Stakeholder Specific Multi-Scale Spatial Representation of Urban Building-Stocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.1.1. Energy Performance Certificates
2.1.2. National Building Register (BR) and Property Taxation Register (PTR)
2.1.3. Linking Data—Urban GIS Database
2.2. Assumed Building Stock Development until Year 2035
2.3. Stakeholder Mapping for the City of Gothenburg
2.4. Spatiotemporal Energy Mapping
3. Results
3.1. Energy Performance of the Existing MFB Stock
3.2. Energy Development Year 2035
3.3. The Importance of Spatial Resolution
4. Discussion
5. Conclusions
Author Contributions
Acknowledgement
Conflicts of Interest
References
- Atanasiu, B.; Despret, C.; Economidou, M.; Maio, J.; Nolte, I.; Rapf, O. Europe’s Buildings under the Microscope: A Country-by-Country Review of the Energy Performance of Buildings; Buildings Performance Institute Europe: Brussel, Belgium, 2011. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014; p. 1132. [Google Scholar]
- European Parliament. 91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. Off. J. Eur. Communities 2002, 4, L1. [Google Scholar]
- European Commision. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). Off. J. Eur. Union 2010, 18. [Google Scholar] [CrossRef]
- SOU. Nationellt Program för Energieffektivisering och Energismart Byggande, Prop. 2005/06:145; Riksdagen: Stockholm, Sweden, 2006. [Google Scholar]
- The Swedish Government. Swedish Government. Swedish Government Bill 2008/09:163. In A Cohesive Energy and Climate Policy: Energy; The Swedish Government: Stockhol, Sweden, 2009. [Google Scholar]
- City of Gothenburg. Climate Programme for Gothenburg; City of Gothenburg: Gothenburg, Sweden, 2014. [Google Scholar]
- United Nations Environment Programme. Buildings and Climate Change: Summary for Decision-Makers; Sustainable Buildings and Climate Initiative: Paris, France, 2009; pp. 1–62. [Google Scholar]
- Boverket. Flyttmönster Till Följd av Omfattande Renovering; Boverket: Karlskrona, Sweden, 2014. [Google Scholar]
- Ascione, F.; De Masi, R.F.; de Rossi, F.; Fistola, R.; Sasso, M.; Vanoli, G.P. Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities 2013, 35, 270–283. [Google Scholar] [CrossRef]
- Fabbri, K.; Zuppiroli, M.; Ambrogio, K. Heritage buildings and energy performance: Mapping with GIS tools. Energy Build. 2012, 48, 137–145. [Google Scholar] [CrossRef]
- Mata, É.; Sasic Kalagasidis, A.; Johnsson, F. Energy usage and technical potential for energy saving measures in the Swedish residential building stock. Energy Policy 2013, 55, 404–414. [Google Scholar] [CrossRef]
- Heeren, N.; Wallbaum, H.; Jakob, M. Towards a 2000 watt society—Assessing building-specific saving potentials of the swiss residential building stock. Int. J. Sustain. Build. Technol. Urban Dev. 2012, 3, 43–49. [Google Scholar] [CrossRef]
- Heeren, N.; Jakob, M.; Martius, G.; Gross, N.; Wallbaum, H. A component based bottom-up building stock model for comprehensive environmental impact assessment and target control. Renew. Sustain. Energy Rev. 2013, 20, 45–56. [Google Scholar] [CrossRef]
- Sartori, I.; Wachenfeldt, B.J.; Hestnes, A.G. Energy demand in the Norwegian building stock: Scenarios on potential reduction. Energy Policy 2009, 37, 1614–1627. [Google Scholar] [CrossRef]
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A review of bottom-up building stock models for energy consumption in the residential sector. Build. Environ. 2010, 45, 1683–1697. [Google Scholar] [CrossRef]
- Reinhart, C.F.; Cerezo Davila, C. Urban building energy modeling—A review of a nascent field. Build. Environ. 2016, 97, 196–202. [Google Scholar] [CrossRef]
- Eriksson, B. Energisparpotentialer i Bostadsbeståndet: Värmebalansmodell; Statens Institut för Byggnadsforskning: Stockholm, Sweden, 1993. [Google Scholar]
- Aksoezen, M.; Daniel, M.; Hassler, U.; Kohler, N. Building age as an indicator for energy consumption. Energy Build. 2015, 87, 74–86. [Google Scholar] [CrossRef]
- Steadman, P.; Hamilton, I.; Evans, S. Energy and urban built form: An empirical and statistical approach. Build. Res. Inf. 2014, 42, 17–31. [Google Scholar] [CrossRef]
- Mastrucci, A.; Popovici, E.; Marvuglia, A.; De Sousa, L.; Benetto, E.; Leopold, U. GIS-based Life Cycle Assessment of urban building stocks retrofitting—A bottom-up framework applied to Luxembourg. In Proceedings of the Advances in Computer Science Research, EnviroInfo & ICT4S, Copenhagen, Denmark, 7–9 September 2015; pp. 47–56. [Google Scholar]
