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Abstract: Raw remotely sensed images contain geometric distortions and cannot be used directly for
map-based applications, accurate locational information extraction or geospatial data integration.
A geometric correction process must be conducted to minimize the errors related to distortions and
achieve the desired location accuracy before further analysis. A considerable number of images
might be needed when working over large areas or in temporal domains in which manual geometric
correction requires more labor and time. To overcome these problems, new algorithms have been
developed to make the geometric correction process autonomous. The Scale Invariant Feature
Transform (SIFT) algorithm is an image matching algorithm used in remote sensing applications
that has received attention in recent years. In this study, the effects of the incidence angle,
surface topography and land cover (LC) characteristics on SIFT-based automated orthorectification
were investigated at three different study sites with different topographic conditions and LC
characteristics using Pleiades very high resolution (VHR) images acquired at different incidence
angles. The results showed that the location accuracy of the orthorectified images increased with
lower incidence angle images. More importantly, the topographic characteristics had no observable
impacts on the location accuracy of SIFT-based automated orthorectification, and the results showed
that Ground Control Points (GCPs) are mainly concentrated in the “Forest” and “Semi Natural Area”
LC classes. A multi-thread code was designed to reduce the automated processing time, and the
results showed that the process performed 7 to 16 times faster using an automated approach.
Analyses performed on various spectral modes of multispectral data showed that the arithmetic
data derived from pan-sharpened multispectral images can be used in automated SIFT-based
RPC orthorectification.

Keywords: VHR image; automated orthorectification; SIFT algorithm; incidence angle; topography;
land cover

1. Introduction

Developments in satellite and space technologies have evolved rapidly, and new satellites with
high-resolution sensors have steadily been launched to provide a variety of geospatial information
for disciplines ranging from engineering to defense. These developments enable users to adopt
very high-resolution satellite images for large-scale applications, such as mapping urban areas,
transportation network development, the identification of parcel-based agricultural boundaries for
precision agriculture and the production of reliable geospatial information for homeland security [1–4].

Remotely sensed images exhibit internal and external geometric distortions as they represent the
three-dimensional surface of the Earth in a two-dimensional satellite image with the additional effects of
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the Earth’s rotation and curvature, surface topography, sensor geometry/motion and instability of the
platform [5,6]. Geometric correction is a crucial pre-processing step used in remote sensing to accurately
compare and/or fuse multi-sensor, multi-spectral and multi-temporal images, integrate related satellite
images with other spatial data in a GIS environment, conduct accurate linear and areal measurements
of targets from satellite images and produce thematically and geometrically accurate land cover/use
maps using 2D/3D empirical models or by applying physical models [7–10].

Empirical models can be used if the parameters of the data acquisition system are unavailable or
if 3D physical models are absent. The Rational Polynomial Coefficients (RPC) model is a widely used
empirical model that uses coefficients for geometric correction that are primarily provided by new
generation, very high resolution (VHR) satellite images, enabling users to easily perform geometric
correction processes. The RPC model defines the relationship between the satellite image and the
Earth’s surface as well as physical models with rational polynomials [5,9,11].

Geometric correction employed using the RPC model eliminates some of the errors, but there are
still biases and random errors. RPC refinement methods with Ground Control Points (GCP) and a
Digital Elevation Model (DEM) improve the spatial accuracy and minimize geometric distortions and
can be considered better geometric correction options than the RPC model alone [9,11–13].

The GCPs used in RPC refinement method are usually measured manually from highly accurate
reference data in conventional methods. However, remote sensing operators conduct this manual
process, and thus, the accuracy of the process and the time required are directly affected by the
operator’s experience and skill.

With the availability of various sensors with different resolutions, access to satellite images has
become easier, and the number and size of images, especially for VHR sensors, have also increased [14].
This process triggers the development of automatic methods for geometric correction to save time and
cost. When the time cost and the errors related to manual processing are considered, image matching
methods can be the best option for obtaining GCPs and overcoming these disadvantages [15,16].

