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Abstract: The reliability of rescue routes is critical for urban emergency logistics during disasters.
However, studies on reliable rescue routing under stochastic networks are still rare. This paper
proposes a multiobjective rescue routing model for urban emergency logistics under travel time
reliability. A hybrid metaheuristic integrating ant colony optimization (ACO) and tabu search (TS)
was designed to solve the model. An experiment optimizing rescue routing plans under a real urban
storm event, was carried out to validate the proposed model. The experimental results showed how
our approach can improve rescue efficiency with high travel time reliability.

Keywords: urban emergency logistics; travel time reliability; rescue route optimization;
a hybrid metaheuristic

1. Introduction

Cities are becoming increasingly vulnerable to all kinds of hazards or events, such as floods and
earthquakes, because of the unpredictable impacts of global climate changes. As a critical aspect of
disaster relief operations, the development of comprehensive and efficient rescue plans for urban
spaces is urgent. The timely and effective mobilization of resources is essential in aiding people who
are vulnerable to natural disasters. However, variations in road travel times under disaster conditions
may render emergency responses ineffective and result in increased uncertainties. Therefore, it is
important to develop strategies for creating reliable emergency rescue plans.

The problem to be addressed in this research is rescue vehicle routing with stochastic link travel
times. Many models and algorithms have been proposed to solve the vehicle routing problem (VRP)
from different perspectives, such as the VRP related to pickup and delivery [1], the multidepot
VRP [2], and the VRP with a time window [3–5]. However, most of them consider the transportation
network to be deterministic. The complex nature of emergencies, as well as the lack of knowledge
of data (e.g., demand, supply, or cost) in such situations, imply uncertainties in rescue vehicle route
optimization. Although some models have been developed for emergency logistics with demand
or supply uncertainty [6], for instance, one study [7] proposed a decision support framework for
addressing emergency routing problems by taking into account both travel time and deadline
uncertainty, the research on travel time/cost uncertainty is relatively insufficient [8]. The lack of
research in this direction may be attributed to the lack of real disaster-related travel time data.
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In view of the above, this study aims to propose a multiobjective rescue routing (MORR) model,
which considers travel time uncertainty for scenarios in which multiple rescue vehicles are dispatched
to multiple destinations. Travel time uncertainty will be estimated based on real data. The reliability of
travel time is defined as the frequency of successful trips made within a desired time interval [9–11].
Determining the α-reliable path requires finding a reliable path with the minimum travel time budget,
such that the probability that the path travel time is less than or equal to the travel time budget, which is
greater than or equal to α [9]. The α-reliable path is used to guarantee reliability, with a confidence
level α, in a stochastic transportation environment.

The objectives of the proposed model are to minimize the sum of the travel time budgets of all
rescue vehicles and the maximum travel time budget of an individual rescue vehicle with a certain
reliable arrival probability, α. A hybrid metaheuristic integrating ant colony algorithm (ACO) and
tabu search (TS) is proposed to solve this routing model. An experiment on optimizing rescue routing
plans for an urban storm flooding disaster will be carried out to validate the proposed model.

The rest of this paper is organized as follows. The next section presents a brief literature
review. Section 3 defines travel time reliability, the bi-level rescue network, and the rescue vehicle
routing problem. A multiobjective optimization model and a hybrid metaheuristic are presented in
Section 4. Section 5 introduces the study area and data used. Section 6 analyzes the results of the
computational experiments and discusses the sensitivities of the travel time budget of routing plans
for different on-time arrival probabilities. The final section provides concluding remarks and future
research directions.

2. Literature Review

In recent years, there have been many studies on disaster relief logistics. These studies mainly
fall into one of four categories: facility location, inventory management, relief supply collaboration,
and network flow problems [8,12]. For network flow problems, many studies have been conducted to
achieve rescue path optimization during an emergency response [13–23]. In general, these studies have
focused on how to develop suitable mathematical models and algorithms to derive optimal solutions
regarding minimum travel time or cost. Transportation networks are considered to be deterministic
in most studies. For instance, in the research of [20], a robust methodology for the dispatching and
routing of emergency vehicles in a post-disaster environment was proposed, and the traversal speed
of each road segment was estimated using a linear function of the expected level of damage of this
road. According to Wang et al. [21], route-traveling time is dependent on the length of the route and
the normal or maximum velocity associated with a vehicle. These studies considered time-dependent
or damage-level-related travel time, but the uncertainties related to disasters were neglected.

Research on the uncertainties of emergency logistics is mainly related to demand or supply
uncertainty [6]. Different models have been developed for emergency logistics preparation planning
under demand uncertainty [16,24,25]. For instance, Mete and Zabinsky [25] presented a two-stage
stochastic programming model for the warehouse selection and storage of medical supplies in the
case of demand uncertainty. All sources of uncertainty (demand/supply/cost) can also be integrated
into a multiobjective stochastic programming model to determine the location of relief distribution
centers, the required inventory quantities for each type of relief item in storage, and the amount
of transportation from relief distribution centers to affected areas [18]. However, research on travel
time/cost uncertainty is relatively insufficient [8]. Although the study in [7] proposed a decision
support framework for addressing emergency routing problems, taking into account both travel time
and deadline uncertainty, the travel time uncertainty was assigned with different levels according to
the author’s experience.

Some studies have focused on the shortest path calculation between an origin–destination
pair, while considering travel time uncertainty [26–28]. Miao et al. [26] proposed a reliable route
searching method in an uncertain network, with the uncertainty of the road network travel time being
depicted by means of a disaster scenario union. Zhang and Kong [27] built a route choice model by
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considering travel time reliability, road disruption risk, and complexity. Lu and Sheu [28] proposed
a model for minimizing the worst-case deviation in the maximum travel time between urgent relief
distribution centers and relief stations. Due to random link capacity degradations, travel times are
highly stochastic [29]. Travel times were thus viewed as random variables, and followed a probability
distribution, for example an exponential, normal, or lognormal distribution [30]. Algorithms have
been proposed to find reliable shortest paths or most reliable paths between an origin–destination pair
by assuming travel times following a normal or lognormal distribution [9,31]. However, these cannot
be easily applied to rescue vehicle routing in the case of multiple destinations (affected areas).

The problem in this research is the rescue vehicle routing problem with stochastic link travel
times, which is a variant of the VRP. As a non-deterministic polynomial-time hard (NP-hard) problem,
the VRP has been studied for decades, and many algorithms have been proposed to solve it [32–38].
Among the approaches proposed in the literature, metaheuristics are considered to be efficient and
effective state-of-the-art methods. One of the most studied metaheuristic algorithms for vehicle
routing problems is ACO [33]. ACO has some advantages, including its ability to explore a solution
space [34,35], while it is prone to fall into local optima. TS is another widely used metaheuristic.
There are some examples of TS for vehicle routing problems [36,37]. TS starts from a certain initial
solution and applies short- or long-term memory to escape from local optima [30]. The quality of the
initial solution is of vital importance for the efficiency of TS. Therefore, ACO and TS will be integrated
to improve the quality of solutions and the convergence speed [38].

