Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Leisure-Time Physical Inactivity Data
2.1.2. Physical Environmental Factors
2.1.3. Social Environmental Factors
2.2. Statistical Analysis
2.2.1. Multicollinearity
2.2.2. Spatial Regression Models
3. Results
3.1. Descriptive Statistics
3.2. OLS Regression
3.3. Spatial Regression
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Berke, E.M.; Koepsell, T.D.; Moudon, A.V.; Hoskins, R.E.; Larson, E.B. Association of the built environment with physical activity and obesity in older persons. Am. J. Public Health 2007, 97, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Duvall, J.; Sullivan, W.C. How to get more out of the green exercise experience. In Green Exercise Linking Nature, Health and Well-Being; Routledge: Abingdon, UK, 2016; Volume 37. [Google Scholar]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Stigsdotter, U.K.; Ekholm, O.; Schipperijn, J.; Toftager, M.; Kamper-Jorgensen, F.; Randrup, T.B. Health promoting outdoor environments-Associations between green space, and health, health-related quality of life and stress based on a Danish national representative survey. Scand. J. Soc. Med. 2010, 38, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, S.; Ellaway, A.; Cummins, S. Place effects on health: How can we conseptualise, operationalise and measure them? Soc. Sci. Med. 2002, 55, 125–139. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Brown, A.L.; Troped, P.J. Portable global positioning units to complement accelerometry-based physical activity monitors. Med. Sci. Sports Exerc. 2005, 37, S572–S581. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, D.A.; Cho, G.-H.; Evenson, K.R.; Conway, T.L.; Cohen, D.; Ghosh-Dastidar, B.; Pickrel, J.L.; Veblen-Mortenson, S.; Lytle, L.A. Out and about: Association of the built environment with physical activity behaviors of adolescent females. Health Place 2012, 18, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, B.W.; Cooper, A.R.; Page, A.S.; Jago, R. Greenspace and children’s physical activity: A GPS/GIS analysis of the PEACH project. Prev. Med. 2010, 51, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; Berrington De Gonzalez, A.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, G.; Lee, I.M.; Hamer, M.; Stamatakis, E. Association of “weekend warrior” and other leisure time physical activity patterns with risks for all-cause, cardiovascular disease, and cancer mortality. JAMA Intern. Med. 2017, 177, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Lahti, J.; Holstila, A.; Lahelma, E.; Rahkonen, O. Leisure-time physical activity and all-cause mortality. PLoS ONE 2014, 9, e101548. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; De Gonzalez, A.B.; Hartge, P.; et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Schmid, T.; Killingsworth, R.; Zlot, A.; Raudenbush, S. Relationship between urban sprawl and physical activity, obesity, and morbidity. Am. J. Health Promot. 2003, 18, 47–57. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. Physical Activity and Health: A Report of the Surgeon General; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1996.
- Neumark-Sztainer, D. Multicontextual correlates of adolescent leisure-time physical activity. Am. J. Prev. Med. 2014, 46, 605–616. [Google Scholar] [CrossRef]
- Sallis, J.F.; Owen, N.; Fisher, E. Ecological models of health behavior. In Health Behavior and Health Education: Theory, Research, and Practice; Jossey-Bass: San Francisco, CA, USA, 2015; Volume 5, pp. 43–64. [Google Scholar]
