Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments
Abstract
:1. Introduction
2. Impact: Tools, Applications, and the Role of CZML
2.1. Tools and Services
2.2. Applications
2.2.1. Representing Time-Dynamic Trajectories of Moving Objects
2.2.2. Recording and Rendering Complicated Geometry Objects
2.2.3. Expressing 3D/4D Thematic Information
2.3. The Role of CZML in Geoscientific Research
3. Comparison with KML
3.1. Goals and Purposes
3.2. Grammatical Rules
3.3. Information Expressions
3.4. Data Characteristics
3.5. Supports and Applications
3.6. Summary
4. Discussion and Future Developments
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, L.; Wang, Z.; Li, Z. Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part I: Overview and Key Issues. ISPRS Int. J. Geo-Inf. 2018, 7, 97. [Google Scholar] [CrossRef]
- Ferreira, K.R.; Vinhas, L.; Monteiro, A.M.V.; Camara, G. Moving Objects and KML Files. In Proceedings of the IEEE International Conference on Data Engineering Workshops, Arlington, VA, USA, 1–5 April 2012; pp. 355–359. [Google Scholar]
- Ferreira, K.R.; Vinhas, L.; Monteiro, A.M.V.; Câmara, G. Moving objects and spatial data sources. Revista Brasileira De Cartografia 2012, 64, 796–806. [Google Scholar]
- Gonçalves, T.; Afonso, A.P.; Martins, B. Cartographic visualization of human trajectory data: Overview and analysis. J. Locat. Based Serv. 2015, 9, 138–166. [Google Scholar] [CrossRef]
- Patel, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Tatem, A.J.; Trianni, G. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. 2015, 35, 199–208. [Google Scholar] [CrossRef]
- Andrienko, N.; Andrienko, G. Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach; Springer: Heidelberg, Germany, 2006. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Bak, P.; Keim, D.; Wrobel, S. Visual Analytics of Movement; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.I.; Jern, M.; Kraak, M.-J.; Schumann, H.; Tominski, C. Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 2010, 24, 1577–1600. [Google Scholar] [CrossRef]
- Andrienko, G.; Andrienko, N.; Wrobel, S. Visual analytics tools for analysis of movement data. ACM SIGKDD Explor. Newsl. 2007, 9, 38–46. [Google Scholar] [CrossRef]
- Von Landesberger, T.; Brodkorb, F.; Roskosch, P.; Andrienko, N.; Andrienko, G.; Kerren, A. MobilityGraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph. 2016, 22, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Rufiange, S.; Hossain, Z.; Ventura, Q.; Irani, P.; McGuffin, M.J. The impact of interactivity on comprehending 2D and 3D visualizations of movement data. IEEE Trans. Vis. Comput. Graph. 2015, 21, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Andrienko, G.; Andrienko, N.; Dykes, J.; Fabrikant, S.I.; Wachowicz, M. Geovisualization of dynamics, movement and change: Key issues and developing approaches in visualization research. Inf. Vis. 2008, 7, 173–180. [Google Scholar] [CrossRef]
- Andrienko, N.; Andrienko, G.; Gatalsky, P. Exploratory spatio-temporal visualization: An analytical review. J. Vis. Lang. Comput. 2003, 14, 503–541. [Google Scholar] [CrossRef]
- Buschmann, S.; Trapp, M.; Döllner, J. Animated visualization of spatial-temporal trajectory data for air-traffic analysis. Vis. Comput. 2016, 32, 371–381. [Google Scholar] [CrossRef]
- Buschmann, S.; Trapp, M.; Döllner, J. Real-time visualization of massive movement data in digital landscapes. In Proceedings of the 16th Conference on Digital Landscape Architecture (DLA 2015), Dessau, Germany, 4–6 June 2015; pp. 213–220. [Google Scholar]
- OGC KML 2.3. OGC12-007r2. Available online: http://docs.opengeospatial.org/is/12-007r2/12-007r2.html (accessed on 23 January 2018).
- OGC KML. OGC07-147r2. Available online: http://portal.opengeospatial.org/files/?artifact_id=27810 (accessed on 23 January 2018).
- KML. Available online: http://www.opengeospatial.org/standards/kml (accessed on 23 January 2018).
- Ballagh, L.M.; Raup, B.H.; Duerr, R.E.; Khalsa, S.J.S.; Helm, C.; Fowler, D.; Gupte, A. Representing scientific data sets in KML: Methods and challenges. Comput. Geosci. 2011, 37, 57–64. [Google Scholar] [CrossRef]
- Zhu, L.; Pan, X.; Gao, G. Assessing place location knowledge using a virtual globe. J. Geogr. 2016, 115, 72–80. [Google Scholar] [CrossRef]
- Zhu, L.; Kan, W.; Zhang, Y.; Sun, J. Visualizing the Structure of the Earth's Lithosphere on the Google Earth Virtual-Globe Platform. ISPRS Int. J. Geo-Inf. 2016, 5, 26. [Google Scholar] [CrossRef]
- CZML Guide. Available online: https://github.com/AnalyticalGraphicsInc/czml-writer/wiki/CZML-Guide (accessed on 23 January 2018).