3. The Rescue Routing Problem

3.1. Problem Definition

In this study, we assume that multiple areas are affected by a disaster simultaneously. Since the
capacity of a rescue vehicle is limited, multiple rescue vehicles are required to leave the warehouse at
the same time to provide rescue services (e.g., to provide medical assistance to injured individuals)
to each affected area. When a rescue vehicle arrives at one affected area, it unloads a set of rescue
facilities and several rescue personnel and then leaves for another affected area. Our aim is to plan the
best routes for the rescue task; therefore, the return routes of the rescue vehicles from the last affected
area to the warehouse are not considered in this study. Before establishing the mathematical model,
we first propose the following assumptions:

(1) There is only one warehouse in the study area.
(2) All the rescue vehicles should set out from the warehouse only.
(3) One rescue vehicle can provide rescue services to only one affected area once.
(4) The duration of unloading of the facilities of a rescue vehicle at each affected area is ignored

because it is much shorter than the rescue route travel time within a large-scale road network.
(5) The return routes of rescue vehicles are not considered.
(6) The travel time along each road is a stochastic variable.

3.2. Travel Time Reliability

Since road travel times within an urban road network are highly stochastic, the transportation
network in this study is defined as a directed stochastic graph G(N, A), where N is the set of road
nodes and A is the set of road links connecting two nodes. In a stochastic G(N, A), for each node i in
N, there is a directed successor node set, SCN(i) = {j : aij ∈ A}, and a directed predecessor node set,
PRN(i) = {k : aki ∈ A}. In addition, we assume that each link, aij ∈ A, has a random travel time, Tij,
with a given probability density function (PDF). The mean value and standard deviation are identified
as µij and σij, respectively. The distribution of link travel times was quantified for the road network in
this study using empirical data (see Section 4), and it was found that a lognormal distribution was
more representative of roadway travel times than a normal distribution. This result is also in line



ISPRS Int. J. Geo-Inf. 2018, 7, 77 4 of 21

with the research of Srinivasan et al. [31] and Rakha et al. [39]. Therefore, this research assumes that
the travel time of each link follows a lognormal distribution. Then, the mathematical formula of the
random travel time of each link, (Tij), and the probability density function (PDF) corresponding to it
can be defined as follows [40]:

ln Tij ∼ N(µij, σ2
ij) (1)

f(Tij;µij,σ
2
ij) =

1
Tijσij

√
2π

e−(ln Tij−µij)
2/2σ2

ij (2)

Subsequently, the travel time, Trs, corresponding to the path, Prs, can be written as:

Trs = ∑
aij∈A

Tijzrs
ij (3)

where nodes r and s represent an origin–destination pair of path, Prs, with r ∈ N and s ∈ N. zrs
ij is

defined as:

zrs
ij =

{
1 if arc aij on path Prs

0 else
(4)

Trs is also a random variable, and its distribution is the joint PDF of all link travel times along
the path. In this study, it is assumed that all link travel times (T12, . . . , Tij, . . . ) are statistically
independent. The correlations between link travel times are omitted in this study for simplicity.
This common assumption has been used in previous studies [9,39]. The mean value, µrs, and standard
deviation, σrs, of Trs are estimated by Wilkinson’s approach [31,34]:

e(µ
rs+ 1

2 σrs2
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)e(σ
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2
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Then, µrs and σrs can be calculated as follows:

µrs = ln[ ∑
aij∈A

zrs
ij e(µij+

σ2
ij
2 )]− (σrs)2

2
(7)

(σrs)2 = ln[

∑
aij∈A

zrs
ij e2µij+σ2

ij(eσ2
ij − 1)

( ∑
aij∈A

zrs
ij eµij+

σ2
ij
2 )

2 + 1] (8)

3.3. Bi-Level Transportation Network Representation

This study presents a bi-level transportation network structure to guarantee that each disaster
point can be visited by one rescue vehicle. The abovementioned G(N, A) is the lower-level network,
which is the actual transportation network (Figure 1a). The upper-level network is a VRP network
defined as VRP_G(VRP_N, VRP_A) (Figure 1c), where VRP_N is a set of nodes representing the
warehouse and disaster points and VRP_A is a set of links representing the virtual connections
between each node in VRP_N. If there exists a path from a VRP node x to another VRP node y,
then there is a VRP link (x, y), and vice versa. As shown in Figure 1b, there are several feasible paths
between VRP nodes b and c in the lower-level transportation network. Therefore, there is a link from
VRP node b to c in the upper-level VRP_G in Figure 1c.
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Since the lower-level network G(N, A) is a stochastic network, the upper-level VRP network
VRP_G(VRP_N, VRP_A) is stochastic as well, and the mean and variance values of the travel time of
each VRP link can be calculated using Equations (7) and (8), respectively. For a given on-time arrival
probability, α, the mean and variance values of the travel time of VRP link (x, y) are considered as
those of the reliable shortest path from VRP node x to y under probability α.
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Figure 1. Example of bi-level rescue network.

3.4. α-Reliable Rescue Route

Since the actual travel time of rescue vehicles depends on the distance between the warehouse
and disaster points and on the congestion level within the traffic network, decision makers or route
planners cannot determine the travel time budgets of vehicles prior to their trips. The concept of
an α-reliable path has been used in many pretrip planning systems to reflect travelers’ desired risk
attitudes towards travel time uncertainty [9]. This study uses the concept of an α-reliable path to help
decision makers evaluate the probability of on-time arrival for a rescue mission.

3.4.1. α-Reliable Path

For VRP nodes r and s, the α-reliable path from r to s can be defined with respect to a prespecified
on-time arrival probability α. Chen et al. [9] provided a detailed definition of this in their research.
Equation (9) guarantees that the probability that the travel time is smaller than a predicable value
will be greater than a confidence level α. Equation (10) ensures that the links on the α-reliable path
are feasible.

Pr( ∑
(i,j)∈Prs

Tijzrs
ij ≤ T) ≥ α (9)

∑
j∈SCN(i)

zrs
ij − ∑

k∈PRN(i)
zrs

ji =


1 i = r
0 i 6= r; i 6= s
−1 i = s

(10)

The problem of obtaining a reliable path that can fulfill all the constraints above is actually
a problem of solving the inverse function of the cumulative distribution function (CDF) of a path’s
travel time. The inverse function of the CDF is defined here as Φ−1

Trs(·). Therefore, the travel time of the
reliable path from VRP node r to s, based on the α-reliable path, Trs(α), can be defined as follows:

Trs(α) = Φ−1
Trs(α) = CDF−1(trs, σrs, α) (11)
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3.4.2. α-Reliable Rescue Route

The α-reliable rescue route in this study is an open route from the warehouse to other disaster
points. As shown in Figure 2, there are three open rescue routes, denoted as r1 {a, d}, r2 {a, b, e},
and r3 {a, c}, where a is the warehouse and b, c, d, and e are disaster points. The travel times of r1, r2,
and r3 with an on-time arrival probability, α, are also indicated in Figure 2. The paths between the
warehouse, a, and other disaster points or the paths between disaster points, such as p1 {a, 1, 5, b} and
p2 {b, 7, 8, 9, e}, are the α-reliable rescue paths defined above.
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Figure 2. Example of α-reliable rescue routes from warehouse to affected areas.