- Su, M.; Tan, Y.Y.; Liu, Q.M.; Ren, Y.J.; Kawachi, I.; Li, L.M.; Lv, J. Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China. Prev. Med. 2014, 66, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A.; Todd, M.; Kurka, J.; Conway, T.L.; Cain, K.L.; Frank, L.D.; Sallis, J.F. Patterns of Walkability, Transit, and Recreation Environment for Physical Activity. Am. J. Prev. Med. 2015, 49, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.A.; Clark, A.F.; Gilliland, J.A. Built environment influences of children’s physical activity: Examining differences by neighbourhood size and sex. Int. J. Environ. Res. Public Health 2016, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Roemmich, J.N.; Epstein, L.H.; Raja, S.; Yin, L. The neighborhood and home environments: Disparate relationships with physical activity and sedentary behaviors in youth. Ann. Behav. Med. 2007, 33, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Larsen, P.; Nelson, M.C.; Page, P.; Popkin, B.M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef] [PubMed]
- King, A.C.; Castro, C.; Wilcox, S.; Eyler, A.A.; Sallis, J.F.; Brownson, R.C. Personal and environmental factors associated with physical inactivity among different racial-ethnic groups of US middle-aged and older-aged women. Health Psychol. 2000, 19, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Coombes, E.; Jones, A.P.; Hillsdon, M. The relationship of physical activity and overweight to objectively measured green space accessibility and use. Soc. Sci. Med. 2010, 70, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.J.; Li, F.; Michael, Y.; Cleveland, M. Neighborhood-level influences on physical activity among older adults: A multilevel analysis. J. Aging Phys. Act. 2004, 12, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.; Kerr, J.; Chapman, J.; Sallis, J. Urban form relationships with walk trip frequency and distance among youth. Am. J. Health Promot. 2007, 21, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Grow, H.; Saelens, B.; Kerr, J.; Durant, N.; Norman, G.; Sallis, J. Where are youth active? Roles of proximity, active transport, and built environment. Med. Sci. Sports Exerc. 2008, 40, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Handy, S.L.; Boarnet, M.G.; Ewing, R.; Killingsworth, R.E. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Hillsdon, M.; Panter, J.; Foster, C.; Jones, A. The relationship between access and quality of urban green space with population physical activity. Public Health 2006, 120, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Hoehner, C.M.; Ramirez, L.K.B.; Elliott, M.B.; Handy, S.L.; Brownson, R.C. Perceived and objective environmental measures and physical activity among urban adults. Am. J. Prev. Med. 2005, 28, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Frank, L.; Sallis, J.F.; Chapman, J. Urban form correlates of pedestrian travel in youth: Differences by gender, race-ethnicity and household attributes. Transp. Res. Part D Transp. Environ. 2007, 12, 177–182. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Spreeuwenberg, P.; Groenewegen, P.P. Physical activity as a possible mechanism behind the relationship between green space and health: A multilevel analysis. BMC Public Health 2008, 8, 206. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.; Almeida, M.; Santos, P.; Ribeiro, J.C. Perceived neighborhood environments and physical activity in adolescents. Prev. Med. 2005, 41, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Nagel, C.L.; Carlson, N.E.; Bosworth, M.; Michael, Y.L. The relation between neighborhood built environment and walking activity among older adults. Am. J. Epidemiol. 2008, 168, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Saelens, B.E.; Sallis, J.F.; Black, J.B.; Chen, D. Neighborhood-based differences in physical activity: An environment scale evaluation. Am. J. Public Health 2003, 93, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Bowles, H.R.; Bauman, A.; Ainsworth, B.E.; Bull, F.C.; Craig, C.L.; Sjöström, M.; De Bourdeaudhuij, I.; Lefevre, J.; Matsudo, V. Neighborhood environments and physical activity among adults in 11 countries. Am. J. Prev. Med. 2009, 36, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Cerin, E.; Conway, T.L.; Adams, M.A.; Frank, L.D.; Pratt, M.; Salvo, D.; Schipperijn, J.; Smith, G.; Cain, K.L.; et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet 2016, 387, 2207–2217. [Google Scholar] [CrossRef]