- Österbring, M.; Mata, É.; Thuvander, L.; Mangold, M.; Johnsson, F.; Wallbaum, H. A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model. Energy Build. 2016, 120, 78–84. [Google Scholar] [CrossRef]
- Gangolells, M.; Casals, M.; Forcada, N.; MacArulla, M.; Cuerva, E. Energy mapping of existing building stock in Spain. J. Clean. Prod. 2016, 112, 3895–3904. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Schlueter, A. Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Appl. Energy 2015, 142, 247–265. [Google Scholar] [CrossRef]
- Caputo, P.; Costa, G.; Ferrari, S. A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy 2013, 55, 261–270. [Google Scholar] [CrossRef]
- Nielsen, S.; Möller, B. GIS based analysis of future district heating potential in Denmark. Energy 2013, 57, 458–468. [Google Scholar] [CrossRef]
- Nouvel, R.; Mastrucci, A.; Leopold, U.; Baume, O.; Coors, V.; Eicker, U. Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support. Energy Build. 2015, 107, 204–212. [Google Scholar] [CrossRef]
- Theodoridou, I.; Karteris, M.; Mallinis, G.; Papadopoulos, A.M.; Hegger, M. Assessment of retrofitting measures and solar systems’ potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renew. Sustain. Energy Rev. 2012, 16, 6239–6261. [Google Scholar] [CrossRef]
- Fonseca, J.A.; Nguyen, T.A.; Schlueter, A.; Marechal, F. City Energy Analyst (CEA): Integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. Energy Build. 2016, 113, 202–226. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D.; Ruá, M.J.; Juan, P. A methodology for predicting the energy performance and indoor thermal comfort of residential stocks on the neighbourhood and city scales. A case study in Spain. J. Clean. Prod. 2016, 139, 646–665. [Google Scholar] [CrossRef]
- Petrovic, S.; Karlsson, K. Model for determining geographical distribution of heat saving potentials in Danish building stock. ISPRS Int. J. GeoInf. 2014, 3, 143–165. [Google Scholar] [CrossRef] [Green Version]
- Delmastro, C.; Mutani, G.; Schranz, L. The evaluation of buildings energy consumption and the optimization of district heating networks: A GIS-based model. Int. J. Energy Environ. Eng. 2016, 7, 343–351. [Google Scholar] [CrossRef]
- Pittam, J.; O’Sullivan, P.D.; O’Sullivan, G. Stock aggregation model and virtual archetype for large scale retrofit modelling of local authority housing in Ireland. Energy Procedia 2014, 62, 704–713. [Google Scholar] [CrossRef]
- Singh, M.K.; Mahapatra, S.; Teller, J. An analysis on energy efficiency initiatives in the building stock of Liege, Belgium. Energy Policy 2013, 62, 729–741. [Google Scholar] [CrossRef]
- Mikkola, J.; Lund, P.D. Models for generating place and time dependent urban energy demand profiles. Appl. Energy 2014, 130, 256–264. [Google Scholar] [CrossRef]
- Heiple, S.; Sailor, D.J. Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy Build. 2008, 40, 1426–1436. [Google Scholar] [CrossRef]
- Tanikawa, H.; Hashimoto, S. Urban stock over time: Spatial material stock analysis using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Taylor, S.; Fan, D.; Rylatt, M. Enabling urban-scale energymodelling: A new spatial approach. Build. Res. Inf. 2014, 42, 4–16. [Google Scholar] [CrossRef]
- Perez, D.; Henri, K. Urban Area Energy Flow Microsimulation for Planning Support: A Calibration and Verification Study. Int. J. Adv. Syst. Meas. 2013, 6, 260–271. [Google Scholar]
- Dall’o’, G.; Galante, A.; Torri, M. A methodology for the energy performance classification of residential building stock on an urban scale. Energy Build. 2012, 48, 211–219. [Google Scholar] [CrossRef]
- Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 2013, 93, 127–143. [Google Scholar] [CrossRef]
- Mata, É.; Kalagasidis, A.S.; Johnsson, F. A modelling strategy for energy, carbon, and cost assessments of building stocks. Energy Build. 2013, 56, 100–108. [Google Scholar] [CrossRef]
- Mangold, M.; Österbring, M.; Wallbaum, H. Handling data uncertainties when using Swedish energy performance certificate data to describe energy usage in the building stock. Energy Build. 2015, 102, 328–336. [Google Scholar] [CrossRef]
- Boverket. Underlag Till den Andra Nationella Strategin för Energieffektiviserande Renovering. Ett Samarbete Mellan Boverket och Energimyndigheten; Boverket: Karlskrona, Sweden, 2016. [Google Scholar]