3.5. Mathematical Formulation of the MORR

Under the foregoing assumptions, the rescue routing problem in this study can be described
as follows. In a transportation network with many affected areas, the travel time along each path is
stochastic. A fleet of rescue vehicles will travel from a warehouse to the affected areas to facilitate the
distribution of relief supplies and rescue. The minimization of the travel time budget of all rescue
vehicles under a high reliable arrival probability is one objective of this study. To avoid imbalance of
the travel time budget of each rescue vehicle, the minimization of the maximum travel time budget of
an individual rescue vehicle is the other objective. The multiobjective model for solving the rescue
routing problem is as follows. Table 1 presents a list of the mathematical annotations used in the
proposed model.

Table 1. List of mathematical annotations used in the proposed model.

Notation Explanation Notation Explanation

R objective function Tod
k (α)

travel time budget of rescue vehicle
k from VRP node o to d under
reliable arrival probability α

F1
sum of travel time budgets

of all rescue vehicles w1, w2 weights of F1 and F2

F2

maximum travel time
budget of an individual

rescue vehicle
xrsk

decision variables; 1 indicates that
vehicle k travels from VRP node r to

s (0 otherwise)

F = {0, 1, 2, . . . , n}
set of numbered affected

areas (VRP nodes); 0 denotes
the warehouse

yrk

decision variables; 1 indicates that
vehicle k visits VRP node r

(0 otherwise)

P = {1, 2, . . . , m} set of rescue vehicles Ck loading capacity of a rescue vehicle

min R = min(w1 × F1 + w2 × F2) (12)
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F1 =
m

∑
k=1

Tod
k (α) =

m

∑
k=1

n

∑
r=0

n

∑
s=1

Trs(α)xrsk (13)

F2 = maxTod
k (α) = max

n

∑
r=0

n

∑
s=1

Trs(α)xrsk (14)

Constraints:

yrk =
s=n

∑
s=1;r 6=s

xrsk, ∀r ∈ F, k ∈ P (15)

k=m

∑
k=1

yrk = 1, ∀r ∈ F (16)

n

∑
r=1

xr0k = 0, ∀k ∈ P (17)

n

∑
s=1

x0sk ≤ 1, ∀k ∈ P (18)

n

∑
r=0

xruk =
n

∑
s=0

xusk, ∀u = 1, 2, . . . , n; ∀k ∈ P (19)

1 ≤
r=n

∑
r=1

yrk ≤ Ck, ∀k ∈ P (20)

(r, s) ∈ VRP_A, o = 0, ∀d = 1, 2, . . . , n (21)

The objective function, R, is a linear combination of F1 and F2, which are two objective functions
used to minimize the sum of the travel time budgets of all rescue vehicles and the maximum
travel time budget of an individual rescue vehicle with a certain reliable arrival probability, α,
respectively. Constraints (15) and (16) ensure that each affected area can be visited by only one vehicle.
Constraints (17) and (18) ensure that each rescue path from the warehouse can only be accessible by
one vehicle and that the vehicle does not need to return to the warehouse after completing the rescue
task. Constraint (19) ensures the continuity of each rescue path. Constraint (20) states that each rescue
vehicle, k, should participate in the mission and never patrol more than Ck affected areas, where Ck is
the loading capacity of a rescue vehicle.

4. The Hybrid Metaheuristic for Solving the MORR Problem

4.1. An Overview of the Proposed Hybrid Metaheuristic

To solve the MORR problem in this study, a hybrid metaheuristic integrating ACO and TS
(ACO-TS) is proposed. ACO algorithms have some advantages in solving combinatorial optimization
problems because of the effective exploration ability of ants [34,35], while they are prone to fall
into local optima. Tabu search is an iterative local search algorithm that starts from a certain initial
solution and applies short- or long-term memory to escape from local optima [41]. The initial solution
is significant for the tabu search approach. Therefore, ant colony optimization and tabu search are
integrated in this study to increase the solution quality and improve the convergence speed.

The ACO-TS comprises two parts, namely, global search and local search. To obtain a preferable
initial solution, ACO is adopted in the global search. Subsequently, based on the initial solution, the TS
algorithm is utilized in the local search to improve the global optimization ability of the proposed
hybrid metaheuristic. An overview of the ACO-TS is shown in Figure 3.



ISPRS Int. J. Geo-Inf. 2018, 7, 77 8 of 21

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  8 of 22 

 

The ACO-TS comprises two parts, namely, global search and local search. To obtain a preferable 
initial solution, ACO is adopted in the global search. Subsequently, based on the initial solution, the 
TS algorithm is utilized in the local search to improve the global optimization ability of the proposed 
hybrid metaheuristic. An overview of the ACO-TS is shown in Figure 3. 

 
Figure 3. Overview of the hybrid optimization algorithm. 

4.2. Main Steps of the ACO-TS Algorithm 

This section describes only the most important modifications made to the original ACO and TS 
algorithms. For details regarding ACO and TS, please refer to [41,42], respectively. We will not repeat 
the basic descriptions of these two algorithms. 

4.2.1. Global Search Using the ACO Algorithm (Step 3) 

In this study, we utilize the ACO algorithm for global search. The problem can be described as 
follows: ant e leaves the warehouse or an affected area, r, calculates state transition probability, ܲ௦  ,(ݐ)
according to pheromone concentration and heuristic information, then chooses the next affected area, s.  









∉

= 
∉

else                     0   

 if    
)()(

)()(

)(
e

tabuk
rsrs

rsrs

e
rs

tabuk
tt

tt

tP
e

βδ

βδ

ητ
ητ

 (22) 

rsrs t/1=η  (23) 

)(min 1 α−Φ= rs
uTrst  (24) 

GVRPsr _, ∈  (25) 

Figure 3. Overview of the hybrid optimization algorithm.

4.2. Main Steps of the ACO-TS Algorithm

This section describes only the most important modifications made to the original ACO and TS
algorithms. For details regarding ACO and TS, please refer to [41,42], respectively. We will not repeat
the basic descriptions of these two algorithms.

4.2.1. Global Search Using the ACO Algorithm (Step 3)

In this study, we utilize the ACO algorithm for global search. The problem can be described as
follows: ant e leaves the warehouse or an affected area, r, calculates state transition probability, Pe

rs(t),
according to pheromone concentration and heuristic information, then chooses the next affected area, s.

Pe
rs(t) =


τrs(t)

δηrs(t)
β

∑
k/∈tabue

τrs(t)
δηrs(t)

β if k /∈ tabue

0 else
(22)

ηrs = 1/trs (23)

trs = minΦ−1
Trs

u
(α) (24)

r, s ∈ VRP_G (25)

In the formulas above, τrs(t) is the amount of pheromone on the VRP link (r, s) at time, t; ηrs is the
inverse of edge weight, trs; δ is the pheromone heuristic factor; and β is the visibility heuristic factor.
tabue is the tabu list, recording the disaster areas that ant e has visited.

