A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evaluation of the Main Trends in Land Cover Changes
2.3. Driving Forces Affecting Land Cover Change
3. Results
3.1. Main Trends of Land Cover Change
3.2. Drivers of Land Cover Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change–current and new directions. Landsc. Ecol. 2004, 19, 857–868. [Google Scholar] [CrossRef]
- Patarasuk, R.; Binford, M.W. Longitudinal analysis of the road network development and land-cover change in Lop Buri province, Thailand, 1989–2006. Appl. Geogr. 2012, 32, 228–239. [Google Scholar] [CrossRef]
- Honey-Rosés, J. Disentangling the proximate factors of deforestation: The case of the Monarch butterfly Biosphere Reserve in Mexico. Land Degrad. Dev. 2009, 20, 22–32. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economic models. World Bank Res. Obs. 1999, 14, 73–98. [Google Scholar] [CrossRef] [PubMed]
- Acheson, J.M.; McCloskey, J. Causes of deforestation: The Maine case. Hum. Ecol. 2008, 36, 909–922. [Google Scholar] [CrossRef]
- Sassen, M.; Sheil, D.; Giller, K.E.; Ter Braak, C.J.F. Complex context and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area. Biol. Conserv. 2013, 159, 257–268. [Google Scholar] [CrossRef]
- Nolte, C.; le Polain de Waroux, Y.; Munger, J.; Reis, T.N.P.; Lambin, E.F. Conditions influencing the adoption of effective anti-deforestation policies in South America´s commodity frontiers. Glob. Environ. Chang. 2017, 43, 1–14. [Google Scholar] [CrossRef]
- Freitas, S.R.; Hawbaker, T.J.; Metzger, J.P. Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. For. Ecol. Manag. 2010, 259, 410–417. [Google Scholar] [CrossRef]
- Lele, N.; Nagendra, H.; Southworth, J. Accessibility, demography and protection: Drivers of forest stability and change at multiple scales in the Cauvery Basin, India. Remote Sens. 2010, 2, 306–332. [Google Scholar] [CrossRef]
- Southworth, J.; Tucker, C. The influence of accessibility, local institutions, and socioeconomic factors on forest cover change in the mountains of Western Honduras. Mt. Res. Dev. 2001, 21, 276–283. [Google Scholar] [CrossRef]
- Laurance, W.F.; Albernaz, A.K.M.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Da Costa, C. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 2002, 29, 737–748. [Google Scholar] [CrossRef]
- Lambin, E.F.; Helmut, J.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Carr, D.L. Proximate population factors and deforestation in tropical agricultural frontiers. Popul. Environ. 2004, 25, 585–612. [Google Scholar] [CrossRef] [PubMed]
- Carr, D.L.; López, A.C.; Bilsborrow, R.E. The population, agriculture, and environment nexus in Latin America: Country-level evidence from the latter half of the twentieth century. Popul. Environ. 2009, 30, 222–246. [Google Scholar] [CrossRef]
- Rudel, T.K. Is there a forest transition? Deforestation, reforestation and development. Rural Sociol. 1998, 63, 533–552. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E.F. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Uriarte, M.; Swenson, N.G.; Chazdon, R.L.; Comita, L.S.; John Kress, W.; Erickson, D.; Forero-Montaña, J.; Zimmerman, J.K.; Thompson, J. Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecol. Lett. 2010, 13, 1503–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecth, S. The new rurality: Globalization, peasants and the paradoxes of lanscapes. Land Use Policy 2010, 27, 161–169. [Google Scholar]
