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Abstract: Human mobility is closely associated with places. Due to advancements in GPS devices
and related sensor technologies, an unprecedented amount of tracking data has been generated in
recent years, thus providing a new way to investigate the interactions between individuals and places,
which are vital for depicting individuals’ characteristics. In this paper, we propose a framework
for mining individual similarity based on long-term trajectory data. In contrast to most existing
studies, which have focused on the sequential properties of individuals’ visits to public places, this
paper emphasizes the essential role of the spatio-temporal interactions between individuals and their
personally significant places. Specifically, rather than merely using public geographic databases,
which include only public places and lack personal meanings, we attempt to interpret the semantics of
places that are significant to individuals from the perspectives of personal behavior. Next, we propose
a new individual similarity measurement that incorporates both the spatio-temporal and semantic
properties of individuals’ visits to significant places. By experimenting on real-world GPS datasets,
we demonstrate that our approach is more capable of distinguishing individuals and characterizing
individual features than the previous methods. Additionally, we show that our approach can be used
to effectively measure individual similarity and to aggregate individuals into meaningful subgroups.

Keywords: individual similarity measurement; trajectory; personally significant place; place
semantics; human-place interactions

1. Introduction

Advancements in GPS devices and related sensor technologies have resulted in the generation of
an unprecedented amount of tracking data, which has enabled investigations of human mobility across
a wide range of disciplines, such as urban planning, traffic management, tourism, location-based
services, and public health. Movement tracks are usually recorded as trajectories, which are temporal
sequences of spatio-temporal points, such as (x, y, t). Among the large number of studies on trajectory
data, researchers have shown particular interest in the trajectories of moving individuals because of the
latent social and commercial benefits of these trajectories. In particular, mining the similarity between
individuals based on trajectory data, which plays an important role in inter-trajectory studies [1], is a
major focus due to its potential for use in characterizing individual movement features [2–4], inferring
personal preferences [5,6], and predicting individuals’ future positions [7].

In this paper, individual similarity refers to the commonality that two individuals share in their
interactions with places. Most existing works concerning measuring individual similarity have been
proposed in the context of location-based social networks services (LBSNSs), in which users’ common
interests are the main focus. Thus, previous methods of similarity measurement have been developed
based on the sequential properties of visits to public places. For example, Zheng et al. [5] proposed
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a hierarchical-graph-based similarity measurement (HGSM) framework to estimate user similarity
based on the assumption that users with longer similar visit sequences at finer geographic granularities
might be more similar. Xiao et al. [8] modeled users’ trajectories using their location histories and then
explored the user similarity based on the sequential properties, granularities, and popularities of the
visited semantic locations (locations that are semantically meaningful to users). Although previous
studies have placed strong emphasis on the sequential properties of trajectories, they have not focused
on the trajectories’ spatial and temporal properties, which are essential for depicting individuals’
characteristics in the wider applications of geographic information science (GIScience).

Meanwhile, there is growing interest among researchers regarding the semantic aspects of
trajectory data. Semantic information has been incorporated into numerous recent studies on individual
similarity; in most, semantic information has been extracted using reverse geocoding technology or
land use data [9–13]. For example, in [13], Comito et al. mined interesting semantic locations and
frequent travel sequences among those locations in a given region from geo-tagged posts; they
then used this information to estimate the similarity between users that was based on their location
histories. However, when inferring semantic information about locations, only public places retrievable
through the Foursquare API were considered, because the interesting locations considered in [13] were
limited to culturally important places and commonly frequented public areas. Although querying the
semantics of public places from geographic databases is adequate for some applications, we suggest
that, in general, it is insufficient to ignore personally significant places and consider only public places
that may have no personal meaning. Another limitation of previous studies is that they generally did
not distinguish between the different personal semantics of two individuals visiting the same place.
For instance, when two people go to the same restaurant, Person 1 may go for dinner, whereas Person 2
may work there. Existing similarity measurement methods commonly assume that Persons 1 and 2 are
similar, rather than considering the different semantics of visits to the same restaurant with disparate
personal meanings.

In this paper, we propose a framework for mining individual similarity that considers interactions
with personally significant places. The main contributions of this paper can be summarized as follows.

(1) We present a framework for mining individual similarity. The novelty of the proposed similarity
measurement, called the ISM-PSP, lies in exploring both the spatial distribution and temporal
signatures of individuals’ significant visits. Unlike existing similarity approaches, we go beyond
simply emphasizing the sequential aspects of individuals’ movements.

(2) We propose that two individuals’ significant visits can be compared only when they are identical
in their semantic aspects. In contrast to many previous works, which have addressed commonly
interesting places and their functionality for the general public, we determine the semantics of
individually significant places from the perspectives of personal behavior. Specifically, when
extracting the semantics of significant places, we consider places of both personal and public
interest. We interpret the semantics of personal places of interest based on the temporal
distribution of a person’s presence, and determine the semantics of public places of interest
using public geographic databases.

(3) We conduct several experiments using the real-world Geolife dataset. The results show that
the proposed ISM-PSP outperforms previous works in its ability to differentiate between
individuals. It presents a high ratio of finding identical individuals, while maintaining a low
number of false identifications and can be used to generate meaningful groups of individuals.
In addition, a comparison of the ISM-PSP results with and without personal meaning illustrates
the insufficiency of many previous works, in which only visits to public places have been
considered when mining individual similarity.

The remainder of this paper is organized as follows. Section 2 reviews the related studies.
In Section 3, we propose our framework and present the details of the methods that are applied in each
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step of the framework. Experiments using a real-world individual trajectory dataset are presented in
Section 4. Finally, in Section 5, we draw conclusions, discuss limitations, and suggest future work.

2. Related Work

The framework proposed in this paper is closely related to previous studies of place semantics
extraction and user similarity measurements.

2.1. Significant Place Semantics Extraction

Since Spaccapietra et al. first introduced the concept of semantic trajectory in [14], many
researchers have attempted to enrich raw trajectory data with relevant semantic information. In the
cited work, the authors proposed a well-known semantic trajectory model, known as stops and moves.
In this model, stops are places where moving objects stay for a certain amount of time, and moves
are the movements between any two stops. Motivated by this model, many studies on semantic
trajectories have used stop detection as part of their semantic enrichment processes (e.g., [14–16]).
Moreover, greater emphasis is placed on stops than on moves, because stops can be further clustered
into visited places. Frequently visited places are termed “significant places” for the individuals, and
they are believed to generally bear rich semantics, which is crucial for a better understanding of
moving objects [17–20]. Methods of extracting the semantics of significant places can be divided into
two main types: location-based and time-based methods.