Since there are several feasible paths from VRP node r to s in the lower-level network G(N, A),
trs is considered here as the travel time budget of the reliable shortest path from VRP node r to s under
on-time arrival probability, α. The reliable shortest path problem is non-additive, and the travel time
of a path cannot simply be described as the sum of the travel times of relative links; thus, traditional
methods for computing the shortest path, such as Dijkstra’s algorithm, are unsuitable for this scenario.
In this study, the reliable shortest path between two VRP nodes and its corresponding travel time
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are calculated using the multicriteria label-setting algorithm proposed by Chen et al. [9]. Once the
number of visited disaster areas exceeds the capacity of a rescue vehicle, ant e starts a new route from
the warehouse again until all disaster areas are visited. All visited nodes are added to the tabu list, and
a solution, Se, is generated. Se contains m rescue open routes, where m is the number of rescue vehicles.
Accordingly, when all ants finish their tours, a solution set is obtained.

4.2.2. Evaluation Function (Step 4)

In this step, the performance of each solution, Se, is evaluated. The evaluation function
(Equation (12)) is an objective function that involves minimizing both the sum of the travel times
of all rescue vehicles and the maximum travel time of an individual rescue vehicle with an arrival
probability, α. The travel time budget of a solution, Se, is obtained as follows.

Step 1. Calculate the mean value, µrs, and the standard deviation, σir, of VRP link (r, s). Each VRP
link (r, s) belonging to Se contains several links in the lower-level network G(N, A). According to
the assumption in Section 3.2, the travel times of these links are statistically independent. Therefore,
the mean value, µrs, and the standard deviation, σrs, of the travel times of VRP link (r, s) can be
calculated by Equations (7) and (8).

Step 2. Calculate the travel time budget for each open route in Se, and find the longest travel
time budget of an individual rescue vehicle, tmax. An open route consists of a set of VRP links, and the
mean value, µrs, and the standard deviation, σrs, for VRP link (r, s) are obtained in Step 1. Then,
the travel time budget of an open route with a reliable arrival probability, α, can be calculated by
Equation (11). By comparing the travel time budgets of all open routes in Se, the longest travel time
budget of an individual rescue vehicle, tmax, can be obtained.

Step 3. Calculate the sum of the travel time budgets (tall) of all open routes in Se. The mean value,
µrs, and the standard deviation, σrs, for each VRP link (r, s) in Se have already been calculated in Step
1, so the travel time budget of all open routes (tall) in Se with a reliable arrival probability, α, can also
be calculated by Equation (11).

The result of the evaluation function can be written as w1 × tall + w2 × tmax. The solution Routebest(t)
is the best solution of the global search procedure and is delivered to the local search procedure for
further optimization.

4.2.3. Local Search Using TS (Step 5)

TS is utilized to update the best solutions. It optimizes solutions using two neighborhood
operators: the 2-opt operator and the 1-1 exchange operator (Figure 4). These two neighborhood
operators are widely used in many local search algorithms [43].ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  10 of 22 
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2-opt operator

For the case of two open routes (e.g., r1, r2), disconnect them at some place (e.g., node b along r1
and node j along r2). Then, the remaining links after node b along r1 are swapped with the remaining
links after node j along r2.

1-1 exchange operator

Regarding two open routes (e.g., r1, r2), node b and node j are swapped between r1 and r2.
In each iteration, the 2-opt operator is executed first, followed by the 1-1 exchange operator.

This process is repeated n times in each iteration, where n is the number of affected areas. Each affected
area is therefore processed using all improvement operators. The move from the current solution, Se,
to the neighborhood solution, Se’, is recorded in the tabu list to prevent cycling. The length of the
tabu list is L. The aspiration criterion is used to determine when the tabu restriction can be overridden.
If a move in the tabu list reappears but the new route is better than any solution found before, then the
new solution will still be accepted.

4.2.4. Update Pheromone Concentration (Step 6)

The pheromone will be updated after all the ants complete their tours and can be formulated as:

τrs(t + 1) = τrs(t)(1− ρ) + ∆τrs (26)

∆τrs = ∑
k

Q
R

vkrs (27)

vkrs =

{
1 if ant k passes VRP link (r, s)
0 else

(28)

where vkrs indicates whether ant k passes the VRP link (r, s); Q is the total amount of pheromone; and R
denotes the value of the objective function. τrs(t + 1) is the pheromone remaining on the VRP link (r, s)
after t + 1 iterations; ∆τrs is the pheromone increment on the VRP link (r, s); and ρ is the pheromone
evaporation factor (ρ ∈ [0, 1]).

4.3. Pseudocode of the Algorithm

The pseudocode of the proposed ACO-TS algorithm is summarized as follows.

Notations:

Routebest(i): the best solution at current iteration i
Iant: the maximum number of iterations of ACO
Nant: the number of ants
Itabu: the maximum number of iterations of TS
n: the number of VRP nodes
S*: the final best solution

As shown in the pseudocode, the proposed ACO-TS has the same time complexity as ACO.
Lines 3 to 6 correspond to the solution construction and evaluation procedure, the time complexity
of which is O (Nant × n), where n is the number of VRP nodes. Lines 7 to 15 correspond to the TS
procedure, the complexity of which is O (Itabu × n). Nant and Itabu are the parameters. Integrating TS
into ACO does not increase the time complexity of ACO, but the global convergence speed of ACO
can be improved.
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Algorithm (ACO-TS)

1 Input the road network and initialize parameters
2 For generation i = 1 . . . , Iant

3 For ant e = 1, . . . , Nant

4 Visit all VRP nodes and obtain a solution
5 End for
6 Evaluate and obtain the current best solution Routebest(i)
7 While j <= Itabu
8 For k = 1, . . . , n
9 Perform local search operators using 2-opt and 1-1 exchange moves
10 Check the aspiration criteria
11 Update Routebest(i) and update the tabu list
12 End for
13 Increment j by 1
14 Check the end condition of tabu search
15 End while
16 Update the pheromone concentration
17 Update S* if there is an improvement
18 Check the end condition of the ACO algorithm
19 End for
20 Return the best solution S*

5. Study Area and Data Description

With the acceleration of global change and urbanization, urban storm flooding disasters caused by
continuous heavy rain have become more and more frequent in some metropolises [44–46]. Water on
road surfaces will greatly affect traffic along these roads. In severe circumstances, vehicles can become
stranded on some roads because the water depth exceeds the safety threshold of vehicles. Traffic
along these roads is cut off by water, causing serious traffic congestion on adjacent roads. Hence, it is
important to develop reliable route plans for rescuing stranded vehicles.

The study area of this research is the central urban district of Guangzhou city. It is located in
southern China and has abundant rainfall during the summer, which can easily lead to serious urban
storm flooding disasters. Once this kind of disaster occurs, people and vehicles stranded in flooded
areas should be rescued as quickly as possible. According to the Guangzhou Water Affair Annual White
Paper released in 2013 [47], three flood rescue teams were set up in Guangzhou, and one warehouse
containing specialized rescue equipment was established. The transportation network comprised 791
road segments and 690 road nodes.

We used the urban flooding disaster that occurred on 14–15 August 2013, as an example to verify
the effectiveness and applicability of the proposed MORR model and algorithms. The urban rainstorms
caused by Typhoon Utor resulted in dozens of flooded areas. The exact locations of the 10 most severely
submerged flooded areas and the warehouse are shown in Figure 5, where flooded areas are denoted
by their IDs.