- Hecth, S.; Kandel, S.; Gomes, I.; Cuellar, N.; Herman, R.P. Globalization, Forest Resurgence, and Environmental Politics in El Salvador. World Dev. 2006, 34, 308–323. [Google Scholar]
- Soares-Filho, B.; Alencar, A.; Nepstad, D.; Cerqueira, G.; Díaz, M.C.V.; Rivero, S.; Solórzano, L.; Voll, E. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: The Santarém-Cuiabá corridor. Glob. Chang. Biol. 2004, 10, 745–764. [Google Scholar] [CrossRef]
- Van Gils, H.A.M.J.; Loza Armand Ugon, A.V. What Drives Conversion of Tropical Forest in Carrasco Province, Bolivia? Ambio 2006, 35, 81–85. [Google Scholar] [CrossRef]
- Young, K.R. Roads and the Environmental Degradation of Tropical Montane Forests. Conserv. Biol. 1994, 8, 972–976. [Google Scholar] [CrossRef]
- Fearnside, P.M. Brazil´s Cuiabá-Santarém (BR-163) highway: The environmental cost of paving a soybean corridor through the Amazon. Environ. Manag. 2007, 39, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. The roles and movements of actors in the deforestation of Brazilian Amazonia. Ecol. Soc. 2008, 13, 23. [Google Scholar] [CrossRef]
- Thomlinson, J.R.; Serrano, M.I.; López, T.M.; Aide, T.M.; Zimmerman, J.K. Land-use dynamics in a post-agricultural Puerto Rican landscape (1936–1988). Biotropica 1996, 28, 525–536. [Google Scholar] [CrossRef]
- Kebrom, T.; Backéus, I.; Skoglund, J.; Zerihun, W. Vegetation on hill slopes in southern Wello, Ethiopia: Degradation and regeneration. Nordic J. Bot. 1997, 17, 483–493. [Google Scholar]
- Paruelo, J.M.; Guerschman, J.P.; Piñeiro, G.; Jobbagy, E.G.; Veron, S.R.; Baldi, G.; Baeza, S. Cambios en el uso de la tierra en Argentina y Uruguay: Marcos conceptuales para su análisis. Agrociences 2006, 10, 47–64. [Google Scholar]
- Gasparri, N.I.; Grau, H.R. Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). For. Ecol. Manag. 2009, 258, 913–921. [Google Scholar] [CrossRef]
- Bucher, E.H. Chaco and Caatinga—South American arid savannas. Woodlans and tickets. In Ecology of Tropical Savannas; Huntley, B.J., Walker, B.H., Eds.; Springer: Berlin, Germany, 1982; pp. 48–79. ISBN 978-3-642-68786-0. [Google Scholar]
- Zak, M.R.; Cabido, M.R.; Cáceres, D.; Díaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ. Manag. 2008, 42, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Boletta, P.E.; Ravelo, A.C.; Planchuelo, A.M.; Grilli, M. Assessing deforestation in the Argentine Chaco. For. Ecol. Manag. 2006, 228, 108–114. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Grau, H.R. Patrones regionales de deforestación en el subtrópico argentino y su contexto ecológico y socioeconómico. In Situación Ambiental Argentina 2005; Brown, A.D., Martinez Ortiz, U., Acerbi, M., Corchera, J., Eds.; Fundación Vida Silvestre Argentina: Buenos Aires, Argentina, 2006; pp. 442–446. ISBN 950-9427-14-4. [Google Scholar]
- Fehlenberg, V.; Baumann, M.; Gasparri, N.I.; Piquer-Rodriguez, M.; Gavier-Pizarro, G.; Kuemmerle, T. The role of soybean productionas an underlying driver of deforestation in the South American Chaco. Glob. Environ. Chang. 2017, 45, 24–34. [Google Scholar] [CrossRef]