- City of Gothenburg. Development Strategy Göteborg 2035; City of Gothenburg: Gothenburg, Sweden, 2014. [Google Scholar]
- Boverket. Remiss: Förslag Till Ändring i Boverkets Byggregler (2011:6)—Föreskrifter och Allmänna Råd; Boverket: Karlskrona, Sweden, 2018. [Google Scholar]
- Li, H.; Kwan, M.P. Advancing analytical methods for urban metabolism studies. Resour. Conserv. Recycl. 2017, 132, 239–245. [Google Scholar] [CrossRef]
- Mangold, M.; Österbring, M.; Wallbaum, H.; Thuvander, L.; Femenias, P. Socio-economic impact of renovation and energy retrofitting of the Gothenburg building stock. Energy Build. 2016, 123, 41–49. [Google Scholar] [CrossRef]
- Dykes, J.; MacEachren, A.M.; Kraak, M.-J. Exploring Geovisualization; Elsevier: New York, NY, USA, 2005. [Google Scholar]
Reference | City | Stakeholder | Parameters | Level of Visualization | Parameters Visualized |
---|---|---|---|---|---|
[25] | Zug | Education, urban, and energy planners | Power | City (districts in 2D), buildings for 4 districts (3D). | Peak space heating demand, energy reduction potential, GHG reductions, and Occupancy type |
[30] | Zug | Energy and urban planners | Energy and power | Buildings in a district (3D) | Solar potential, infrastructure layout, and optimization (pipes) |
[28] | Rotterdam | Policy makers | Energy | City (districts in 2D), buildings in a district (3D) | Gas consumption intensity (2D) and Heating savings potential (3D) |
[34] | Corke | Policy makers | Energy and CO2 | Buildings in a district (2D) | Distribution of archetypes and house types |
[22] | Esch-sur-Alzette | Urban planners | LCA | City (buildings in 2D) | Global Warming Potential |
[35] | Liege | Policy makers | Energy | City (districts in 2D) | Distribution of buildings with shared facade |
[36] | Helsinki | Energy planners | Power | City (districts in 2D) | Floor area, peak heating load, and peak heating load |
[33] | Turin | Energy planners | Energy and cost | District (buildings in 2D) | District heating network layout |
[26] | Milan | Energy planners and local administration | Energy | City (districts in 2D) | Energy consumption for heating, lighting and equipment, Domestic hot water, and cooking |
[10] | Benevento | Energy planners | Energy | District (buildings in 2D) | Energy label |
[11] | Ferrara | Urban planners | Energy | District (buildings in 2D for historical city center) | Energy label |
[37] | Houston | Modelers | Energy | District (density map in 3D) | Power demand |
[21] | London | Policy makers | Energy | City (districts in 2D) | Exposed surface area, building volume, and wall–volume ratio |
[38] | Manchester | Urban planners and waste managers | Material stock | District (buildings in 3D) | Building typology |
[39] | Leicester | Policy makers | Energy | District (buildings in 3D) | Energy |
[40] | La Chaux-de-Fonds, Neuchatel and Martigny | Energy managers | Energy | City (buildings in 2D) | Construction period |
[29] | Thessaloniki | Energy policy makers and planners | Energy | City (buildings in 3D and blocks in 2D) | Solar potential, DHW from solar (both in 3D), and CO2 emissions per block |
Existing Buildings | New Buildings | |
---|---|---|
Annual implementation | 2% EEM for the least performing buildings first | 212,000 m2/y until 2022, then 194,000 m2/y |
Performance (kWh/m2) | −25% if 150 > X, −50% if 150 < X | 75 kWh/m2/y until 2020, 55 kWh/m2/y until 2035 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Österbring, M.; Thuvander, L.; Mata, É.; Wallbaum, H. Stakeholder Specific Multi-Scale Spatial Representation of Urban Building-Stocks. ISPRS Int. J. Geo-Inf. 2018, 7, 173. https://doi.org/10.3390/ijgi7050173
Österbring M, Thuvander L, Mata É, Wallbaum H. Stakeholder Specific Multi-Scale Spatial Representation of Urban Building-Stocks. ISPRS International Journal of Geo-Information. 2018; 7(5):173. https://doi.org/10.3390/ijgi7050173
Chicago/Turabian StyleÖsterbring, Magnus, Liane Thuvander, Érika Mata, and Holger Wallbaum. 2018. "Stakeholder Specific Multi-Scale Spatial Representation of Urban Building-Stocks" ISPRS International Journal of Geo-Information 7, no. 5: 173. https://doi.org/10.3390/ijgi7050173
APA StyleÖsterbring, M., Thuvander, L., Mata, É., & Wallbaum, H. (2018). Stakeholder Specific Multi-Scale Spatial Representation of Urban Building-Stocks. ISPRS International Journal of Geo-Information, 7(5), 173. https://doi.org/10.3390/ijgi7050173