The stochastic travel times of the roads in this study were derived from the GPS-enabled tracking
data of taxis. With the rapid development of information technology, city-wide data from global
positioning system (GPS) receivers equipped on taxis have been collected and made available. This data
has been widely applied in traffic status analyses [47,48]. Travel time variations can be measured using
taxi-enabled GPS tracking data for travel time estimation. On the other hand, large-scale GPS tracking
data can cover a city-wide traffic network, which can support research on emergency logistics by
providing real data related to real road networks. The GPS data used in this study came from the
Guangzhou Commission of Transport, a municipal administration governing the operation of taxis,
buses, and other types of road transportation. The data covered all the taxi companies in Guangzhou.
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The GPS-enabled taxi data included records of the license plate number, latitude, longitude, speed,
and status of the taxis, taken every 20 s. This research used GPS-enabled taxi data from 14–15 August
2013, for the analysis.
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To measure the travel time along road segments of varying lengths, minute/km was adopted as
the unit. The average travel time was calculated at intervals of 10 min. Before computing the mean and
variance values of each road segment, we fitted the distribution of the samples extracted using a simple
random sampling method with both a lognormal distribution and a normal distribution. The fitting
results are shown in Figure 6. From the comparison of the R-squared and reduced chi-square values,
it can be inferred that the lognormal distribution model was superior to the normal distribution model,
in this study.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  13 of 22 
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6. Experiment and Results

To evaluate the rescue performance of the proposed model under uncertain traffic conditions,
three problems were defined for comparison (Table 2).

Problem S1: The objective was to minimize the average travel time (ATT) of rescue paths under
a deterministic network (DN), with the road travel time as the weight.

Problem S2: The objective was to minimize the travel time budget (TTB) of rescue paths with
an on-time arrival probability, α, under a stochastic network (SN).

Problem S3: The objective was to minimize the TTB of all rescue paths, as well as the maximum
TTB of an individual rescue vehicle (Max-TTB) with an on-time arrival probability, α. This is
a multiobjective optimization, performed to balance the time costs of different rescue paths.

As defined above, Problem S1 represents the traditional approach, which ignores travel time
uncertainty. Problem S2 represents the optimal rescue routing plan under a stochastic network.
Problem S3 aims to balance the time budgets of different rescue routes.

Table 2. Definitions of the three problems.

Problems
Network Conditions Optimization Objectives

DN SN ATT TTB Max-TTB

S1 Y N Y N N
S2 N Y N Y N
S3 N Y N Y Y

The upper-level VRP network was first built, before rescue route planning. The average travel
times between the warehouse and the 10 flooded areas are shown in Table 3. The ID of the warehouse
is 0, and the IDs of the flooded areas range from 1 to 10. In addition, the travel time budgets between
the warehouse and flooded areas are presented in Table 4. The budgets were calculated by using the
multicriteria label-setting algorithm mentioned in Section 4.2, with an on-time probability of α = 0.9,
which is a high probability used to guarantee that rescue vehicles will arrive at the flooding points
on time. As shown in Tables 3 and 4, the average travel times were less than the travel time budgets
for each VRP node pair, which implies that the fastest paths are not always reliable if the stochastic
characteristics of the transportation network are considered.

Table 3. Average travel times between the warehouse and flooded areas (minute).

ID 0 1 2 3 4 5 6 7 8 9 10

0 0.00 3.54 8.19 19.44 30.70 21.65 8.23 51.41 18.17 13.12 16.33
1 3.95 0.00 8.40 15.90 27.16 18.10 4.69 47.87 14.62 12.62 12.79
2 8.18 7.99 0.00 16.99 23.39 14.34 5.54 44.10 10.86 6.64 15.00
3 20.02 16.07 17.25 0.00 21.33 14.25 12.57 42.03 8.79 19.25 3.11
4 32.30 28.35 24.80 22.00 0.00 13.31 23.48 31.18 13.93 25.82 21.58
5 21.83 17.88 14.33 13.14 13.08 0.00 13.01 35.66 5.06 15.35 12.72
6 8.82 4.87 5.93 13.05 22.47 13.42 0.00 43.18 9.94 7.93 9.46
7 42.33 38.37 34.83 32.03 17.84 25.62 33.51 0.00 23.95 35.84 31.61
8 18.39 14.44 10.89 8.08 12.54 5.46 9.57 33.24 0.00 12.89 7.66
9 11.86 11.68 8.20 18.33 23.90 14.07 6.88 44.61 12.20 0.00 16.34

10 16.92 12.97 15.40 3.58 21.38 14.31 9.46 42.09 8.85 17.40 0.00
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Table 4. Travel time budgets between the warehouse and flooded areas with on-time probability
α = 0.9 (min).

ID 0 1 2 3 4 5 6 7 8 9 10

0 0.00 6.19 15.15 25.51 39.12 28.58 12.49 62.18 24.77 17.96 22.15
1 6.65 0.00 12.30 21.06 34.86 24.21 7.73 58.00 20.39 17.67 17.66
2 15.12 11.99 0.00 19.31 27.28 16.29 5.49 50.63 12.41 9.10 17.45
3 26.46 21.61 19.67 0.00 27.59 19.08 17.39 50.99 12.61 24.96 5.19
4 40.91 36.22 28.93 28.72 0.00 18.10 30.51 38.95 19.38 32.97 28.26
5 28.50 23.70 16.07 17.73 17.81 0.00 17.76 43.62 7.53 20.19 17.26
6 13.09 7.90 6.02 17.85 29.32 18.45 0.00 52.59 14.59 11.70 13.50
7 52.12 47.49 40.38 40.24 22.19 32.65 41.91 0.00 31.05 44.39 39.78
8 24.88 20.07 12.40 11.78 17.19 8.10 14.11 40.94 0.00 17.78 11.30
9 16.12 16.09 8.66 23.89 30.63 18.82 10.49 54.01 17.07 0.00 22.03

10 22.83 17.92 18.01 5.81 27.69 19.18 13.62 51.09 12.71 23.30 0.00

There are several main parameters in the proposed ACO-TS: δ, β, $ for ACO, and L (the length of
the tabu list) for the TS algorithm. These can affect the algorithm’s ability to find optimization solutions
and its convergence speed. Previous literature suggests some empirical values or value ranges for
these parameters [35,38]. We looped through the ACO-TS with different parameter combinations
to find the optimal value. In these iterations, the values of δ and β were increased from 0 to 2 by
increments of 0.2. The value of $ was increased from 0.6 to 0.9 by increments of 0.1. The value of L was
increased from 1 to 10 by increments of 1. Table 5 lists the parameters used in the proposed ACO-TS.
The capacity of each rescue vehicle, that is, C in Formula (20), was set to 4, which meant that, in this
study, a maximum of 4 sets of rescue equipment were loaded onto each vehicle.

Table 5. Parameters used in the proposed algorithms.

Parameter S1 S2 S3

Iant 100 50 50
Itabu 100 50 50
Nant 50 50 50

δ 1 1 1
B 1 1 0.8
P 0.9 0.9 0.9
Q 15 15 10
L 5 5 5

w1 — 1 1
w2 — 0 1

We first compared the routing results of the proposed ACO-TS with those of the VRP tool in the
ArcGIS Network Analyst module to verify the efficiency of our proposed method. The VRP tool is
based on tabu search metaheuristics. As a classical indicator, the total length of the routes was used for
comparison. As shown in Table 6, the total length of the routes of the ACO-TS was 52.62 km, which was
less than that of the classical VRP tool in the ArcGIS Network Analyst module. This comparison
demonstrates the technical strength of the proposed ACO-TS.