Pioneering location-based methods were proposed by Alvares et al. [19] and Bogorny et al. [20],
who integrated background geographical information into trajectories and then extracted the semantics
of a potential stop, when that stop intersected with a given geographical object for some minimum
amount of time. Their preprocessing step required all geographic places relevant to the application of
interest to be defined a priori. More general location-based methods have attempted to infer significant
place semantics by associating points of interest (POIs) with stops that are based on spatial proximity.
Xiao et al. [21] transformed individuals’ location histories from the geographic space into a semantic
space using a POI database. Considering the fact that the POI nearest to a stop may not be the
place that was actually visited, they constructed a feature vector for each stay region that reflects the
uncertainty of possible POI categories that are assigned to that region. In [22], Spinsanti et al. proposed
a more sophisticated approach in which a probability-ranked list of possible POIs was generated
for each visited place. After classifying the POIs into different categories, they computed the most
likely POIs for each significant place by incorporating additional domain information about the POIs,
such as their opening times. Next, they summed all of the probabilities for POIs belonging to the same
category and used the aggregate probabilities to assign possible POI categories to each significant
place to obtain the semantics. In general, the location-based studies discussed above failed to identify
personally significant place semantics because they extracted places and their semantics solely from
public geographic databases.

In contrast to location-based methods, which extract place semantics by comparing the spatial
positions of visited places to those of predefined POIs, time-based methods extract the semantics of
significant visited places based on the temporal signatures of those visits. Using the behavioristic
assumption that “what you are can be determined by when you are”, Ye et al. [23] identified
the semantics of various places by observing when large numbers of users interacted with those
places. However, they attempted to assign category tags to untagged common public places, and
thus were unable to address the problem of identifying place semantics with personal meanings.
Shen et al. [24] implemented the ST-DBSCAN to detect spatio-temporal regions of interest (ST-ROIs)
and then differentiated between individuals’ behaviors in the same ST-ROIs by assessing the differences
between the individuals’ visit times. Because this framework was proposed to identify activity groups,
the authors divided the ST-ROIs into generic region types and grouped individuals by comparing the
time that was allocated to different generic ST-ROI types instead of to personally significant places.
To address the personal semantics gap, Andrienko et al. [25] used a procedure to find individual POIs
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and created “temporal signatures” that were characterizing the temporal distribution of a person’s
presence at each POI. Their experiments demonstrated that there are only a small proportion of
significant places (e.g., homes and workplaces) whose semantics can be derived from temporal and
statistical information. Thus, their results suggested that the personal meanings of individual POIs
could not be inferred solely from their temporal signatures.

2.2. User Similarity Measurement

Many existing methods of user similarity measurement have been proposed to provide
recommendation services. Li et al. [26] proposed a framework for modeling users’ location histories
and mining user similarity. They combined all users’ trajectory data and hierarchically clustered those
data into geographic regions, which were then used to build individual hierarchical graphs. When
measuring the similarity between users, they incorporated both the sequence of visited regions and
the geographic granularity at which similar sequences were found. Zheng et al. [5] extended the work
of Li et al. [26] by using a new sequence matching strategy and considering the popularity of the
visited locations. Specifically, the enhanced framework considered three aspects of users’ location
histories: the sequence of movements, the hierarchical properties of the geographic space, and the
popularity of the visited places. The users’ location histories were represented by hierarchical graphs
(HGs), and similar sequences shared between two users in each layer of the hierarchy were further
matched and used to calculate the similarity between the users. Although these approaches measure
user similarity in geographic space, they do not consider geographic properties, such as the distances
between locations. Moreover, they do not take the semantics of locations into account. The idea that
semantic meaning should be considered when measuring user similarity was presented in the work of
Ying et al. [9], who proposed the Maximal Semantic Trajectory Pattern Similarity (MSTP-Similarity)
to measure the similarity between two maximal semantic trajectory patterns based on the longest
common sequence (LCS) of these two patterns. Next, they extended the MSTP-Similarity to explore
the similarity between two users, measuring user similarity based on a weighted average obtained by
incorporating all possible MSTP-Similarities between the patterns from the two pattern sets. However,
Chen et al. [27] found that this weighted average of pattern similarities that is proposed in [9] is
unsuitable for measuring user similarity and cannot guarantee the maximum similarity between two
identical users. Rather than considering all of the maximal patterns of the other user, as in the MSTP,
they proposed an MTP-Similarity measurement that considers only the most similar pattern of each
maximal sequence pattern. Both the MSTP and MTP calculate the similarity between maximal patterns
in the same way—based on the lengths of the LCSs; they then use different strategies to integrate the
similarity values between maximal trajectory patterns.

We suggest that the existing approaches for mining individual similarity have the following
drawbacks: (1) While emphasizing the sequential properties of individuals’ movements, most existing
methods of similarity measurement have not considered the spatial and temporal aspects of those
movements; thus, they cannot be used to assess the distinctive characteristics of individuals for many
GIScience applications. (2) Although previous studies have incorporated semantic information in
individual similarity measurements, many of them have focused on public places, while neglecting the
essential role of personally significant places in characterizing individuals. In addition, most works
have ignored the distinct semantics of different individuals’ visits to the same places.

3. Proposed Framework

3.1. Overview

Individual human mobility is closely associated with places. Each individual moves from place
to place to perform various activities, driven by either daily routines or interests [28,29]. Studies have
shown that individuals have a remarkable propensity to return to places that they frequently visit [30,31].
Hence, how individuals spatially and temporally interact with their frequently visited places
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(i.e., personally significant places) shows promise for revealing individuals’ characteristics [22,23].
By investigating the spatio-temporal distributions of individuals’ visits to their personally significant
places, we can mine similar individuals and aggregate them into meaningful subgroups. For example,
consider the distinctive characteristics of young versus elderly people: from a spatial perspective,
elderly people’s significant places tend to be distributed within a smaller area, whereas young people’s
significant places may be far apart, and long-distance commuting to them is common. From a temporal
perspective, young people may visit their various significant places for long intervals of time during
the day; they also frequently visit public places of interest at night. By contrast, elderly people’s
nighttime visits are generally limited to their homes.