- Santos, M.P.; Page, A.S.; Cooper, A.R.; Ribeiro, J.C.; Mota, J. Perceptions of the built environment in relation to physical activity in Portuguese adolescents. Health Place 2009, 15, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Troped, P.J.; Saunders, R.P.; Pate, R.R.; Reininger, B.; Addy, C.L. Correlates of recreational and transportation physical activity among adults in a New England community. Prev. Med. 2003, 37, 304–310. [Google Scholar] [CrossRef]
- Troped, P.J.; Wilson, J.S.; Matthews, C.E.; Cromley, E.K.; Melly, S.J. The Built Environment and Location-Based Physical Activity. Am. J. Prev. Med. 2010, 38, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Lee, K. Within what distance does “Greenness” best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. Int. J. Environ. Res. Public Health 2017, 14, 675. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.W.; Balluz, L.S.; Heath, G.W.; Moriarty, D.G.; Ford, E.S.; Giles, W.H.; Mokdad, A.H. Associations between recommended levels of physical activity and health-related quality of life Findings from the 2001 Behavioral Risk Factor Surveillance System (BRFSS) survey. Prev. Med. 2003, 37, 520–528. [Google Scholar] [CrossRef]
- Fontaine, K.R.; Heo, M.; Bathon, J. Are US adults with arthritis meeting public health recommendations for physical activity? Arthritis Rheum. 2004, 50, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Gordon-Larsen, P.; Nelson, M.C.; Beam, K. Associations among active transportation, physical activity, and weight status in young adults. Obes. Res. 2005, 13, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.P.; Coombes, E.G.; Griffin, S.J.; van Sluijs, E.M. Environmental supportiveness for physical activity in English schoolchildren: A study using Global Positioning Systems. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Salmon, J.; Owen, N.; Bauman, A.; Schmitz, M.K.H.; Booth, M. Leisure-time, occupational, and household physical activity among professional, skilled, and less-skilled workers and homemakers. Prev. Med. 2000, 30, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.; Bauman, A.; Pratt, M. Environmental and policy interventions to promote physical activity. Am. J. Prev. Med. 1998, 15, 379–397. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef] [PubMed]
- Jago, R.; Baranowski, T.; Baranowski, J.C. Observed, GIS, and self-reported environmental features and adolescent physical activity. Am. J. Health Promot. 2006, 20, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Roemmich, J.N.; Epstein, L.H.; Raja, S.; Yin, L.; Robinson, J.; Winiewicz, D. Association of access to parks and recreational facilities with the physical activity of young children. Prev. Med. 2006, 43, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Jago, R.; Baranowski, T.; Harris, M. Relationships between GIS environmental features and adolescent male physical activity: GIS coding differences. J. Phys. Act. Health 2006, 3, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Tucker, P.; Irwin, J.D.; Gilliland, J.; He, M.; Larsen, K.; Hess, P. Environmental influences on physical activity levels in youth. Health Place 2009, 15, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.A.; Ashwood, J.S.; Scott, M.M.; Overton, A.; Evenson, K.R.; Staten, L.K.; Porter, D.; McKenzie, T.L.; Catellier, D. Public parks and physical activity among adolescent girls. Pediatrics 2006, 118, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Dowda, M.; Brown, W.H.; McIver, K.L.; Pfeiffer, K.A.; O’Neill, J.R.; Addy, C.L.; Pate, R.R. Policies and characteristics of the preschool environment and physical activity of young children. Pediatrics 2009, 123, e261–e266. [Google Scholar] [CrossRef] [PubMed]