Figure 7 illustrates the optimization of R via the iteration process in problem S3. In each iteration,
the objective value was optimized via ACO first, then the candidate solutions were optimized again
using the tabu search strategy with neighbor search operators. The differences between the objective
values obtained via ACO and TS indicated that the integration of ACO and TS improved the efficiency
and capability of optimization.
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Table 6. Rescue route performances of the ACO-TS and the ArcGIS VRP tool.

Open Route No.
ACO-TS ArcGIS VRP Tool

Open Routes Length (km) Open Routes Length (km)

0 0-1-10-3 12.31 0-1-6-10-3 15.02
1 0-9-2-6 12.15 0-2-9 10.52
2 0-8-5-4-7 28.16 0-8-5-4-7 28.16

Sum —— 52.62 —— 53.70
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The routing plans (and their performances) of the three problems (S1, S2, and S3) are compared
in Table 7 to show the significance of considering travel time reliability when planning rescue routes.
The details of the open routes, the length, the ATT, the TTB, and the mean and variance values of the
open routes of S1, S2, and S3 are listed and compared. There were three open routes in each problem,
and each open route was for a rescue team. We numbered the open route covering four flooded areas
as 0 and the other two open routes covering three flooded areas as 1 and 2.

In Table 7, the ATTs of the three open routes of S1 are 64.84 min, 18.58 min, and 19.56 min.
According to the mean, µ, and variance, δ, values of each open route, the actual on-time arrival
probability of each open route can be calculated as 0.47, 0.13 and 0.14, respectively. On the other hand,
the sum of the TTBs of these three open routes reached 137.36 min when the on-time arrival probability
was 0.9, a value that was 34.38 min greater than the ATT value. The results quantitatively indicated
that the planned routes in S1 were uncertain.

Regarding the values of the open route length, ATT and TTB, we found that the differences in
sums of the open route length and ATT between S2 and S1 were very small, while the sum of the
TTBs of S2 were reduced by 14.8% when compared to that of S1. This result shows that the proposed
model can find rescue routes with a high on-time arrival probability that have the almost shortest
route length and average travel time. Note that the differences in the TTBs among the open routes of
S2 were still very large. In S2, the TTB of open route 1 was 71.28 min, while the TTBs of open routes
2 and 3 were only 21.80 min and 23.99 min, respectively. This result implies that flooded area 7 will
wait at least 71.28 min before being visited. In S3, since the maximum TTB of the open routes was also
minimized, the TTB of each open route was more balanced. The TTBs of open routes 0, 1, and 2 in S3
were 49.27 min, 56.41 min, and 23.99 min, respectively. The flooded area with the longest waiting time
was also area 7, but its waiting time was reduced to 56.41 min.
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Table 7. Rescue routing plan performance for S1, S2, and S3.

Problem Open Route No. Open Routes Length (km) ATT (min) TTB (α = 0.9) µ (min/km) σ

S1

0 0→8→5→4→7 31.57 64.84 86.58 4.19 0.212
1 0→1→2→9 10.68 18.58 24.72 2.96 0.191
2 0→6→10→3 13.15 19.56 26.06 3.18 0.193

Sum —— 55.40 102.98 137.36 —— ——

S2

0 0→8→5→4→7 29.03 67.33 71.28 4.22 0.033
1 0→6→2→9 11.49 17.76 21.80 2.93 0.120
2 0→1→10→3 12.71 19.91 23.99 3.05 0.102

Sum —— 53.23 105.00 117.07 —— ——

S3

0 0→2→9→5→4 23.71 44.08 49.27 3.83 0.050
1 0→6→8→7 24.26 51.40 56.41 3.98 0.039
2 0→1→10→3 12.71 19.91 23.99 3.05 0.102

Sum —— 60.68 115.39 129.67 —— ——

The rescue routes of S1 and S2 are displayed on the road networks in Figure 8a,b, respectively.
The three open routes all started from the warehouse, then covered different flooded areas. For S1,
the flooded area coverage sequence of open route 0 was 0→8→5→4→7, that of open route 1 was
0→1→2→9, and that of open route 2 was 0→6→10→3. For S2, the flooded area coverage sequence of
open route 0 was also 0→8→5→4→7, that of open route 1 was 0→6→2→9, and that of open route
2 was 0→1→10→3. It should be noted that although the flooded area coverage sequence of the first
open routes of S1 and S2 were the same, the path details were different between flooded areas 4 and 7.
The routes of S2 serve as good guides for rescue vehicles transporting equipment along the fastest
paths under a very high on-time arrival reliability (α = 0.9). For S3, the flooded area coverage sequence
of open route 0 was 0→9→2→5→4, that of open route 1 was 0→6→8→7, and that of open route 2
was 0→1→10→3. The route details of S3 are displayed on the road network shown in Figure 8c.
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The above analyses and comparisons are all based on an on-time arrival probability of 0.9.
The travel time budget of the optimized routes of S1, S2, and S3 may vary with the on-time arrival
probability. To answer the question regarding whether the routes of S2 can always achieve a lower
travel time budget than the routes of S1 for different on-time arrival probabilities, a comparison of
the cumulative probability density curves of the open routes of S1 and S2 was conducted, as shown
in Figure 9. For open route 0, when the on-time arrival probability was above 0.55, the travel time
budget of S2 was less than that of S1. For open route 1, when the on-time arrival probability was
above 0.3, the travel time budget of S2 was less than that of S1. For open route 2, when the on-time
arrival probability was above 0.1, the travel time budget of S2 was less than that of S1. That is, if the
on-time arrival probability is required to be larger than 0.55, the routes of S2 are better than those of S1.
Therefore, the proposed model considering travel time reliability is important for the flood disaster
rescue route planning discussed in this study, for which a high on-time arrival probability should
be guaranteed.
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Figure 9. Cumulative probability density curves of the open routes of S1 and S2. (a) Open route 0;
(b) Open route 1; (c) Open route 2.

Another question is whether the difference in travel time budget between S2 and S3 will change
for different on-time arrival probabilities. S2 and S3 are both optimal routing plans derived using the
proposed model, and the cumulative probability density curves of their open routes are illustrated in
Figure 10. For open route 0, S3 outperformed S2 regardless of the on-time arrival probability, while
for open route 1, S2 outperformed S3. For open route 2, the two curves overlapped. From the curve
shapes of S2 and S3, it can be inferred that the difference in travel time budget between S2 and S3
does not seem to change with the variation in on-time arrival probability. Although the sum of the
travel time budgets of all three open routes of S3 was larger than that of S2, in terms of balancing the
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waiting time of people trapped at each flooding point, S3 was better than S2 regardless of the on-time
arrival probability.
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7. Conclusions

The research presented in this paper introduced a multiobjective rescue routing (MORR) model
based on travel time reliability in a stochastic network, for a case in which the road travel time is
strongly influenced by urban storm flooding disasters. A hybrid metaheuristic integrating ACO and
TS, named ACO-TS, was proposed to solve the MORR model. Experiments based on a real-world
case were conducted to evaluate the proposed model and algorithm. The study area was the central
urban district of Guangzhou city, which is located in southern China and experiences abundant rainfall
during the summer. The objective was to plan routes for rescue vehicles, to guide them to flooding
points as quickly as possible under a high on-time arrival probability.