- Adamoli, J.; Torrela, S.; Ginzburg, R. Diagnóstico ambiental del Chaco Argentino. Gestión integrada y desarrollo Sostenible Para Reducir la Degradación Social, Económica y ambiental en el Gran Chaco Americano; Dirección de Conservación del Suelo y Lucha contra la Desertificación, Secretaría de Ambiente y Desarrollo Sustentable: Buenos Aires, Argentina, 2004. [Google Scholar]
- Grau, H.R.; Torres, R.; Gasparri, N.I.; Blendinger, P.G.; Marinaro, S.; Macchi, L. Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. J. Arid Environ. 2015, 123, 40–46. [Google Scholar] [CrossRef]
- Morello, J.; Saravia Toledo, C. El bosque chaqueño: Paisaje primitivo, paisaje natural y paisaje cultural en el oriente de Salta. Rev. Agron. Noroeste Argent 1959, 3, 5–81. [Google Scholar]
- Schofield, C.J.; Bucher, E.H. Industrial contributions to desertification in South America. Trends Ecol. Evol. 1986, 1, 78–80. [Google Scholar] [CrossRef]
- Díaz, S.; Acosta, A.T.R.; Cabido, M. Community structure in montane grasslands of central Argentina in relation to land use. J. Veg. Sci. 1994, 5, 483–488. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Gavier Pizarro, G.; Zak, M.; Bellis, L.M. Fire regime, climate, and vegetation in the Sierras de Córdoba, Argentina. Fire Ecol. 2015, 11, 55–73. [Google Scholar] [CrossRef]
- Sayago, M. Estudio fitogeográfico del norte de Córdoba. Bol. Acad. Nac. Cienc. Córdoba 1969, 46, 123–427. [Google Scholar]
- Natenzon, C.E.; Olivera, C. La tala del bosque en los llanos de La Rioja (1900–1960). Desarro. Econ. 1994, 34, 263–284. [Google Scholar] [CrossRef]
- Grau, H.R.; Gasparri, N.I.; Aide, T.M. Agriculture expansion and deforestation in seasonally dry forest of north-west Argentina. Environ. Conserv. 2005, 32, 140–148. [Google Scholar] [CrossRef]
- Hoyos, L.E.; Cingolani, A.M.; Zak, M.R.; Vaieretti, M.V.; Gorla, D.E.; Cabido, M.R. Deforestation and precipitation patterns in the arid Chaco forest of central Argentina. Appl. Veg. Sci. 2013, 16, 260–271. [Google Scholar] [CrossRef]
- Minetti, J.L.; Vargas, W.M. Trends and jumps in the annual precipitation in South America, south of the 15° S. Atmós 1997, 11, 205–221. [Google Scholar]
- Gasparri, N.I.; Grau, H.R.; Sacchi, L.V. Determinants of the spatial distribution of cultivated land in the North Argentine Dry Chaco in a multi-decadal study. J. Arid Environ. 2015, 123, 31–39. [Google Scholar] [CrossRef]
- Zak, M.R.; Cabido, M.R.; Hodgson, J.G. Do subtropical seasonal forest in the Gran Chaco, Argentina, have a future? Biol. Conserv. 2004, 120, 589–598. [Google Scholar] [CrossRef]
- Cabrera, A.L. Regiones Fitogeográficas de Argentina; Enciclopedia Argentina de Agricultura y Jardinería. Buenos Aires, ACME Agency: Buenos Aires, Argentina, 1976; p. 85. ISBN 950-566-127-4. [Google Scholar]
- Zak, M.R.; Cabido, M.R. Spatial patterns of the Chaco vegetation of central Argentina: Integration of remote sensing and phytosociology. Appl. Veg. Sci. 2002, 5, 213–226. [Google Scholar] [CrossRef]