In addition to the spatial and temporal properties of individual movements, we believe that
semantic information must be considered. In contrast to some existing methods (for example, [32]),
in which semantics is treated as an independent dimension, similar to space and time, we consider
semantics as a precondition. Specifically, we consider the spatial and temporal properties of two
individuals’ visits to their significant places to be comparable only when they are identical from
the semantic perspective. In this way, we can mine individual similarity by separately measuring
individuals’ movements that are related to different semantics, and we can apply this approach
in various fields by synthesizing individual similarity in the relevant semantics. For example, we
can identify families and colleagues who share high spatio-temporal similarities in their homes and
workplaces, respectively. Additionally, we can identify friends or potential friends from their high
degree of similarity in visits to entertainment venues, even if they do not share other regular visits.

Motivated by these goals, we propose a framework for mining individual similarity that consists
of two major phases (see Figure 1). In phase 1, we first detect stay points using raw GPS trajectories;
we then identify each individual’s significant places by separately clustering their stay points using
a density-based clustering algorithm. Based on the temporal signatures of their visits, personal
places of interest (homes and workplaces, in this paper) are identified. The remaining significant
places are assigned to public places of interest, such as shopping malls and hotels, using additional
geographical contextual information (i.e., a POI dataset). In phase 2, we mine individual similarity
using a new measurement, the Individual Similarity Measurement considering interactions with
Personally Significant Places (ISM-PSP). The ISM-PSP computes the spatial and temporal similarity of
two individual’s visits when their personal semantics match. Based on the similarity scores for visits
to personally significant places, which are grouped by diverse semantic information, the ISM-PSP
measures the similarity between individuals by computing the weighted sum of their similarity scores,
based on different semantics.

Below, we clarify some basic concepts and notations that are used in this paper prior to detailing
the methods used in each step of our framework.

Definition 1. (GPS point and GPS trajectory) A GPS point is a triple of the form p = (latitude, longitude, t)
that represents a latitude-longitude location and a timestamp. A GPS trajectory is sequence of triples T = <p1,
p2, . . . , pn>, where pi is a GPS point and p1.t < p2.t < . . . < pn.t.

Definition 2. (Stay point) A stay point represents a geographic region in which an individual stays longer
than a given time threshold θtime within a distance threshold θdistance. A stay point is denoted by a quadruple
of the form s = (latitude, longitude, tarrive, tleave), which represents the latitude-longitude location of s, and the
individual’s arrival time at s and departure time from s.

Definition 3. (Individual significant place) An individual significant place is a collection of stay points
denoted by SPi

k = {si
k1, si

k2, · · · , si
kn}, where si

kj is the jth stay point corresponding to the kth significant place

SPi
k of a specific individual i. The coordinates of SPi

k are represented by the average latitude and longitude of
the constituent points. An individual significant place SPi

k represents a region that is frequently visited by i;
this fact implies that the place possesses some personal meaning for i. Given the diversity in possible personal
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meanings, the set of individual i’s significant places SPi= {SPi
1, SPi

2, . . . , SPi
K} is divided into personal places

of interest, PeSPi and public places of interest, PuSPi.

Definition 4. (Personal place of interest and public place of interest) A personal place of interest PeSPi
k

is a place that is frequently visited by an individual i due to its special personal meaning for i. A typical example
of a PeSPi

k is an individual i’s home. By contrast, a public place of interest PuSPi
k is a place that is of interest

to the individual i and has a personal meaning for i that is identical to its functionality for the general public.
Typical examples of PuSPi

k are places where the individual i goes during his or her leisure time, such as a
restaurant or a shopping mall.
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Figure 1. The proposed framework for mining individual similarity.

3.2. Extracting the Semantics of Personally Significant Places

In this section, we describe the extraction of the semantics of individual significant places when
considering the problem from the perspective of personal behavior. The details of the process are given
in Algorithm 1.

Algorithm 1. PersonalSemanticExtraction (TH, STI, POI).

Input: TH: The set of individuals’ trajectories TH = {THi| 1 ≤ i ≤ |I|}
STI: The set of standard time intervals STI = {STIps}
POI: The set of points of interest

Output: SPps: The set of individuals’ significant places with personal meaning

SPps = { SPi
ps

∣∣∣1 ≤ i ≤ |I|}

Foreach i∈I do
si = ∅; // stay points of i
Foreach Ti∈THi do

si .Add(StayPointDetection(Ti, θtime, θdistance));
SPi = OPTICS(si, r, MinPts); // obtain significant places from stay points
PeSPi = MatchPe(SPi, STI, ε); // identify semantics of personal places of interest
SPi = SPi − PeSPi;
PuSPi = MatchPu(SPi, POI); // identify semantics of public places of interest
SPps

i = PeSPi ∪ PuSPi;
SPps.Add(SPps

i);
Return SPps;
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3.2.1. Identification of Individual Significant Places

As illustrated in Figure 2, a four-layered model is applied to identify the significant places with
personal meaning for an individual. The lowest layer of the model consists of the raw historical GPS
trajectory data of individual i, which are semantically poor. In the second layer, stay points are detected
from every GPS trajectory in i’s historical trajectory data. In the third layer, these stay points are
clustered in order to identify the individual i’s significant places. These clusters bear rich semantic
information and are used to further extract personal places of interest and public places of interest.
Finally, the extracted significant places with personal meaning constitute the top layer of the model.
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Stay point detection is a fundamental problem in trajectory studies and has been addressed by
numerous researchers. Common solutions to the problem include (1) density-based methods [33,34]
that are derived from the well-known density-based clustering algorithm DBSCAN, which incorporates
physical parameters of trajectories, such as speed, acceleration and changes in direction; (2) spatio-temporal
constraint-based methods [26,35], in which a stay point is detected when a sub-trajectory remains
within a spatial region for longer than a certain time threshold and within a certain distance threshold;
and, (3) index-based methods [36], in which customized indices are used to measure the status of each
trajectory point. In this paper, we use the intuitive concept of stay points as a starting point and then
apply the most popular approach, the spatio-temporal constraint-based method.

After detecting stay points from raw GPS trajectories, in the third layer, we cluster these
points separately for each individual to find the individual significant places. Specifically, for each
individual, we cluster all of the stay points detected from that individual’s trajectories by applying the
density-based clustering algorithm OPTICS; this procedure identifies places that are frequently visited
by that individual. The OPTICS algorithm was selected from among the several available clustering
methods because it is rather insensitive to the input parameters; thus, a broad range of parameter
settings can produce results of similar quality [37].