Three problems (S1, S2, and S3) were defined to evaluate the rescue performance of the proposed
model. S1 was the basic situation, without consideration of the traffic uncertainty, while the plans of
S2 and S3 were derived using the proposed model. By comparing the travel time budgets of S1, S2,
and S3, we were able to draw several conclusions. First, when traffic uncertainty was not considered,
the on-time arrival probability of the planned routes was low if the rescue vehicles were expected to
finish the routes within the average travel time. Second, when the on-time arrival probability was
required to be larger than 0.55, the route plan of S2 was better than that of S1. Third, S2 and S3
were non-dominated route plans with different weight combinations of objective F1 and objective F2.
In terms of balancing the waiting time at each flooding point, the routing plans of S3 were better than
those of S2, regardless of the on-time arrival probability.

Our proposed model and algorithm can help decision makers design reliable and quick rescue
routes, and they can also be applied to other emergency rescue events in which the travel time in
the transportation network is stochastic. The on-time arrival probability was set to 0.9 for the case
study, which is a high on-time arrival probability. Emergency management departments can set higher
on-time arrival probabilities according to the urgency of the rescue task. We plan to improve our
model and algorithm in the following ways. First, it would be better if the spatial correlation between
neighboring road segments is taken into consideration when estimating the values of µ and σ of rescue
paths. Second, it is assumed, in this study, that link travel times are stable during the rescue mission.
It is necessary to extend the proposed model and the algorithm to a stochastic time-dependent network,
in which link travel times vary with time. Third, it is necessary to extend the proposed model and
algorithm to the case of multidepot rescue routing problems.
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15. Barbarosoğlu, G.; Arda, Y. A two-stage stochastic programming framework for transportation planning in

disaster response. J. Oper. Res. Soc. 2004, 55, 43–53. [CrossRef]
16. Chang, M.-S.; Tseng, Y.-L.; Chen, J.-W. A scenario planning approach for the flood emergency logistics

preparation problem under uncertainty. Transp. Res. Part E Logist. Trans. Rev. 2007, 43, 737–754. [CrossRef]
17. Lin, Y.-H.; Batta, R.; Rogerson, P.A.; Blatt, A.; Flanigan, M. A logistics model for emergency supply of critical

items in the aftermath of a disaster. Soc. Econ. Plan. Sci. 2011, 45, 132–145. [CrossRef]
18. Bozorgi-Amiri, A.; Jabalameli, M.S.; Mirzapour Al-e-Hashem, S.M.J. A multi-objective robust stochastic

programming model for disaster relief logistics under uncertainty. OR Spectr. 2011, 35, 905–933. [CrossRef]
19. Özdamar, L.; Demir, O. A hierarchical clustering and routing procedure for large scale disaster relief logistics

planning. Transp. Res. Part E Logist. Trans. Rev. 2012, 48, 591–602. [CrossRef]
20. Jotshi, A.; Gong, Q.; Batta, R. Dispatching and routing of emergency vehicles in disaster mitigation using

data fusion. Soc. Econ. Plan. Sci. 2009, 43, 1–24. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.tre.2013.11.003
http://dx.doi.org/10.1109/TEVC.2008.2011740
http://dx.doi.org/10.3390/ijgi4042019
http://dx.doi.org/10.1016/j.eswa.2016.04.002
http://dx.doi.org/10.1016/j.seps.2011.04.004
http://dx.doi.org/10.1007/s11067-012-9175-1
http://dx.doi.org/10.1002/atr.5670390104
http://dx.doi.org/10.1080/13658816.2011.598133
http://dx.doi.org/10.1080/23249935.2014.951886
http://dx.doi.org/10.1016/0965-8564(95)00020-8
http://dx.doi.org/10.1057/palgrave.jors.2601652
http://dx.doi.org/10.1016/j.tre.2006.10.013
http://dx.doi.org/10.1016/j.seps.2011.04.003
http://dx.doi.org/10.1007/s00291-011-0268-x
http://dx.doi.org/10.1016/j.tre.2011.11.003
http://dx.doi.org/10.1016/j.seps.2008.02.005


ISPRS Int. J. Geo-Inf. 2018, 7, 77 20 of 21

21. Wang, H.; Du, L.; Ma, S. Multi-objective open location-routing model with split delivery for optimized relief
distribution in post-earthquake. Transp. Res. Part E Logist. Trans. Rev. 2014, 69, 160–179. [CrossRef]

22. Garrido, R.A.; Lamas, P.; Pino, F.J. A stochastic programming approach for floods emergency logistics.
Transp. Res. Part E Logist. Trans. Rev. 2015, 75, 18–31. [CrossRef]

23. Duque, P.A.M.; Dolinskaya, I.S.; Sörensen, K. Network repair crew scheduling and routing for emergency
relief distribution problem. Eur. J. Oper. Res. 2015, 248, 272–285. [CrossRef]

24. Jia, H.; Ordóñez, F.; Dessouky, M.M. Solution approaches for facility location of medical supplies for
large-scale emergencies. Comput. Ind. Eng. 2007, 52, 257–276. [CrossRef]

25. Mete, H.O.; Zabinsky, Z.B. Stochastic optimization of medical supply location and distribution in disaster
management. Int. J. Prod. Econ. 2010, 126, 76–84. [CrossRef]

26. Miao, C.; Wu, Q.D.; Xu, W.S. Model and algorithm of reliable path finding under sudden-onset disaster.
Comput. Eng. Appl. 2007, 43, 1–4.

27. Zhang, L.; Kong, Y.Y. Study on model for emergency rescue teams assignment after urban flooding disaster.
China Saf. Sci. J. 2013, 23, 171–176.

28. Lu, C.-C.; Sheu, J.-B. Robust vertex p-center model for locating urgent relief distribution centers.
Comput. Oper. Res. 2013, 40, 2128–2137. [CrossRef]

29. Szeto, W.Y.; Wang, A.B. Reliable network design under supply uncertainty with probabilistic guarantees.
Transp. A Transp. Sci. 2016, 12, 504–532. [CrossRef]

30. Li, X.; Tian, P.; Leung, S.C.H. Vehicle routing problems with time windows and stochastic travel and service
times: Models and algorithm. Int. J. Prod. Econ. 2010, 125, 137–145. [CrossRef]

31. Srinivasan, K.K.; Prakash, A.A.; Seshadri, R. Finding most reliable paths on networks with correlated and
shifted log–normal travel times. Transp. Res. Part B Methodol. 2014, 66, 110–128. [CrossRef]

32. Tu, W.; Li, Q.; Fang, Z.; Shaw, S.-L.; Zhou, B.; Chang, X. Optimizing the locations of electric taxi charging
stations: A spatial–temporal demand coverage approach. Transp. Res. Part C Emerg. Technol. 2016, 65, 172–189.
[CrossRef]

33. Wang, X.; Choi, T.M.; Liu, H.; Yue, X. Novel ant colony optimization methods for simplifying solution
construction in vehicle routing problems. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3132–3141. [CrossRef]