- Bonino, E.E.; Araujo, P. Structural differences between a primary and a secondary forest in the Argentine Dry Chaco and management implications. For. Ecol. Manag. 2005, 206, 407–412. [Google Scholar] [CrossRef]
- Cabido, M.R.; Acosta, A.T.R.; Carranza, M.L.; Díaz, S. La vegetación del Chaco Árido en el W de la provincia de Córdoba, Argentina. Doc. Phytosociol. 1992, 14, 447–459. [Google Scholar]
- Cabido, M.R.; González, C.; Díaz, S. Vegetation changes along a precipitation gradient in Central Argentina. Vegetatio 1993, 109, 5–14. [Google Scholar] [CrossRef]
- Steininger, M.K.; Tucker, C.J.; Ersts, P.; Killen, T.J.; Villegas, Z.; Hecht, S.B. Clearance and fragmentation of tropical deciduous forest in de Tierras bajas, Santa Cruz, Bolivia. Conserv. Biol. 2001, 15, 856–866. [Google Scholar] [CrossRef]
- Minetti, J.L.; Lamelas, C.M. Respuesta regional de la soja en Tucumán a la variabilidad climática. Rev. Ind. Agríc. Tucumán 1997, 72, 63–68. [Google Scholar]
- Singh, A. Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 6, 989–1003. [Google Scholar] [CrossRef]
- Viña, A.; Echavarría, F.R.; Rundquist, D.C. Satellite change detection analisis of deforestation rates and patterns along the Colombia-Ecuador Border. Ambio 2004, 33, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Diniz-Filho, J.A.F.; Bini, L.M.; Hawkins, B. Spatial autocorrelation and red herrings in geographical ecology. Glob. Ecol. Biogeogr. 2003, 12, 53–64. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Renison, D.; Tecco, P.; Gurvich, D.E.; Cabido, M. Predicting cover types in a mountain range with long evolutionary grazing history: A GIS approach. J. Biogeogr. 2008, 35, 538–551. [Google Scholar] [CrossRef]
- Cingolani, A.M.; Cabido, M.; Renison, D.; Solís-Neffa, V. Combined effects of environment and grazing on vegetation structure in Argentine granite grassland. J. Veg. Sci. 2003, 14, 223–232. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surface for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Morello, J. El Gran Chaco: Proceso de expansión de la frontera agrícola desde el punto de vista ecológico-ambiental. In Expansión de la Frontera Agropecuaria y Medio Ambiente en América Latina; CEPAL-PNUMA-CIFCA: Madrid, Spain, 1983; pp. 341–396. [Google Scholar]
- Morello, J.; Pengue, W.; Rodríguez, A. Un Siglo de Cambios de Diseño del Paisaje: El Chaco Argentino; Primeras Jornadas Argentinas de Ecología del Paisaje: Buenos Aires, Argentina, 2005. [Google Scholar]
- Caldas, M.M.; Goodin, D.; Sherwood, S.; Campos Krauer, J.M.; Wisely, S.M. Land cover change in Paraguay Chaco: 2000–2011. J. Land Use Sci. 2013, 10, 1–18. [Google Scholar] [CrossRef]
- Macchi, L.; Grau, H.R.; Zelaya, P.V.; Marinaro, S. Trade-offs betweem land use intensity and avian biodiversity in the dry Chaco of Argentina: A tale of two gradients. Agric. Ecosyst. Environ. 2013, 174, 11–20. [Google Scholar] [CrossRef]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Mon, M.S.; Mizoue, N.; Htun, N.Z.; Kajisa, T.; Yoshida, S. Factors affecting deforestation and forest degradation in selective logged production forest: A case study in Myanmar. For. Ecol. Manag. 2012, 267, 190–198. [Google Scholar] [CrossRef]