- Timperio, A.; Giles-Corti, B.; Crawford, D.; Andrianopoulos, N.; Ball, K.; Salmon, J.; Hume, C. Features of public open spaces and physical activity among children: Findings from the CLAN study. Prev. Med. 2008, 47, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Norman, G.J.; Sallis, J.F.; Patrick, K. Exercise aids, neighborhood safety, and physical activity in adolescents and parents. Med. Sci. Sports Exerc. 2008, 40, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Timperio, A.F.; Crawford, D.A. Neighborhood road environments and physical activity among youth: The CLAN study. J. Urban Health 2008, 85, 532–544. [Google Scholar] [CrossRef] [PubMed]
- Braza, M.; Shoemaker, W.; Seeley, A. Neighborhood design and rates of walking and biking to elementary school in 34 California communities. Am. J. Health Promot. 2004, 19, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Gilliland, J.; Hess, P.; Tucker, P.; Irwin, J.; He, M. The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. Am. J. Public Health 2009, 99, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Houston, D. Implications of the modifiable areal unit problem for assessing built environment correlates of moderate and vigorous physical activity. Appl. Geogr. 2014, 50, 40–47. [Google Scholar] [CrossRef]
- Lovasi, G.S.; Grady, S.; Rundle, A. Steps Forward: Review and Recommendations for Research on Walkability, Physical Activity and Cardiovascular Health. Public Health Rev. 2012, 33, 484–506. [Google Scholar] [CrossRef] [PubMed]
- Koohsari, M.J.; Badland, H.; Giles-Corti, B. (Re)Designing the built environment to support physical activity: Bringing public health back into urban design and planning. Cities 2013, 35, 294–298. [Google Scholar] [CrossRef]
- Dunton, G.F.; Almanza, E.; Jerrett, M.; Wolch, J.; Pentz, M.A. Neighborhood park use by children: Use of accelerometry and global positioning systems. Am. J. Prev. Med. 2014, 46, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Intille, S.S.; Dunton, G.F. Using ecological momentary assessment to understand where and with whom adults’ physical and sedentary activity occur. Int. J. Behav. Med. 2015, 22, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Schwanen, T.; Wang, D. Well-Being, Context, and Everyday Activities in Space and Time. Ann. Assoc. Am. Geogr. 2014, 104, 833–851. [Google Scholar] [CrossRef]
- Buck, C.; Kneib, T.; Tkaczick, T.; Konstabel, K.; Pigeot, I. Assessing opportunities for physical activity in the built environment of children: Interrelation between kernel density and neighborhood scale. Int. J. Health Geogr. 2015, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M. The Uncertain Geographic Context Problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Kwan, M. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Bish, C.L.; Blanck, H.M.; Serdula, M.K.; Marcus, M.; Kohl, H.W.; Khan, L.K. Diet and physical activity behaviors among Americans trying to lose weight: 2000 Behavioral Risk Factor Surveillance System. Obes. Res. 2005, 13, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Meakins, G.; Hamidi, S.; Nelson, A.C. Relationship between urban sprawl and physical activity, obesity, and morbidity-Update and refinement. Health Place 2014, 26, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R.; Population, C. US Health in International Perspective: Shorter Lives, Poorer Health; Woolf, S.H., Aron, L., Eds.; National Academies Press: Washington, DC, USA, 2013; ISBN 0309264146. [Google Scholar]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood environment and physical activity among youth: A review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Brownson, R.C.; Housemann, R.A.; Brown, D.R.; Jackson-Thompson, J.; King, A.C.; Malone, B.R.; Sallis, J.F. Promoting physical activity in rural communities: Walking trail access, use, and effects. Am. J. Prev. Med. 2000, 18, 235–241. [Google Scholar] [CrossRef]