3.2.2. Semantic Interpretation of Individual Significant Places

At the identified significant places, individuals frequently participate in various activities. Hence,
individual significant places generally bear rich personal meanings. In this step, the semantics of such
places are extracted for each individual from that individual’s perspectives. The results of this step
constitute the fourth layer of our model, as shown in Figure 2.

Most previous studies [9–13] have interpreted the semantics of individual significant places by
means of reverse geocoding (i.e., comparing the locations of significant places to those of predefined
POIs). As mentioned earlier, the two major drawbacks of these approaches are that (1) they consider
only public places, and (2) they do not consider the personal meanings of those places. Inspired by the
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idea that semantic information about public places can be derived from mobility data at the collective
level [23,38], our solution is based on the assumption that at the individual level, the semantics of
personally significant places can be derived from a person’s long-term trajectory data. To avoid
the problems that are associated with existing studies, the inherent subjectiveness of individuals is
considered. Therefore, individual significant places are divided into two types: personal places of
interest and public places of interest. The semantics of each type are interpreted separately.

Personal places of interest, such as homes and workplaces, normally exhibit high levels of visit
frequency and temporal regularity. Generally speaking, individuals spend the most time at their homes
in the evening and at their workplaces during the daytime. Accordingly, we estimate the semantics of
personal places of interest, as follows:

We define a set of standard time intervals {STIps}, in which STIps = [tarrive, tleave] is the typical
temporal signature of a visit based on its personal semantics ps. For example, STIhome = [00:00,
07:00]∪[19:00, 24:00], and STIwork = [08:00, 17:00]workday. Given the set of an individual i’s significant

places SPi= {SPi
1, SPi

2, . . . , SPi
K}, as identified from i’s historical trajectories THi= {Ti

1, Ti
2, . . . , Ti

M},
for each SPi

k in SPi= {SPi
1, SPi

2, . . . , SPi
K}, we calculate its matching score for the personal semantics

ps. For each ps, the significant place with the highest matching score, calculated as shown below, is
assigned the corresponding personal meaning.

matchps

(
SPi

k

)
=

1∣∣∣SPi
k

∣∣∣ ∑
si

kj∈SPi
k

[si
kj.tarrive, si

kj.tleave] ∩ [STIp.tarrive, STIp.tleave]

[si
kj.tarrive, si

kj.tleave] ∪ [STIp.tarrive, STIp.tleave]
, (1)

Most individuals have only one personal place of interest with respect to a given personal
meaning—the one that shows the greatest similarity to the corresponding temporal signature. However,
it is unlikely that a similar one-to-one mapping can be established between temporal signatures and
the visits to public places of interest. For instance, at night, people may frequently go shopping, or to
a gym, a park, or a bar. Such visits have undistinguishable temporal signatures, even though their
semantics are disparate. Thus, the geographic contextual information is used instead of temporal
signatures to interpret the semantics of public places of interest.

Specifically, for a set of an individual i’s significant places SPi= {SPi
1, SPi

2, . . . , SPi
K}, the

identified personal places of interest PeSPi are first filtered out, and the remaining places are then
regarded as public places of interest PuSPi. Next, the semantics of the public places of interest are
extracted by associating each of these places with a spatial context (e.g., a POI). Given the set of
remaining public places of interest PuSPi, for each PuSPi

k, we compute the distance r between the
center coordinates of PuSPi

k and the farthest stay point in PuSPi
k, and we construct a searching

circle c of radius r (see Figure 3). Next, c is used to associate POIs with PuSPi
k and to interpret the

corresponding semantics. If at least one POI is contained in c, then we annotate PuSPi
k with the

category having the greatest numbers of POIs in c; otherwise, we find the nearest POI and annotate
PuSPi

k with its category. After extracting the semantics of PuSPi
k, the temporal signatures of visits to

PuSPi
k can be used for verification.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  8 of 21 

 

only public places, and (2) they do not consider the personal meanings of those places. Inspired by 
the idea that semantic information about public places can be derived from mobility data at the 
collective level [23,38], our solution is based on the assumption that at the individual level, the 
semantics of personally significant places can be derived from a person’s long-term trajectory data. 
To avoid the problems that are associated with existing studies, the inherent subjectiveness of 
individuals is considered. Therefore, individual significant places are divided into two types: 
personal places of interest and public places of interest. The semantics of each type are interpreted 
separately. 

Personal places of interest, such as homes and workplaces, normally exhibit high levels of visit 
frequency and temporal regularity. Generally speaking, individuals spend the most time at their 
homes in the evening and at their workplaces during the daytime. Accordingly, we estimate the 
semantics of personal places of interest, as follows: 

We define a set of standard time intervals {STIps}, in which STIps = [tarrive, tleave] is the typical 
temporal signature of a visit based on its personal semantics ps. For example, STIhome = [00:00, 
07:00]∪[19:00, 24:00], and STIwork = [08:00, 17:00]workday. Given the set of an individual i’s significant 
places SPi	= {SP1

i , SP2
i , …, SPK

i }, as identified from i’s historical trajectories THi= {T1
i , T2

i , …, TM
i }, for 

each SPk
i  in  SPi	= {SP1

i , SP2
i , …, SPK

i }, we calculate its matching score for the personal semantics ps. 
For each ps, the significant place with the highest matching score, calculated as shown below, is 
assigned the corresponding personal meaning. 

matchps൫SPk
i ൯	= 1ቚSPk

i ቚ ∑ [skj
i .tarrive,skj

i .tleave]∩[STIp.tarrive,STIp.tleave]

[skj
i .tarrive,skj

i .tleave]∪[STIp.tarrive,STIp.tleave]skj
i ∈SPk

i 	, (1)

Most individuals have only one personal place of interest with respect to a given personal 
meaning—the one that shows the greatest similarity to the corresponding temporal signature. 
However, it is unlikely that a similar one-to-one mapping can be established between temporal 
signatures and the visits to public places of interest. For instance, at night, people may frequently go 
shopping, or to a gym, a park, or a bar. Such visits have undistinguishable temporal signatures, even 
though their semantics are disparate. Thus, the geographic contextual information is used instead of 
temporal signatures to interpret the semantics of public places of interest.  