- Getahun, K.; Van Rompaey, A.; Van Turnhout, P.; Poesen, J. Factors controlling patterns of deforestation in moist evergreen Afromontane forests of Southwest Ethiopia. For. Ecol. Manag. 2013, 304, 171–181. [Google Scholar] [CrossRef]
- Chowdhury, R.R. Driving forces of tropical deforestation: The role of remote sensing and spatial models. Singap. J. Trop. Geogr. 2006, 27, 82–101. [Google Scholar] [CrossRef]
- Lele, N.; Joshi, P.K. Analyzing deforestation rates, spatial forest cover changes and identifying critical areas of forest cover changes in North-East India during 1972–1999. Environ. Monit. Assess. 2009, 156, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.J.; Cayuela, L.; Rey-Benayas, J.M.; Schröder, B. Factors influencing vegetation cover change in Mediterranean Central Chile (1975–2008). Appl. Veg. Sci. 2011, 14, 571–582. [Google Scholar] [CrossRef]
- Teka, D.; Van Wesemael, B.; Vanacker, V.; Poesen, J.; Hallet, V.; Taye, G.; Deckers, J.; Haregeweyn, N. Evaluating the performance of reservoirs in semi-arid catchments of Tigray: Tradeoff between water harvesting and soil and water conservation. Catena 2013, 110, 146–154. [Google Scholar] [CrossRef]
- Htun, N.Z.; Mizoue, N.; Yoshida, S. Changes in determinants of deforestation and Forest degradation in Popa Mountain Park, Central Myanmar. Environ. Manag. 2013, 51, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.; Pino, J.; Basnou, C.; Vivanco, M. Assesing land-use and cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepción (Chile). Implications for biodiversity conservation. Appl. Geogr. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- McDonald, R.I.; Urban, D.L. Spatially varying rules of landscape change: Lessons from a case study. Landsc. Urban Plan. 2006, 74, 7–20. [Google Scholar] [CrossRef]
- Steininger, M.K.; Tucker, C.J.; Townshend, J.R.G.; Killeen, T.J.; Desch, A.; Bell, V.; Ersts, P. Tropical deforestation in the Bolivian Amazon. Environ. Conserv. 2001, 28, 127–134. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Uchida, E.; Rozelle, S.; Gibson, J. Pressure cookers or pressure valves: Do roads lead to deforestation in China. J. Environ. Econ. Manag. 2011, 61, 79–94. [Google Scholar] [CrossRef]
- Grau, H.R.; Aide, T.M.; Zimmerman, J.K.; Thomlinson, J.R.; Helmer, F.; Zou, X. The ecological consequences of socioeconomic and land-use changes in postagricultural Puerto Rico. Bioscience 2003, 53, 1159–1168. [Google Scholar] [CrossRef]
- Pares-Ramos, I.K.; Gould, W.A.; Aide, T.M. Agricultural abandonment, suburban growth, and forest expansion in Puerto Rico between 1991 and 2000. Ecol. Soc. 2008, 13, 1. [Google Scholar] [CrossRef]
- Aide, T.M.; Zimmerman, J.K.; Pascarella, J.; Marcano-Vega, J.; Rivera, L. Forest regeneration in a chronosequence of tropical abandoned pastures: Implications for restoration ecology. Rest. Ecol. 2000, 8, 328–338. [Google Scholar] [CrossRef]
Quartiles | |||||
---|---|---|---|---|---|
Variables | 25% | 50% | 75% | Maximum | Mean |
CV-CV | 1 | 6 | 22 | 90 | 15 |
CV-Sh | 1 | 3 | 4 | 53 | 4 |
CV-OF | + | + | 1 | 8 | 1 |
CV-CF | 0 | + | 1 | 8 | 1 |
Sh-CV | 2 | 9 | 24 | 44 | 14 |
Sh-Sh | 3 | 10 | 19 | 47 | 13 |
Sh-OF | 1 | 2 | 6 | 17 | 4 |
Sh-CF | 0 | 1 | 2 | 9 | 1 |
OF-CV | + | 1 | 4 | 46 | 5 |
OF-Sh | + | 2 | 5 | 19 | 3 |