- Troped, P.J.; Saunders, R.P.; Pate, R.R.; Reininger, B.; Ureda, J.R.; Thompson, S.J. Associations between self-reported and objective physical environmental factors and use of a community rail-trail. Prev. Med. 2001, 32, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Hovell, M.F.; Hofstetter, C.R.; Faucher, P.; Elder, J.P.; Blanchard, J.; Caspersen, C.J.; Powell, K.E.; Christenson, G.M. A multivariate study of determinants of vigorous exercise in a community sample. Prev. Med. 1989, 18, 20–34. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Schlossberg, M. From TIGER to Audit Instruments: Measuring Neighborhood Walkability with Street Data Based on Geographic Information Systems. Transp. Res. Rec. 2006, 1982, 48–56. [Google Scholar] [CrossRef]
- Sallis, J.F.; Simons-Morton, B.G.; Stone, E.J.; Corbin, C.B.; Epstein, L.H.; Faucette, N.; Iannotti, R.J.; Killen, J.D.; Klesges, R.C.; Petray, C.K.; et al. Determinants of physical activity and interventions in youth. Med. Sci. Sport. Exerc. 1992, 24, S248–S257. [Google Scholar] [CrossRef]
- Ahmed, N.U.; Smith, G.L.; Flores, A.M.; Pamies, R.J.; Mason, H.R.; Woods, K.F.; Stain, S.C. Racial/ethnic disparity and predictors of leisure-time physical activity among US men. Ethn. Dis. 2005, 15, 40–52. [Google Scholar] [PubMed]
- U.S. Census Bureau. A Compass for Understanding and Using What General Data: What Researchers Need to Know; U.S. Census Bureau: Washington, DC, USA, 2009.
- Lin, C.H.; Wen, T.H. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int. J. Environ. Res. Public Health 2011, 8, 2798–2815. [Google Scholar] [CrossRef] [PubMed]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Tsai, P.-J.; Lin, M.-L.; Chu, C.-M.; Perng, C.-H. Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006. BMC Public Health 2009, 9, 464. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Ettema, D.; Pierik, F.; Dijst, M. Sports facilities, shopping centers or homes: What locations are important for adults’ physical activity? A cross-sectional study. Int. J. Environ. Res. Public Health 2016, 13, 287. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L.; Griffith, D.A. Do spatial effects really matter in regression analysis? Pap. Reg. Sci. 1988, 65, 11–34. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Mennis, J. Mapping the results of geographically weighted regression. Cartogr. J. 2006, 43, 171–179. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Bitter, C.; Mulligan, G.F.; Dall’erba, S. Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method. J. Geogr. Syst. 2007, 9, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Humpel, N.; Owen, N.; Leslie, E. Environmental factors associated with adults’ participation in physical activity: A review. Am. J. Prev. Med. 2002, 22, 188–199. [Google Scholar] [CrossRef]
- Davison, K.K.; Lawson, C.T. Do attributes in the physical environment influence children’s physical activity? A review of the literature. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Van Der Horst, K.; Wendel-Vos, W.; Kremers, S.; Van Lenthe, F.J.; Brug, J. Environmental correlates of physical activity in youth—A review and update. Obes. Rev. 2007, 8, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Kurka, J.M.; Adams, M.A.; Todd, M.; Colburn, T.; Sallis, J.F.; Cain, K.L.; Glanz, K.; Frank, L.D.; Saelens, B.E. Patterns of neighborhood environment attributes in relation to children’s physical activity. Health Place 2015, 34, 164–170. [Google Scholar] [CrossRef] [PubMed]
- McGinn, A.P.; Evenson, K.R.; Herring, A.H.; Huston, S.L.; Rodriguez, D.A. Exploring associations between physical activity and perceived and objective measures of the built environment. J. Urban Health 2007, 84, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Siordia, C.; Saenz, J.; Tom, S.E. An introduction to macro-level spatial nonstationarity: A geographically weighted regression analysis of diabetes and poverty. Hum. Geogr. 2012, 6, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kwan, M.-P. Contextual Uncertainties, Human Mobility, and Perceived Food Environment: The Uncertain Geographic Context Problem in Food Access Research. Am. J. Public Health 2015, 105, 1734–1737. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Kwan, M.P. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Kwan, M.P.; Zhou, S. The uncertain geographic context problem in the analysis of the relationships between obesity and the built environment in Guangzhou. Int. J. Environ. Res. Public Health 2018, 15, 308. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | Year | Source | |