- Cozzi, P.; Ring, K. 3D Engine Design for Virtual Globes; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- STK generates CZML to share data. Available online: https://cesiumjs.org/demos/STKCZML (accessed on 31 January 2018).
- CZML Brings STK and Cesium Together. Available online: http://www.agi.com/news/blog/february-2016/czml-brings-stk-and-cesium-together?feed=AGIBlogsFeed (accessed on 31 January 2018).
- JSONUtil. Available online: http://jsonutil.riaforge.org (accessed on 23 January 2018).
- Simplejson—JSON Encoder and Decoder. Available online: https://simplejson.readthedocs.io (accessed on 23 January 2018).
- Fastjson: A Fast JSON Parser/Generator for Java. Available online: https://github.com/alibaba/fastjson (accessed on 23 January 2018).
- GitHub. Available online: https://github.com (accessed on 31 January 2018).
- Cesium—WebGL Virtual Globe and Map Engine. Available online: https://cesiumjs.org (accessed on 23 January 2018).
- Cesium Viewer. Available online: https://cesiumjs.org/Cesium/Build/Apps/CesiumViewer/index.html (accessed on 31 January 2018).
- Cesium Sandcastle. Available online: http://cesiumjs.org/Cesium/Apps/Sandcastle/index.html (accessed on 31 January 2018).
- Hunter, J.; Brooking, C.; Reading, L.; Vink, S. A Web-based system enabling the integration, analysis, and 3D sub-surface visualization of groundwater monitoring data and geological models. Int. J. Digit. Earth 2016, 9, 197–214. [Google Scholar] [CrossRef]
- Muller, R.D.; Qin, X.D.; Sandwell, D.T.; Dutkiewicz, A.; Williams, S.E.; Flament, N.; Maus, S.; Seton, M. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLoS ONE 2016, 11, e0150883. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.E.; Chen, A.J. The role of Virtual Globes in geoscience. Comput. Geosci. 2011, 37, 1–2. [Google Scholar] [CrossRef]
- De Paor, D.G.; Whitmeyer, S.J. Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript. Comput. Geosci. 2011, 37, 100–110. [Google Scholar] [CrossRef]
- Announcing Deprecation of the Google Earth API. Available online: http://googlegeodevelopers.blogspot.com/2014/12/announcing-deprecation-of-google-earth.html (accessed on 5 January 2018).
- De Paor, D.G. Beyond the Google Earth API—Cesium, a Plugin-free, WebGL-based virtual globe. In Proceedings of the Geological Society of America 2015, Baltimore, MD, USA, 1–4 November 2015; p. 187. [Google Scholar]
- Migrating from Earth to Cesium. Available online: https://cesium.com/blog/2015/01/27/migrating-from-earth-to-cesium (accessed on 22 January 2018).
- Migrating from Google Earth to Cesium. Available online: http://52.4.31.236/presentations/FOSS4GNA2016/GE-Cesium.pdf (accessed on 31 January 2018).
- Cycling the Alps Migrates to Cesium. Available online: https://cesium.com/blog/2015/02/05/cycling-the-alps-migrates-to-cesium (accessed on 23 January 2018).
- Powder Tacks. Available online: https://cesiumjs.org/demos/powdertracks (accessed on 23 January 2018).
- Red Bull X-Alps. Available online: https://cesiumjs.org/demos/xalps (accessed on 23 January 2018).
- Geoglyph—WebGL 3D. Available online: http://earth.geoglyph.info (accessed on 23 January 2018).
- ATO Visualizer. Available online: https://cesiumjs.org/demos/atovisualizer (accessed on 23 January 2018).
- 3D Virtual Drone Flights Using the Oculus Rift. Available online: https://cesiumjs.org/demos/DronesOculus (accessed on 23 January 2018).
- SpaceBook. Available online: http://apps.agi.com/SatelliteViewer (accessed on 23 January 2018).
- Orbital Predictor. Available online: http://www.orbitalpredictor.com (accessed on 23 January 2018).
- EarthKAM Explorer. Available online: https://cesiumjs.org/demos/earthkamexplorer/ (accessed on 23 January 2018).
- Eclipsetracks.org—Interactive Solar Eclipses with CesiumJS. Available online: http://eclipsetracks.org (accessed on 23 January 2018).
- Taipei 3D City Navigation. Available online: https://3d.taipei (accessed on 23 January 2018).