Specifically, for a set of an individual i’s significant places 	SPi	= {SP1
i , SP2

i , …, SPK
i } , the 

identified personal places of interest  PeSPi are first filtered out, and the remaining places are then 
regarded as public places of interest  PuSPi. Next, the semantics of the public places of interest are 
extracted by associating each of these places with a spatial context (e.g., a POI). Given the set of 
remaining public places of interest  PuSPi, for each PuSPk

i , we compute the distance r between the 
center coordinates of PuSPk

i  and the farthest stay point in  PuSPk
i , and we construct a searching 

circle c of radius r (see Figure 3). Next, c is used to associate POIs with PuSPk
i  and to interpret the 

corresponding semantics. If at least one POI is contained in c, then we annotate PuSPk
i  with the 

category having the greatest numbers of POIs in c; otherwise, we find the nearest POI and annotate 
PuSPk

i  with its category. After extracting the semantics of PuSPk
i , the temporal signatures of visits to 

PuSPk
i  can be used for verification.  

 
Figure 3. An example of extracting the semantics of public places of interest. 

3.3. Mining Individual Similarity 

Intuitively, the more commonality that two moving objects share, the more similar they are [39]. 
As a result, a universal measurement suitable for more general GIScience applications should be 
proposed. Here, we present such a new measurement, the Individual Similarity Measurement 
considering interactions with Personally Significant Places (ISM-PSP). The basic assumptions of the 

Figure 3. An example of extracting the semantics of public places of interest.

3.3. Mining Individual Similarity

Intuitively, the more commonality that two moving objects share, the more similar they are [39].
As a result, a universal measurement suitable for more general GIScience applications should be
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proposed. Here, we present such a new measurement, the Individual Similarity Measurement
considering interactions with Personally Significant Places (ISM-PSP). The basic assumptions of the
ISM-PSP are that (1) the spatial and temporal interactions of individuals with their significant places can
be used to mine the similarity among individuals, which can help to characterize individuals’ features,
and (2) the significant places of two individuals can be compared only when they are semantically
identical from each individual’s own perspective. The details of the individual similarity measurement
process are shown in Algorithm 2.

Algorithm 2. IndividualSimilarityMeasurement (TH, SPps).

Input: TH: The set of individuals’ trajectories TH = {THi|1 ≤ i ≤ |I|}
SPps: The set of individuals’ significant places with personal meaning SPps = {SPi

ps|1 ≤ i ≤ |I|}
Output: SimMatrix: Individual similarity matrix
Foreach a∈ I do

PSa = GetPersonalSemantics(SPa
ps);

PS = PSa; // personal semantics
Foreach b∈ I do

PSb = GetPersonalSemantics(SPb
ps);

PS = PS ∪ PSb;
SimMatrix(a,b) = 0;
Foreach ps∈ PS do

Simspatial (a,b) = CalSpatialSim(a,b);
Simtemporal (a,b) = CalTemporalSim(a,b);
Simps (a,b) = w1* Simspatial (a,b) + w2* Simtemporal (a,b);
SimMatrix(a,b) += wps * Simps(a,b);

Return SimMatrix;

3.3.1. Grouping Individual Significant Places

Based on our assumptions, in the ISM-PSP calculation, the individual significant places are first
grouped by those that share the same personal meaning. Given two individuals a and b, there are
two sets of personal semantics, PSa = {psa

1, psa
2, . . . , psa

n} and PSb = {psb
1, psb

2, . . . , psb
n}; these sets are

extracted from a’s significant places SPa and from b’s significant places SPb, respectively. We group all
of a’s significant places into na groups, each with identical personal semantics among all the members
of that group: SPa

ps= {SPa
k|SP kbelongs to a and SPk.semanics = ps}. Next, we similarly group b’s

significant places into nb groups: SPb
ps= {SPb

k|SP k belongs to b and SPk.semanics = ps}.
Example 1: Grouping the significant places of two individuals, a and b (Table 1). Five significant

places {SPa
1, SPa

2, SPa
3, SPa

4, SPa
5} are identified from a’s historical trajectories. In accordance with the

extracted semantics PSa = {Home, Workplace, Restaurant, Bookstore}, a’s significant places are grouped
into Home = {SPa

2}, Workplace = {SPa
3}, Restaurant = {SPa

1, SPa
5} and Bookstore = {SPa

4}. Seven significant
places {SPb

1, SPb
2, SPb

3, SPb
4, SPb

5, SPb
6, SPb

7} are identified from b’s historical trajectories. In accordance
with the corresponding extracted semantics PSb = {Home, Workplace, Restaurant, Bookstore, Shopping
mall}, b’s significant places are grouped into Home = {SPb

3}, Workplace = {SPb
1}, Restaurant = {SPb

2},
Book store = {SPb

4, SPb
7} and Shopping mall = {SPb

5}.

Table 1. An example of grouping the significant places of two individuals, a and b.

Place Semantics a’s Significant Places b’s Significant Places

Home SPa
2 SPb

3
Workplace SPa

3 SPb
1

Restaurant SPa
1 , SPa

5 SPb
2

Bookstore SPa
4 SPb

4 , SPb
7

Shopping mall SPb
5
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3.3.2. Measuring Individual Similarity

After the significant places have been grouped based on the diverse personal place semantics of
each individual, the ISM-PSP measures the similarity between individual a and b, as follows:

Sim(a, b) = ∑ps∈PSa∪PSb wps ∗ Simps(a, b), (2)

where wps is the weight of personal semantics ps and is determined by the level of the importance of ps
to the corresponding applications, and Simps(a, b) is the similarity score of a and b for their specific
personal semantics ps, and is calculated as follows:

Simps(a, b)= w1 ∗ Simspatial({SPa
ps}, {SPb

ps})+w2 ∗ Simtemporal({SPa
ps}, {SPb

ps}), (3)

In this way, we convert the individual similarity measurements into a sum over the set of spatial
and temporal similarities between two sets. In the ISM-PSP approach, the similarity between two
individuals is determined by measuring their spatio-temporal similarity for every type of personal
semantics ps ∈ PSa ∪ PSb. For a given ps ∈ PSa ∪ PSb, we compute the spatial and temporal
similarity between SPa

ps and SPb
ps using the following eaquation:

Simspatial|temporal({SPa
ps}, {SPb

ps}) =
∑SPa

k∈SPa
ps ,SPb

k∈SPb
ps

I(SPa
ki, SPb

k)∣∣∣{SPa
ps}
∣∣∣+ ∣∣∣{SPb

ps}
∣∣∣ , (4)

where I(SPa
k, SPb

k) is an indicator function that is defined as follows:

I(SPa
k, SPb

k) =

{
1 i f dist(SPa

k, SPb
k) ≤ distThreshold

0 otherwse
, (5)

Regarding spatial distance, as described in Definition 3, a significant place SPk consists of a
collection of stay points. The coordinates of SPk are represented by the average latitude and longitude
of the constituent points. The Euclidean distance between the coordinates of SPa

k and SPb
k is used as

the spatial distance measurement.
Regarding temporal distance, we measure the temporal difference between a’s visit to SPa

k and b’s
visit to SPb

k by dividing the day into 24 h and constructing an hourly distribution of each individual’s
visits to his or her significant places. Given the probability distributions pd1(t) and pd2(t) of two
individuals’ visits to their respective significant places, when the two places are semantically identical,
their temporal distance is measured by the Kullback-Leibler divergence of pd1 and pd2, as follows:

disttemporal(SPa
k, SPb

k) =
1
2
(DKL(pd 1(t)||pd 2(t)) + DKL(pd 2(t)||pd 1(t))), (6)

DKL(pd 1(t)||pd 2(t)) = ∑ pd1(t)log
1

pd2(t)
, (7)

To address the case in which DKL(pd 1(t)||pd 2(t)) becomes infinite when pd1 6= 0 but
pd2 = 0, a small constant C is introduced, and the Kullback-Leibler divergence is computed using a
smoothing method.

4. Experiments

In this section, several experiments with the real-world Geolife dataset are performed to evaluate
our proposed framework. The datasets and their preparation are described in Section 4.1. Section 4.2
corresponds to phase 1 of our proposed framework and presents the results of semantics extraction
of personally significant places. In Section 4.3, to assess the performance of the proposed ISM-PSP
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in phase 2 of our proposed framework, we perform comparative experiments with two previous
approaches and a modified version of the ISM-PSP. To illustrate the possible applications of our
framework, we also use the proposed method to generate individual groups in Section 4.4.

4.1. Dataset

4.1.1. GPS Trajectory Dataset

The GPS trajectory dataset was collected in the Geolife project by 182 users over a period of more
than five years (from April 2007 to August 2012) [35]. This dataset covers widely distributed areas,
including over 30 cities in China and several cities that are located in the United States of America
(USA) and Europe. In our experiments, we used only those trajectories from Beijing, which constitute
the majority of the Geolife dataset.

The Geolife dataset contains records for a broad range of individuals’ outdoor movements,
covering daily routines such as going home and going to work as well as leisure activities, such as
dining and shopping. In other words, this dataset includes visits to both personal and public places
of interest.

4.1.2. POI Dataset

To interpret the semantics of public places of interest in Beijing, we obtained a dataset of public
POIs in Beijing from Dianping. As shown in Table 2, this Beijing POI dataset includes 181,924 POIs,
corresponding to eight major types of individual daily activities.

Table 2. Beijing points of interest (POI) dataset.

Type ID Type Count

1 Shopping 72,370
2 Restaurant 52,567
3 Education 21,224
4 Hotel 15,272
5 Sports 10,557
6 Life service 9035
7 Entertainment 784
8 Healthcare 115

Total 181,924

4.2. Semantics Extraction of Significant Places

This experiment was designed to interpret the semantics of individual significant places extracted
from the Geolife historical trajectory data.

First, we used each individual’s GPS trajectory histories to detect stay points by applying the
spatio-temporal constraint-based method with the distance threshold set to 30 m and the time threshold
set to 30 min. In total, 19,374 stay points were detected from the raw GPS trajectories of 182 individuals
in this stage. Next, the OPTICS algorithm was applied to each individual’s collected stay point data
to identify that individual’s significant places. During this process, we set the reachability-distance to
100 m and the value of MinPts to 10; consequently, in our experiment, a place was considered to be
significant to an individual only when it was visited more than 10 times by that individual. A total of
154 significant places were discovered, and 63 of the 182 individuals had at least one significant place.
Among these 63 individuals, the median number of significant places possessed by each individual
was 2, and the maximum number was 10 (corresponding to individual #4). Since it can be inferred
that the spatio-temporal interactions between individuals and places are generally similar in the
Geolife dataset, we set the parameters relatively strictly to improve the accuracy of significant places
identification. As a result, there were many individuals for whom no significant places were captured.

Then, we interpreted the semantics of the identified significant places. The semantics of two
types of personal places of interest were extracted in this experiment: homes and workplaces. We set
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STIhome = [00:00, 07:00] ∪ [19:00, 24:00] and STIwork = [08:00, 17:00]workday. For each identified significant
place, the home matching score was calculated first. If the highest home matching score for an
individual exceeded the threshold value ε (ε was set to 0.3 in our experiment), the significant place
corresponding to that matching score was interpreted as that individual’s home. After filtering out
the significant places identified as individuals’ homes, we computed the workplace matching scores
for the remaining significant places. Similarly, when the highest workplace matching score for an
individual exceeded ε (ε was set to 0.3 in our experiment), the significant place corresponding to that
matching score was interpreted as that individual’s workplace. Figure 4 shows the results of semantics
extraction. Regarding the personal places of interest, the identified homes were all located in the
northern part of Beijing, whereas the identified workplaces were mostly located in the northwestern
part of the city. This is because most of the individuals who participated in the Geolife program came
from academic institutions in northwestern Beijing, such as Tsinghua University or Microsoft Research
Asia. In addition, nine homes and 52 workplaces were discovered. The reason that more personal
places of interest were identified as workplaces than as homes may be because the participating
individuals tended to record their trajectories more often during the daytime than at night. Because
we considered a place to be an individual’s home only when his or her stay duration in that place
sufficiently overlapped with STIhome, sparse records may have caused failures in home identification.
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After the personal places of interest were excluded, the remaining significant places were
compared to the Beijing POI dataset using the method that is described in Section 3.2.2. As shown in
Table 3, 50 public places of interest were identified in total, and the majority of which were restaurants,
education facilities and shopping locations. These public places of interest are distributed, as shown
in Figure 4. We found that (1) many public places of interest were in close proximity to individuals’
personal places of interest, implying that most individuals’ leisure activities occurred near their homes
and workplaces, and (2) other public places of interest were generally located in commercial centers,
such as the eastern part of Beijing, which contains several major super-malls that are capable of
satisfying individuals’ higher entertainment needs.
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Table 3. Public places of interest identified.