---|---|---|---|---|
Physical Environment | ||||
Average annual temperature | Annually average daily temperature | 2011 | US Department of Agriculture (Schlenker & Roberts, 2009) | |
Average annual precipitation | Annually average daily precipitation | US Department of Agriculture (Schlenker & Roberts, 2009) | ||
Tree canopy | Percentage of tree canopy coverage | US Forest Service | ||
Land cover | Density of highly developed areas with high ratios of residential, business, commercial, and industrial areas | Multi-Resolution Land Characteristics (MRLC) Consortium | ||
Walkability | Minor road density | Topologically Integrated Geographic Encoding and Referencing (TIGER) | ||
Demographic Characteristics | ||||
Age | Median age (years) | 2011 | American Community Survey (ACS) | |
Sex | Percentage of residents who are female | |||
Race | African American | Percentage of residents who are African American | ||
Asian | Percentage of residents who are Asian | |||
Hispanic and Latino | Percentage of residents who are Hispanic and Latino | |||
Socioeconomic Status | ||||
Income | Income per capita (inflation-adjusted dollars) | 2011 | American Community Survey (ACS) | |
Employment | Unemployment rate | |||
Occupation | Management, business, science, and arts | Percentage of residents whose occupation are management, business, science, and arts | ||
Natural resources, construction, and maintenance | Percentage of residents whose occupation are natural resources, construction, and maintenance | |||
Production, transportation, and material moving | Percentage of residents whose occupation are production, transportation, and material moving | |||
Self-employed unpaid family workers | Percentage of residents who are self-employed unpaid family workers | |||
Commuting mode—work at home | Percentage of residents who are work at home | |||
Commuting mode—walking | Percentage of residents commuting to work by walking | |||
House ownership | Percentage of housing units that are owner-occupied | |||
Vehicle ownership | Percentage of families have no vehicles available |
Variables | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
LTPI | 10 | 45 | 27.15 | 5.06 |
Temperature (°C) | −0.09 | 24.78 | 12.78 | 4.77 |
Precipitation (inch) | 0.00 | 8.80 | 2.90 | 1.28 |
Tree canopy coverage (%) | 0.02 | 92.25 | 34.64 | 25.87 |
Land cover (%) | 0.00 | 48.42 | 0.52 | 2.15 |
Walkability (km/km2) | 0.09 | 16.71 | 2.30 | 1.61 |
Commuting mode 1—walking (%) | 0.00 | 31.30 | 3.23 | 2.75 |
Commuting mode 2—work at home (%) | 0.00 | 42.00 | 4.92 | 3.50 |
Occupation 1—management, business, science, and arts (%) | 11.10 | 67.60 | 30.35 | 6.44 |
Occupation 2—natural resources, construction, and maintenance (%) | 1.00 | 52.50 | 13.28 | 4.30 |
Occupation 3—production, transportation, and material moving (%) | 1.10 | 36.70 | 15.85 | 5.79 |
Self-employed unpaid family workers (%) | 0.00 | 11.00 | 0.31 | 0.49 |
Unemployment rate (%) | 0.00 | 18.40 | 4.80 | 1.90 |
Income ($) | 7887 | 61,290 | 23,044 | 5460 |
House ownership (%) | 20.10 | 93.70 | 73.15 | 7.69 |
Vehicle ownership (%) | 0.00 | 78.00 | 6.30 | 3.64 |
Age (year) | 21.60 | 62.20 | 40.14 | 4.97 |
Female (%) | 24.20 | 59.20 | 50.54 | 2.78 |
Race 1—African American (%) | 0.00 | 95.70 | 1.59 | 6.39 |
Race 2—Asian (%) | 0.00 | 34.00 | 1.00 | 2.13 |
Race 3—Hispanic and Latino (%) | 0.00 | 98.00 | 8.09 | 13.10 |
Variables | OLS (Adjusted R2 = 0.606; R2 = 0.608; AIC = 16,063; F-Statistic = 239.7 (df: 3088); p-Value: 0.000; Log Likelihood = −8009.86) | SLM (Nagelkerke Pseudo-R2: 0.744; LR Test: 1320.8; AIC = 14,745; Rho (Spatial Lag) = 0.607; p-Value = 0.000; Log Likelihood = −7349.456) | ||