- MapGuide Rest. Available online: http://mapguide.ca/nanaimo.htm (accessed on 23 January 2018).
- Girona-Barri Vell a vol d’ocell. Available online: http://betaserver.icgc.cat/cesium/Girona3D.html (accessed on 23 January 2018).
- 4D Statistics Maps. Available online: https://3d.taipei/apps/4DCMap.html (accessed on 23 January 2018).
- Hiroshima Archive. Available online: http://hiroshima.archiving.jp (accessed on 23 January 2018).
- Nagasaki Archive. Available online: http://e.nagasaki.mapping.jp/p/nagasaki-archive.html (accessed on 23 January 2018).
- The Peace Leaning Archive of OKINAWA. Available online: http://peacelearning.jp/okinawaNew/index.html (accessed on 23 January 2018).
- Japan Earthquake|Nagasaki Archive. Available online: http://e.nagasaki.mapping.jp/p/japan-earthquake.html (accessed on 23 January 2018).
- Indian Ocean Tsunami Archive. Available online: http://aceh.archiving.jp/index_jp.html (accessed on 23 January 2018).
- Cesium Demos. Available online: https://cesiumjs.org/demos.html (accessed on 23 January 2018).
- AGI Home. Available online: http://www.agi.com (accessed on 23 January 2018).
- Yamagishi, Y.; Yanaka, H.; Suzuki, K.; Tsuboi, S.; Isse, T.; Obayashi, M.; Tamura, H.; Nagao, H. Visualization of geoscience data on Google Earth: Development of a data converter system for seismic tomographic models. Comput. Geosci. 2010, 36, 373–382. [Google Scholar] [CrossRef]
- Zhu, L.F.; Sun, J.Z.; Li, C.L.; Zhang, B. SolidEarth: A new Digital Earth system for the modeling and visualization of the whole Earth space. Front. Earth Sci. 2014, 8, 524–539. [Google Scholar] [CrossRef]
- De Paor, D.G.; Pinan-Llamas, A. Application of novel presentation techniques to a structural and metamorphic map of the Pampean Orogenic Belt, NW Argentina. In Proceedings of the Geological Society of America 2006, Philadelphia, PA, USA, 24–26 October 2006; p. 326. [Google Scholar]
- Huang, Y.-K. Within Skyline Query Processing in Dynamic Road Networks. ISPRS Int. J. Geo-Inf. 2017, 6, 137. [Google Scholar] [CrossRef]
- Zhu, L.F.; Wang, X.F.; Pan, X. Moving KML geometry elements within Google Earth. Comput. Geosci. 2014, 72, 176–183. [Google Scholar] [CrossRef]
- Zhu, L.F.; Pan, X.; Sun, J.Z. Visualization and dissemination of global crustal models on virtual globes. Comput. Geosci. 2016, 90, 34–40. [Google Scholar] [CrossRef]
- Zhu, L.F.; Wang, X.F.; Zhang, B. Modeling and visualizing borehole information on virtual globes using KML. Comput. Geosci. 2014, 62, 62–70. [Google Scholar] [CrossRef]
- Zhu, L.F.; Li, M.J.; Li, C.L.; Shang, J.G.; Chen, G.L.; Zhang, B.; Wang, X.F. Coupled modeling between geological structure fields and property parameter fields in 3D engineering geological space. Eng. Geol. 2013, 167, 105–116. [Google Scholar] [CrossRef]
- Li, Z.; Guan, X.; Li, R.; Wu, H. 4D-SAS: A Distributed Dynamic-Data Driven Simulation and Analysis System for Massive Spatial Agent-Based Modeling. ISPRS Int. J. Geo-Inf. 2016, 5, 42. [Google Scholar] [CrossRef]
- Saeedi, S.; Liang, S.; Graham, D.; Lokuta, M.F.; Mostafavi, M.A. Overview of the OGC CDB Standard for 3D Synthetic Environment Modeling and Simulation. ISPRS Int. J. Geo-Inf. 2017, 6, 306. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, C.; Li, M.; Pan, X.; Sun, J. Building 3D solid models of sedimentary stratigraphic systems from borehole data: An automatic method and case studies. Eng. Geol. 2012, 127, 1–13. [Google Scholar] [CrossRef]
- OGC Geography Markup Language (GML)—Extended Schemas and Encoding Rules. OGC10-129r1. Available online: https://portal.opengeospatial.org/files/?artifact_id=46568 (accessed on 23 January 2018).
- Wernecke, J. The KML Handbook: Geographic Visualization for the Web; Addison-Wesley: Boston, MA, USA, 2009. [Google Scholar]
- OGC Certified and Implementing Products. Available online: http://www.opengeospatial.org/resource/products (accessed on 31 January 2018).