Type ID Type Count

1 Shopping 11
2 Restaurant 14
3 Education 13
4 Hotel 5
5 Sports 5
6 Life service 2

Total 50

4.3. Comparative Analysis of Individual Similarity Measurements

To evaluate the performance of the proposed framework for measuring individual similarity
and to demonstrate its ability to discern individuals, a comparative analysis was performed between
our method and the existing MSTP [9] and MTP [27] methods. In this experiment, each individual’s
trajectory data were divided into two parts, which were then treated as trajectories from two different
people. Specifically, for each individual i’s trajectory data, trajectories from odd weeks were assigned to
ui, and trajectories from even weeks were assigned to vi. In this way, we generated two datasets, called
Dataset #1 and Dataset #2. To implement the MSTP and MTP methods, the Beijing POI dataset was
used to transform raw GPS trajectories into semantic trajectories. In addition, to verify the necessity
of considering personal meaning when extracting the semantics of significant places, phase 1 of our
proposed framework was modified to consider only public places.

For each individual ui in Dataset #1, four different individual similarity measurements were
applied to find ui’s neighbors in Dataset #2 and the neighbors were sorted in descending order by their
similarity scores. Here, the ground truth concerning the nearest neighbors was known, because for
every individual, ui and vi were artificially generated from i. Thus, ideally, vi should appear in the
first position of the neighbors list for ui.

To evaluate the performance of the individual similarity measurements, we defined a metric called
the average rank, as follows. Given an individual ui, suppose that the obtained similarity score between
ui and its neighbor nbl is denoted by sim

(
ui, nbl

)
and that the ordered neighbors list is denoted by Nui

,
where Nui

= {
(
nb1, sim

(
ui, nb1

))
,
(
nb2, sim

(
ui, nb2

))
, . . . ,

(
nbm, sim

(
ui, nbm

))
}. Then, the average

rank of the neighbor nbl , denoted by R(nbl) , is defined as the average of nbl ’s best and worst possible
ranks in the ordered neighbors list, and is calculated as follows:

R(nbl) =
1
2
(|{nb|sim(ui, nb) > m(ui, nbl)}|+ |{nb|sim(ui, nb) ≥ sim(ui, nbl)}|+ 1), (8)

Example 2: Calculating the average rank. For the individual u000, three different
similarity measurements are applied to calculate similarity scores and identify the neighbors.
The results of the three similarity measurements are {(v001, 1), (v000, 0.8), (v002, 0.3)} (case #1),
{(v000, 0.9), (v001, 0.9), (v002, 0.5)} (case #2) and {(v000, 0.9), (v001, 0.5), (v002, 0.5)} (case #3). Next, we
calculate the average rank of v000 (which is the true nearest neighbor of u000) for the three different
cases, as follows:

Case #1 : R(v000) =
1
2
(
∣∣∣{v001}

∣∣∣+ ∣∣∣{v001, v000}
∣∣∣+ 1) =

1
2
(1 + 2 + 1) = 2,

Case #2 : R
(

v000
)
=

1
2

(
|∅|+

∣∣∣{v000, v001}
∣∣∣+ 1

)
=

1
2
(0 + 2 + 1) = 1.5,

Case #3 : R
(

v000
)
=

1
2

(
|∅|+

∣∣∣{v000}
∣∣∣+ 1

)
=

1
2
(0 + 1 + 1) = 1,
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Using the average rank, we can evaluate the results of the similarity measurements. We choose
to use the average rank instead of the absolute rank because this metric represents the ability of
the similarity measurements to find identical individuals, as well as to discern different individuals.
In example 2, although v000 was found to be the most similar to u000 in both case #2 and case #3,
R
(
v000) in case #3 is smaller because this was the only nearest neighbor obtained, whereas in case

#2, v001 was also considered to be the most similar to u000. For each individual ui in Dataset #1, we
calculated the average rank of its corresponding ground-truth identical individual vi. A smaller R

(
vi)

value indicates a better similarity result. In the ideal case, R
(
vi) should be equal to 1, meaning that

vi was identified as the only nearest neighbor of ui. Therefore, we defined the average rank score to
evaluate the performance of an individual similarity measurement by incorporating its ability to find
the true identical individual vi for each ui. A better individual similarity measurement will have a
higher average rank score. If for every ui, a similarity measurement could always achieve R

(
vi) = 1,

its average rank score would be equal to 1.

Average rank score =
1
|U|∑ui∈U

1
R(vi)

, (9)

Figure 5 shows the total numbers of vi whose average rank is less than or equal to various R values
using the MSTP approach, the MTP approach, the ISM-PSP approach without personal semantics
(ISM-PSP without ps) and the proposed ISM-PSP approach (which considers the perspective of personal
behavior). As mentioned earlier, a better similarity measurement should identify the true nearest
neighbors at smaller R values more often. The results show that the ISM-PSP method yields the highest
number of vi with R = 1. Thus, the ISM-PSP results are the closest to the ground truth, indicating
that the ISM-PSP is more capable of finding identical individuals than the other measurements are.
In addition, both the ISM-PSP and the ISM-PSP without ps achieve better performance than the MSTP
and the MTP approaches at smaller R values, because using the spatio-temporal properties of visits
to significant places is more accurate than using the sequential properties. We note that in this case,
the MSTP approach performs better than the MTP approach because when comparing two individuals
ui and vi, for each LCS of ui, the MSTP compares all of the LCSs of vi, while the MTP compares
only the nearest LCS of vi. Therefore, when the LCSs are generally short, as in our dataset, the MTP
approach fails to obtain good results because of the lack of information. As R increases, the ISM-PSP
still achieves the best results. However, for large R values, a large number of vi, for which the average
rank is less than or equal to R is not necessarily a guarantee of good performance. An unsatisfactory
similarity measurement could also generate many vi of average rank ≤ a large R value by increasing
the sim

(
ui, nbl

)
values of more candidates nbl . In other words, such a method may appear to achieve

good performance in finding identical individuals, but it improves its probability of including ui’s
identical individual vi in the resulting neighbor list by including as many nb as possible. In this way,
as R increases, more identical individuals vi are identified.