---|---|---|---|---|
Coefficient (95% Confidence Interval) | p | Coefficient (95% Confidence Interval) | p | |
Temperature (β1) | 0.45 (0.42, 0.48) | 0.000 ** | 0.15 (0.12, 0.18) | 0.000 ** |
Precipitation (β2) | 0.76 (0.63, 0.89) | 0.000 ** | 0.26 (0.15, 0.36) | 0.000 ** |
Tree canopy coverage (β3) | −0.03 (−0.03, −0.02) | 0.000 ** | −0.02 (−0.02, −0.01) | 0.000 ** |
Land cover (β4) | 0.07 (−0.02, 0.16) | 0.128 | 0.10 (0.03, 0.17) | 0.005 * |
Walkability(β5) | 0.02 (−0.13, 0.09) | 0.736 | 0.08 (0.0004, 0.17) | 0.049 |
Unemployment rate (β6) | −0.37 (−0.45, −0.30) | 0.000 ** | −0.10 (−0.16, −0.04) | 0.000 ** |
Commuting Mode 1 (β7) | −0.07 (−0.13, −0.02) | 0.013 | −0.05 (−0.09, −0.005) | 0.029 |
Commuting Mode 2 (β8) | −0.08 (−0.13, −0.03) | 0.000 ** | −0.04 (−0.08, −0.01) | 0.011 |
Occupation 1 (β9) | 0.09 (0.05, 0.13) | 0.000 ** | −0.006 (−0.02, 0.01) | 0.445 |
Occupation 2 (β10) | 0.19 (0.15, 0.22) | 0.000 ** | 0.13 (0.11, 0.16) | 0.000 ** |
Occupation 3 (β11) | 0.17 (0.14, 0.20) | 0.000 ** | 0.09 (0.06, 0.11) | 0.000 ** |
Self–employed unpaid family workers (β12) | 0.41 (0.14, 0.67) | 0.002 * | 0.19 (−0.01, 0.39) | 0.057 |
Income (β13) | −0.0004 (−0.0004, −0.0003) | 0.000 ** | −0.0002 (−0.0002, −0.0002) | 0.000 ** |
House ownership (β14) | 0.02 (−0.007, 0.04) | 0.178 | 0.02 (0.003, 0.04) | 0.023 |
Vehicle ownership (β15) | 0.14 (0.09, 0.19) | 0.000 ** | 0.07 (0.04, 0.11) | 0.000 ** |
Age (β16) | 0.08 (0.05, 0.11) | 0.000 ** | 0.09 (0.07, 0.12) | 0.000 ** |
Female (β17) | 0.11 (0.07, 0.16) | 0.000 ** | 0.07 (0.04, 0.11) | 0.000 ** |
Race 1 (β18) | 0.08 (0.06, 0.10) | 0.000 ** | 0.06 (0.04, 0.07) | 0.000 ** |
Race 2 (β19) | −0.12 (−0.20, −0.05) | 0.000 ** | 0.02 (−0.03, 0.06) | 0.456 |
Race 3 (β20) | −0.09 (−0.10, −0.08) | 0.000 ** | −0.04 (−0.05, −0.03) | 0.000 ** |
Variables | GWR (Adjusted R2 = 0.814; R2 = 0.856; AIC = 13,415) | |||||||
---|---|---|---|---|---|---|---|---|
Positive Coefficient Estimates (%) | Significant Positive Coefficient Estimates (%) † | Negative Coefficient Estimates (%) | Significant Negative Coefficient Estimates (%) †† | Minimum Coefficient Estimate | Median Coefficient Estimate | Maximum Coefficient Estimate | Significant Coefficient Estimates (%) ††† | |
β1 | 77 | 72 | 23 | 21 | −0.4624 | 0.2880 | 1.7652 | 60 |
β2 | 68 | 33 | 32 | 15 | −4.6594 | 0.2492 | 3.7850 | 27 |
β3 | 22 | 25 | 78 | 44 | −0.2460 | −0.0177 | 0.1481 | 40 |
β4 | 69 | 26 | 31 | 25 | −1.2027 | −0.1327 | 2.7811 | 26 |
β5 | 34 | 24 | 66 | 40 | −3.0601 | −0.2528 | 1.2487 | 35 |
β6 | 40 | 31 | 60 | 40 | −1.1192 | −0.0882 | 0.6460 | 36 |
β7 | 30 | 1 | 70 | 30 | −0.7806 | −0.0882 | 0.1943 | 21 |
β8 | 23 | 10 | 77 | 39 | −0.6463 | −0.1092 | 0.1500 | 32 |
β9 | 37 | 28 | 63 | 16 | −0.2925 | −0.0224 | 0.3016 | 20 |
β10 | 82 | 42 | 18 | 8 | −0.2153 | 0.0938 | 0.4111 | 36 |
β11 | 82 | 34 | 18 | 13 | −0.1519 | 0.0651 | 0.3195 | 30 |
β12 | 57 | 13 | 43 | 2 | −3.2365 | 0.1035 | 2.9226 | 9 |
β13 | 2 | 0 | 98 | 86 | −0.0006 | −0.0003 | 0.0001 | 84 |
β14 | 34 | 16 | 66 | 35 | −0.2633 | −0.0314 | 0.2317 | 29 |
β15 | 60 | 35 | 40 | 24 | −0.6135 | 0.0376 | 0.7855 | 31 |
β16 | 81 | 61 | 19 | 21 | −0.3432 | 0.1209 | 0.3409 | 53 |
β17 | 83 | 37 | 17 | 10 | −0.4881 | 0.0983 | 0.3467 | 32 |
β18 | 80 | 67 | 20 | 11 | −1.2628 | 0.1312 | 1.1136 | 56 |
β19 | 24 | 47 | 76 | 39 | −1.4387 | −0.2622 | 0.3968 | 41 |
β20 | 16 | 0 | 84 | 55 | −0.3264 | −0.0617 | 0.1640 | 46 |
County | State | β3 | 95 CI | β5 | 95 CI | β13 | 95 CI | β19 | 95 CI | Local R2 |
---|---|---|---|---|---|---|---|---|---|---|
Santa Clara | CA | 0.0027 | (−0.06, 0.06) | −0.3870 | (−1.00, 0.23) | −0.0002 * | (−0.00, −0.00) | 0.1741 * | (0.03, 0.32) | 0.955 |
King | WA | −0.0210 | (−0.06, 0.02) | 0.4379 | (−0.51, 1.38) | −0.0005 * | (−0.00, −0.00) | 0.3608 * | (0.01, 0.71) | 0.946 |
Los Angeles | CA | −0.0358 | (−0.07, −0.00) | −0.4353 * | (−0.84, −0.03) | −0.0003 * | (−0.00, −0.00) | 0.1165 * | (0.01, 0.22) | 0.919 |
