic | M_RT | μg/m3 |
Sum of all sourcesc | M_SUM | μg/m3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitta, J.; Pavlíková, I.; Svozilík, V.; Jančík, P. Air Pollution Dispersion Modelling Using Spatial Analyses. ISPRS Int. J. Geo-Inf. 2018, 7, 489. https://doi.org/10.3390/ijgi7120489
Bitta J, Pavlíková I, Svozilík V, Jančík P. Air Pollution Dispersion Modelling Using Spatial Analyses. ISPRS International Journal of Geo-Information. 2018; 7(12):489. https://doi.org/10.3390/ijgi7120489
Chicago/Turabian StyleBitta, Jan, Irena Pavlíková, Vladislav Svozilík, and Petr Jančík. 2018. "Air Pollution Dispersion Modelling Using Spatial Analyses" ISPRS International Journal of Geo-Information 7, no. 12: 489. https://doi.org/10.3390/ijgi7120489
APA StyleBitta, J., Pavlíková, I., Svozilík, V., & Jančík, P. (2018). Air Pollution Dispersion Modelling Using Spatial Analyses. ISPRS International Journal of Geo-Information, 7(12), 489. https://doi.org/10.3390/ijgi7120489