Therefore, we further compared the four individual similarity measurements based on their ability
to identify vi in the first position (by absolute position rank), which reflects the probability with which
they identify vi as the most similar to ui; we also assessed the average rank score, which represents
the ability to discern other different individuals. As shown in Figure 6, both the ISM-PSP and the
MTP approaches have a high probability of successfully identifying vi in the first position. However,
the average rank score of the MTP is much lower than that of the ISM-PSP, which means that for those
vi in the first position obtained by the MTP, R

(
vi) is generally large. This finding indicates that the

MTP achieves its high probability of finding identical individuals at the cost of generating many false
nearest neighbors. We also compared the ISM-PSP results with and without ps, as shown in Figures 5
and 6. These figures show that the ISM-PSP approach is more capable of discerning individuals when
place semantics are considered with personal meaning than when only the semantics of public places
without personal meaning are interpreted. This result suggests that it is insufficient to assess the
distinctive characteristics of individuals based solely on their visits to public places, as most previous
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studies have done. Thus, personally significant places are helpful in characterizing individuals and
should not be neglected.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  15 of 21 
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4.4. Grouping Individuals

Our proposed framework allows for us to investigate individual similarity using any single or
combined semantics. Specifically, by setting different personal semantics ps in the ISM-PSP, one can
compute the individual similarities in terms of different semantics aspects. Here, only personal places
of interest were used in the example application.

In this experiment, we first mined individual similarities based solely on their visits interpreted
as “going to work” (ps = {Workplace}). We set distThrespatial = 300 m and distThretemporal = 1, and we
assigned two individuals to the same group only when their similarity was equal to 1. Figure 7 shows
that four groups were identified, all of which correspond to research institutes and universities in
northwestern Beijing. The largest group (Group #1) is Microsoft Research Asia, located on Zhichun
Road in Haidian District; Group #2 is near the School of Software of Tsinghua University; Group #3
is in the Chinese Academy of Sciences; and, Group #4 is the Beijing University of Aeronautics and
Astronautics. The results reflect the fact that most participants in the Geolife project worked at
the research institutes and universities listed above [40]. Our method successfully identified their
workplaces and aggregated individuals into different groups based on the spatio-temporal similarity
of their visits to their workplaces.
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After identifying individuals who exhibited high similarity in their visits to their workplaces,
we also took the individuals’ homes into consideration to discover groups whose visits to both their
homes and workplaces were similar (ps = {Home, Workplace}). As shown in Figure 8, only two groups
were identified under this constraint. Group #1 included individuals who worked at Microsoft
Research Asia and lived at Tsinghua University, and Group #2 included individuals whose homes
and workplaces were both at Tsinghua University. We inferred that Group #1 could include students
from Tsinghua University who were interns at Microsoft Research Asia, whereas Group #2 consisted
of students or staff who both lived and studied or worked at Tsinghua University. We separately
calculated the temporal distributions of homes and workplaces visits for the individuals in Groups #1
and #2 (Figure 9). Substantial differences were found between the temporal signals of the home and
workplace visits in both groups. When compared with the individuals in Group #2, the individuals in
Group #1 were less likely to be found at home during the daytime, which is consistent with the daily
routines of an internship.
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5. Conclusions

Individuals have a remarkable propensity to return to their frequently visited places. Hence,
the interactions between individuals and these places are likely to represent individuals’ characteristics.
To facilitate the capture of these characteristics of individuals and the mining of their similarity,
this study investigated how individuals spatially and temporally interact with their personally
significant places. A framework was presented for mining individual similarity based on visits
to personally significant places extracted from long-term trajectory data. Our framework includes two
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major phases: extracting the semantics of personally significant places and mining individual similarity.
In contrast to many previous studies, we extracted place semantics with personal meaning, and our
semantic extraction process considered individuals’ visits to both personal and public places of interest.
We also proposed a new individual similarity measurement, the ISM-PSP, which incorporates both the
spatio-temporal and semantic properties of individuals’ visits to significant places. Experiments using
a real-world GPS dataset suggest that (1) when compared with the existing approaches, the proposed
ISM-PSP is more capable of finding identical individuals, while maintaining low numbers of false
identifications; (2) more accurate identification of individuals can be achieved by considering the
spatio-temporal properties of visits to significant places than by considering the sequential properties;
and, (3) personal places of interest play a vital role in characterizing individuals, which indicates
that the semantics of visits to significant places with personal meaning are important for assessing
individual similarity. Therefore, we conclude that it is insufficient to measure individual similarity by
only analyzing the sequential properties of visits to public places, as done in previous works.

Our study has several limitations. First, when extracting personal places of interest, we only
identified the most common types (homes and workplaces) for illustration. However, personal places
of interest actually include a much wider range of places. According to Definition 4, a personal place
of interest to an individual could be any place that carries a special personal meaning that is distinct
from its functionality for the general public. Different types of personal places of interest should be
identified for specific applications. Second, during the semantic interpretation process, we inferred the
semantics of personal places of interest by comparing the temporal distribution of a person’s presence
at a place against certain predefined typical temporal signatures. However, there are many people who
deviate from a standard work schedule, and others may work at home. In these cases, our method
presented in Section 3.2.2 could fail to extract the accurate semantics. An alternative method could be to
identify homes as places where individuals spend most of their time at night and workplaces as places
where individuals spend most of their time during the daytime on workdays. Third, our similarity
measurement results could be significantly affected by the accuracy of semantic interpretation. This is
because we designed the ISM-PSP based on the assumption that the spatio-temporal patterns of two
visits are comparable only when they are driven by the same reason. In other words, we do not
compare one individual’s working behavior with another’s dining behavior, although they might
appear at the same restaurant. Therefore, errors in place semantics extraction could lead to poor results
in measuring individual similarity. Fourth, although the proposed framework enables us to generate
meaningful subgroups in any single or combined semantics by setting different ps in the ISM-PSP,
in this paper, only personal places of interest were used to demonstrate the possible application of the
proposed framework. The sparse records in our dataset restricted the types of significant places we
were able to discover, thus restraining the types of groups that we could identify.

Future work will focus on improving the semantics enrichment process applied in the proposed
framework. Other publicly available data in social networks (e.g., georeferenced posts on Twitter)
can be used to explore place semantics [25,41–44]. Through the synthesis of individual similarities
related to appropriate semantics, our similarity measurement could be applied in other fields using
different datasets. For example, our approach could reveal meaningful relationships by identifying
individuals who work together and who also share high a spatio-temporal similarity in their visits to
certain restaurants or bars.
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