Tool and Service | Description | Developer | URLs |
---|---|---|---|
Libraries for CZML | |||
czml-writer | A library for writing CZML content using .NET and Java. | Analytical Graphics, Inc. | https://github.com/AnalyticalGraphicsInc/czml-writer |
czml-Python | An open source python library to read and write CZML files. | Christian Ledermann | https://github.com/cleder/czml |
json2czml | A data conversion tool for converting GeoJSON into CZML. | Umetsu Hidehiro | https://github.com/hideume/json2czml |
carthe_czml | A python program to produce CZML files from CARTHE GLAD drifter data. | mjturtora | https://github.com/mjturtora/carthe_czml |
gpx2czml | A javascript module that converts gpx data to CZML data. | KernYoo | https://github.com/trustyoo86/gpx2czml |
kml2czml | A Java library for converting KML geometry models to CZML models. | workingDog | https://github.com/workingDog/kml2czml |
TLE2CZML | A library for converting TLE (Two-Line Element) lists to CZML. | Michael Bowman | https://github.com/bowmanmc/tle2czml |
ScalaCZML | A library for reading and writing CZML JSON entities and presenting them as Scala objects. | workingDog | https://github.com/workingDog/scalaczml |
Plugins for CZML | |||
czml_generator | A QGIS plugin for creating CZML files. | Mátyás Gede | https://github.com/samanbey/czml_generator |
Systems Tool Kit (STK) | STK offers an option for exporting 3D/4D simulation scenarios to CZML-formatted files. | Analytical Graphics, Inc. | https://www.agi.com/products/stk |
Services providing CZML | |||
Eclipse Scraper | A Python module for scraping tabular data for the tracks of eclipse events from NASA’s eclipse website and converting such events into usable CZML documents. | Christopher Clark | https://github.com/Frencil/eclipsescraper |
3D viewers for CZML | |||
Cesium Viewer | A Cesium reference application supporting drag-and-drop a CZML file from the desktop into the viewer. | Analytical Graphics, Inc. | https://cesiumjs.org/Cesium/Build/Apps/CesiumViewer/index.html |
Examples of CZML | |||
Cesium Sandcastle | A code editor and example gallery for the Cesium virtual globe, involving a large number of CZML examples. | Analytical Graphics, Inc. | http://cesiumjs.org/Cesium/Apps/Sandcastle/index.html |
Offline-satelite-tracking-czmll | A script for the Tracing of the specifc satellite positions based on the specific time using the CZML and sgp4 libraries and finding the position. | Muhammad Shafay Amjad | https://github.com/shafaypro/Offline-satelite-tracking-czmll |
Criteria Description | KML | CZML | |
---|---|---|---|
Goals and purposes | Design goals | Encode and transport representations of geographic data for display in 2D/3D earth browsers. | Encoding representations of time-dynamic geospatial objects on 3D virtual globes. |
Grammatical rules | Grammatical basis | XML | JSON |
Object-oriented | Yes | No | |
Namespace supported | Yes | No | |
Information expressions | Expression modes | A tag-based structure with nested elements and attributes. | Enumerating a collection of name/value pairs. |
Geometry supported | Six primitive geometry elements and two multiple geometry elements. | Fifteen geometry properties with additional sub-properties. | |
Time-varying information | Offering very limited capabilities to represent time-dynamic geographical objects. | Both the geometry, appearance and the semantics of geospatial objects can be changed over time. | |
Data characteristics | Data volume | Large, verbose, and slow. | Less, concise, and fast. |
Expansibility | Flexible. Offering three ways to add custom data to a KML Feature. | Weaker. Only one way to deal with custom data. | |
Streamability supported | No | Yes | |
Supports and applications | OGC recommendation | Yes | No |
Supporting platforms | Google Earth, Cesium and other comparable earth browsers. | Cesium |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Li, Z.; Wang, Z. Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments. ISPRS Int. J. Geo-Inf. 2018, 7, 102. https://doi.org/10.3390/ijgi7030102
Zhu L, Li Z, Wang Z. Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments. ISPRS International Journal of Geo-Information. 2018; 7(3):102. https://doi.org/10.3390/ijgi7030102
Chicago/Turabian StyleZhu, Liangfeng, Zhiwen Li, and Zhongliang Wang. 2018. "Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments" ISPRS International Journal of Geo-Information 7, no. 3: 102. https://doi.org/10.3390/ijgi7030102
APA StyleZhu, L., Li, Z., & Wang, Z. (2018). Representing Time-Dynamic Geospatial Objects on Virtual Globes Using CZML—Part II: Impact, Comparison, and Future Developments. ISPRS International Journal of Geo-Information, 7(3), 102. https://doi.org/10.3390/ijgi7030102