Orange | CA | −0.0382 * | (−0.06, −0.01) | −0.3063 | (−0.66, 0.05) | −0.0003 * | (−0.00, −0.00) | 0.0535 | (−0.04, 0.15) | 0.910 |
San Bernardino | CA | −0.0464 * | (−0.07, −0.02) | −0.3292 | (−0.68, 0.02) | −0.0003 * | (−0.00, −0.00) | 0.0594 | (−0.04, 0.16) | 0.906 |
Clark | NV | −0.0625 * | (−0.09, −0.03) | −0.3423 * | (−0.67, −0.01) | −0.0003 * | (−0.00, −0.00) | 0.0698 | (−0.03, 0.17) | 0.902 |
San Diego | CA | −0.0372 * | (−0.05, −0.02) | −0.1495 | (−0.45, 0.15) | −0.0003 * | (−0.00, −0.00) | −0.0264 | (−0.11, 0.06) | 0.898 |
Riverside | CA | −0.0403 * | (−0.06, −0.02) | −0.1768 | (−0.48, 0.13) | −0.0003 * | (−0.00, −0.00) | −0.0162 | (−0.10, 0.07) | 0.898 |
Maricopa | AZ | −0.0407 * | (−0.06, −0.02) | 0.0292 | (−0.24, 0.30) | −0.0003 * | (−0.00, −0.00) | −0.1413 * | (−0.23, −0.05) | 0.874 |
Harris | TX | −0.0048 | (−0.02, 0.02) | −0.3865 | (−1.11, 0.34) | −0.0002 * | (−0.00, −0.00) | −0.1942 | (−0.45, 0.06) | 0.857 |
Queens | NY | −0.0230 | (−0.05, 0.01) | 0.2636 * | (0.03, 0.50) | −0.0002 * | (−0.00, −0.00) | 0.1138 | (−0.05, 0.27) | 0.856 |
New York | NY | −0.0221 | (−0.05, 0.01) | 0.2583 * | (0.01, 0.50) | −0.0002 * | (−0.00, −0.00) | 0.1110 | (−0.05, 0.27) | 0.854 |
Kings | NY | −0.0222 | (−0.05, 0.01) | 0.2565 * | (0.02, 0.49) | −0.0002 * | (−0.00, −0.00) | 0.1132 | (−0.05, 0.27) | 0.851 |
Dallas | TX | −0.0057 | (−0.03, 0.02) | −0.4800 | (−1.31, 0.35) | −0.0002 * | (−0.00, −0.00) | −0.3829 * | (−0.70, −0.07) | 0.850 |
Miami-Dade | FL | −0.0201 * | (−0.03, −0.01) | −0.5922 * | (−0.78, −0.40) | −0.0004 * | (−0.00, −0.00) | −0.2133 * | (−0.40, −0.03) | 0.840 |
Broward | FL | −0.0213 * | (−0.03, −0.01) | −0.6060 * | (−0.83, −0.39) | −0.0004 * | (−0.00, −0.00) | −0.2160 * | (−0.42, −0.01) | 0.835 |
Tarrant | TX | −0.0057 | (−0.03, 0.02) | −0.5548 | (−1.35, 0.24) | −0.0002 * | (−0.00, −0.00) | −0.3952 * | (−0.70, −0.09) | 0.834 |
Cook | IL | −0.0327 * | (−0.06, −0.01) | 0.0424 | (−0.36, 0.44) | −0.0003 * | (−0.00, −0.00) | −0.2707 | (−0.61, 0.06) | 0.798 |
Wayne | MI | −0.0021 | (−0.02, 0.02) | 0.0073 | (−0.34, 0.35) | −0.0004 * | (−0.00, −0.00) | −0.2406 | (−0.68, 0.20) | 0.751 |
Bexar | TX | −0.0164 | (−0.05, 0.02) | −0.6656 | (−1.62, 0.29) | −0.0002 * | (−0.00, −0.00) | −0.2040 | (−0.45, 0.04) | 0.699 |
β1 | β2 | β3 | β4 | β5 | β6 | β7 | β8 | β9 | β10 | β11 | β12 | β13 | β14 | β15 | β16 | β17 | β18 | β19 | β20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Coefficient Estimates (%) | 65 | 60 | 5 | 80 | 35 | 15 | 45 | 0 | 50 | 100 | 95 | 65 | 0 | 70 | 85 | 90 | 85 | 85 | 45 | 10 |
Significant Positive Coefficient Estimates (%) † | 69 | 25 | 0 | 13 | 43 | 33 | 0 | 0 | 0 | 45 | 47 | 38 | 0 | 14 | 35 | 50 | 35 | 82 | 33 | 0 |
Negative Coefficient Estimates (%) | 35 | 40 | 95 | 20 | 65 | 85 | 55 | 100 | 50 | 0 | 5 | 35 | 100 | 30 | 15 | 10 | 15 | 15 | 55 | 90 |
Significant Negative Coefficient Estimates (%) †† | 14 | 0 | 47 | 0 | 31 | 41 | 0 | 70 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 45 | 72 |
Significant Coefficient Estimates (%) ††† | 50 | 15 | 45 | 10 | 35 | 40 | 0 | 70 | 0 | 45 | 45 | 25 | 100 | 10 | 30 | 55 | 30 | 70 | 40 | 65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lee, K.; Kwan, M.-P. Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity. ISPRS Int. J. Geo-Inf. 2018, 7, 143. https://doi.org/10.3390/ijgi7040143
Wang J, Lee K, Kwan M-P. Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity. ISPRS International Journal of Geo-Information. 2018; 7(4):143. https://doi.org/10.3390/ijgi7040143
Chicago/Turabian StyleWang, Jue, Kangjae Lee, and Mei-Po Kwan. 2018. "Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity" ISPRS International Journal of Geo-Information 7, no. 4: 143. https://doi.org/10.3390/ijgi7040143
APA StyleWang, J., Lee, K., & Kwan, M. -P. (2018). Environmental Influences on Leisure-Time Physical Inactivity in the U.S.: An Exploration of Spatial Non-Stationarity. ISPRS International Journal of Geo-Information, 7(4), 143. https://doi.org/10.3390/ijgi7040143