34. Beaulieu, N.C.; Abu-Dayya, A.A.; McLane, P.J. Estimating the Distribution of a Sum of Independent
Lognormal Random Variables. IEEE Trans. Commun. 1995, 43, 2869–2873. [CrossRef]

35. Fang, Z.; Zong, X.; Li, Q.; Li, Q.; Xiong, S. Hierarchical multi-objective evacuation routing in stadium using
ant colony optimization approach. J. Transp. Geogr. 2011, 19, 443–451. [CrossRef]

36. Tarantilis, C.D.; Zachariadis, E.E.; Kiranoudis, C.T. A guided tabu search for the heterogeneous vehicle
routeing problem. J. Oper. Res. Soc. 2007, 59, 1659–1673. [CrossRef]

37. Niu, Y.; Yang, Z.; Chen, P.; Xiao, J. Optimizing the green open vehicle routing problem with time windows
by minimizing comprehensive routing cost. J. Clean. Prod. 2018, 171, 962–971. [CrossRef]

38. Cruz, J.J.; Paternina-Arboleda, C.D.; Cantillo, V.; Montoya-Torres, J.R. A two-pheromone trail ant colony
system-tabu search approach for the heterogeneous vehicle routing problem with time windows and multiple
products. J. Heurist. 2013, 19, 233–252. [CrossRef]

39. Rakha, H.; El-Shawarby, I.; Arafeh, M.; Dion, F. Estimating Path Travel-Time Reliability. In Proceedings of
the Intelligent Transportation Systems Conference, Toronto, ON, Canada, 9 October 2006.

40. Liu, Z.; Almhana, J.; McGorman, R. Approximating lognormal sum distributions with power lognormal
distributions. IEEE Trans. Veh. Technol. 2008, 57, 2611–2617. [CrossRef]

41. Fang, Z.; Li, Q.; Li, Q.; Han, L.D.; Shaw, S.-L. A space–time efficiency model for optimizing intra-intersection
vehicle–pedestrian evacuation movements. Transp. Res. Part C Emerg. Technol. 2013, 31, 112–130. [CrossRef]

42. Dorigo, M.; Gambardella, L.M. Ant Colonies for the Traveling Salesman Problem. BioSystems 1997, 43, 73–81.
[CrossRef]

43. Glover, F. Heuristics for integer programming using surrogate constraints. Decis. Sci. 1977, 8, 156–166.
[CrossRef]

44. Fang, Z.; Tu, W.; Li, Q.; Shaw, S.-L.; Chen, S.; Chen, B.Y. A voronoi neighborhood-based search heuristic for
distance/capacity constrained very large vehicle routing problems. Int. J. Geogr. Inf. Sci. 2013, 27, 741–764.
[CrossRef]

http://dx.doi.org/10.1016/j.tre.2014.06.006
http://dx.doi.org/10.1016/j.tre.2014.12.002
http://dx.doi.org/10.1016/j.ejor.2015.06.026
http://dx.doi.org/10.1016/j.cie.2006.12.007
http://dx.doi.org/10.1016/j.ijpe.2009.10.004
http://dx.doi.org/10.1016/j.cor.2013.02.019
http://dx.doi.org/10.1080/23249935.2016.1154625
http://dx.doi.org/10.1016/j.ijpe.2010.01.013
http://dx.doi.org/10.1016/j.trb.2013.10.011
http://dx.doi.org/10.1016/j.trc.2015.10.004
http://dx.doi.org/10.1109/TITS.2016.2542264
http://dx.doi.org/10.1109/26.477480
http://dx.doi.org/10.1016/j.jtrangeo.2010.10.001
http://dx.doi.org/10.1057/palgrave.jors.2602504
http://dx.doi.org/10.1016/j.jclepro.2017.10.001
http://dx.doi.org/10.1007/s10732-011-9184-0
http://dx.doi.org/10.1109/TVT.2007.912338
http://dx.doi.org/10.1016/j.trc.2013.03.004
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://dx.doi.org/10.1111/j.1540-5915.1977.tb01074.x
http://dx.doi.org/10.1080/13658816.2012.707319


ISPRS Int. J. Geo-Inf. 2018, 7, 77 21 of 21

45. Liu, L.; Liu, Y.; Wang, X.; Yu, D.; Liu, K.; Huang, H. Developing an effective 2-d urban flood inundation
model for city emergency management based on cellular automata. Nat. Hazards Earth Syst. Sci. 2015, 2,
6173–6199. [CrossRef]

46. Chen, P.; Zhang, J.; Zhang, L.; Sun, Y. Evaluation of Resident Evacuations in Urban Rainstorm Flooding
Disasters Based on Scenario Simulation: Daoli District (Harbin, China) as an Example. Int. J. Environ. Res.
Public Health 2014, 11, 9964–9980. [PubMed]

47. Annual White Paper on Waters in Guangzhou in 2013. Available online: http://www.gzwater.gov.cn/
portal/site/site/portal/gzswj/swyw_xx.portal?contentId=BVI71SJFN2GA2B5WYMSRYY8489K7RDGX&
categoryId=DU2PVT4O72W2GHC0U0Y54QMYDYOPS8DO (accessed on 22 January 2018).

48. Kamga, C.; Yazıcı, M.A. Temporal and weather related variation patterns of urban travel time: Considerations
and caveats for value of travel time, value of variability, and mode choice studies. Transp. Res. Part C
Emerg. Technol. 2014, 45, 4–16. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5194/nhessd-2-6173-2014
http://www.ncbi.nlm.nih.gov/pubmed/25264676
http://www.gzwater.gov.cn/portal/site/site/portal/gzswj/swyw_xx.portal?contentId=BVI71SJFN2GA2B5WYMSRYY8489K7RDGX&categoryId=DU2PVT4O72W2GHC0U0Y54QMYDYOPS8DO
http://www.gzwater.gov.cn/portal/site/site/portal/gzswj/swyw_xx.portal?contentId=BVI71SJFN2GA2B5WYMSRYY8489K7RDGX&categoryId=DU2PVT4O72W2GHC0U0Y54QMYDYOPS8DO
http://www.gzwater.gov.cn/portal/site/site/portal/gzswj/swyw_xx.portal?contentId=BVI71SJFN2GA2B5WYMSRYY8489K7RDGX&categoryId=DU2PVT4O72W2GHC0U0Y54QMYDYOPS8DO
http://dx.doi.org/10.1016/j.trc.2014.02.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	The Rescue Routing Problem 
	Problem Definition 
	Travel Time Reliability 
	Bi-Level Transportation Network Representation 
	-Reliable Rescue Route 
	-Reliable Path 
	-Reliable Rescue Route 

	Mathematical Formulation of the MORR 

	The Hybrid Metaheuristic for Solving the MORR Problem 
	An Overview of the Proposed Hybrid Metaheuristic 
	Main Steps of the ACO-TS Algorithm 
	Global Search Using the ACO Algorithm (Step 3) 
	Evaluation Function (Step 4) 
	Local Search Using TS (Step 5) 
	Update Pheromone Concentration (Step 6) 

	Pseudocode of the Algorithm 

	Study Area and Data Description 
	Experiment and Results 
	Conclusions 
	References