OF-OF | + | + | 3 | 13 | 2 |
OF-CF | 0 | + | + | 9 | 1 |
CF-CV | 3 | 7 | 15 | 62 | 11 |
CF-Sh | 2 | 15 | 28 | 67 | 17 |
CF-OF | + | 3 | 8 | 37 | 7 |
CF-CF | + | 1 | 3 | 18 | 2 |
Possible Drivers | Minimun | Maximun | Mean |
---|---|---|---|
Mean precipitation (1950–2000) (mm) | 479 | 843 | 627 |
Mean altitude (m a.s.l.) | 90 | 635 | 306 |
Mean slope (%) | 0 | 3 | 1 |
Mean topographic position (%) | 46 | 52 | 50 |
Soil productivity index (dimensionless) | 9 | 95 | 56 |
Distance to roads (highways and roads) (km) | 0 | 17 | 2 |
Distance to human settlements (km) | 1 | 63 | 22 |
Longitude (Gauss Kruger metric coordinate) 1 | 4,238,087 | 4,495,780 | 4,347,734 |
Latitude (Gauss Kruger metric coordinate) 2 | 6,430,784 | 6,725,819 | 6,600,888 |
Possible Drivers | PCA Axis1 | PCA Axis2 | Conversion Rate |
---|---|---|---|
Mean precipitation (1950–2000) | 0.769 ** | 0.336 ** | 0.722 ** |
Mean altitude | −0.325 ** | 0.164 | −0.168 |
Mean slope | −0.021 | 0.074 | 0.057 |
Mean topographic position | −0.014 | 0.106 | 0.090 |
Soil productivity index | 0.227 * | 0.274 | 0.245 * |
Soil types 1 | * | NS | * |
Distance to roads (highways and roads) | −0.332 ** | −0.154 | −0.254 * |
Distance to human settlements | −0.454 ** | −0.380 ** | −0.449 ** |
Longitude (Gauss Kruger metric coordinate) ² | 0.799 ** | 0.198 | 0.634 ** |
Latitude (Gauss Kruger metric coordinate) ³ | 0.502 ** | −0.252 * | 0.280 * |
Variables | B | t | p |
---|---|---|---|
(a) | |||
Intercept | −47.389 | −13.062 | <0.001 |
Distance to roads | −0.051 | −2.067 | 0.042 |
Mean slope | −0.388 | −3.202 | 0.002 |
Longitude (Gauss Kruger metric coordinate) | 1.1 × 10−5 | 13.061 | <0.001 |
Dependent variable: PCA axis 1 (present land cover gradient), R2 = 0.690. | |||
(b) | |||
Intercept | 37.728 | 4.606 | <0.001 |
Distance to human settlements | −0.020 | −2.860 | 0.005 |
Mean annual precipitation | 0.003 | 3.069 | 0.003 |
Latitude (Gauss Kruger metric coordinate) | −5.9 × 10−6 | −4.676 | 0.000 |
Dependent variable: PCA axis 2 (old conversion gradient), R2 = 0.353. | |||
(c) | |||
Intercept | −6.845 | −7.439 | <0.001 |
Distance to roads | −0.173 | −2.329 | 0.022 |
Mean annual precipitation | 0.014 | 9.802 | 0.000 |
Dependent variable: Conversion rate into agriculture between 1979 and 2010, R2 = 0.552. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoyos, L.E.; Cabido, M.R.; Cingolani, A.M. A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina. ISPRS Int. J. Geo-Inf. 2018, 7, 170. https://doi.org/10.3390/ijgi7050170
Hoyos LE, Cabido MR, Cingolani AM. A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina. ISPRS International Journal of Geo-Information. 2018; 7(5):170. https://doi.org/10.3390/ijgi7050170
Chicago/Turabian StyleHoyos, Laura E., Marcelo R. Cabido, and Ana M. Cingolani. 2018. "A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina" ISPRS International Journal of Geo-Information 7, no. 5: 170. https://doi.org/10.3390/ijgi7050170
APA StyleHoyos, L. E., Cabido, M. R., & Cingolani, A. M. (2018). A Multivariate Approach to Study Drivers of Land-Cover Changes through Remote Sensing in the Dry Chaco of Argentina. ISPRS International Journal of Geo-Information, 7(5), 170. https://doi.org/10.3390/ijgi7050170