In image matching methods, a reference image with high spatial accuracy and the source image
requiring geometric correction are matched to find common points in both images that can be used as
GCPs after an outlier removal process with a series of filtering operations [16].

As it is possible to decrease the number of errors related to manual processing and complete
the geometric correction process quickly due to improvements in image matching algorithms and
developments in computer hardware, the utilization of image matching algorithms has recently
increased in remote sensing applications [17]. Algorithms developed for image matching and used
in remote sensing applications include Harris [18,19], Template Matching [19], Speeded Up Robust
Features [20,21] and Scale Invariant Feature Transform (SIFT) [22].

Yu et al. performed automatic geometric correction on high- and medium-resolution satellite
images using SIFT for pre-registration and Harris- and Wavelet Pyramids-Based Cross Matching for
fine registration and obtained RMSEs of 1.55 and 0.82 pixels for the high- and medium-resolution
images, respectively [23]. Hasan et al. applied SIFT neighborhood matching and random sample
consensus (RANSAC) algorithms for automatic registration and showed that neighborhood matching
generated more matching feature points [24]. Sedaghat et al. implemented Uniform-Robust SIFT
(UR-SIFT) and compared the results with those of the original SIFT in terms of the number of matching
points, the number of correct matching points, the distribution quality and RMSE using different image
channels, including panchromatic and multispectral channels, and asserted that UR-SIFT provided
more correct matches than the original SIFT [25]. Huo et al. applied the multi-level SIFT algorithm
to Quickbird images and aerial photographs using a parallel architecture approach and analyzed the
results based on the correct matching ratio for the autonomous method and the processing time for
the parallel architecture approach. The multi-level method generated more correct matches, and the
parallel approach completed the operation eight times faster [22]. Long et al. combined the matched
points of SIFT with least squares matching (LSM) refinement for more accurate results and conducted
research with the use of prior geometric information and image tiling to make the image matching
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process more efficient and robust. The proposed method showed notable improvement in the RMSE of
matched points with the use of LSM [26].

Previous studies have reported several challenges that the SIFT-based matching process faces:
large image size, multi-source images, limited matching points, large percentage of mismatches,
clouds in the image and an overlapping area ratio [26–28].

These studies also confirm that SIFT-based image matching can be used for GCP production to
replace manual approaches and make the registration process faster and more reliable. Although there
have been several studies that have compared and applied SIFT-based image matching algorithms for
automatic GCP selection, there has not been extensive research analyzing the effects of the incidence
angle, surface topography and land cover (LC) characteristics on automatic image registration methods.
Additionally, to our knowledge, the use of the SIFT algorithm to provide information for the polynomial
equation-based RPC refinement procedures has not been evaluated. The main aim of this research was
to fill this gap by analyzing the impacts of the incidence angle, surface topography, LC characteristic
parameters and spectral information on image matching and GCP quality. Moreover, this study
integrated SIFT-based GCP selection and an RPC refinement approach to perform orthorectification.

In this research, an automated orthorectification process was designed, and a SIFT image matching
algorithm [29] was selected for the image matching steps of the process. The algorithm was selected
due to its reported performance in evaluations conducted in image matching and remote sensing
studies [23,24,30,31]. Pleiades VHR images acquired with low and high incidence angles from three
different regions in Turkey with different topographic and land cover characteristics were used in
this research. The orthorectification process was performed using RPC data, DEM data and GCPs
derived by image matching of the input and reference images using the automated SIFT algorithm.
An accuracy assessment was performed in terms of the Root Mean Square Errors (RMSE) of the
GCPs obtained from the image matching results and Independent Check Points (ICP) measured from
geometrically corrected images. The process was applied for different bands of pan-sharpened images,
arithmetic data derived from bands of pan-sharpened images and panchromatic images to investigate
the effects of spectral characteristics on image matching and GCP selection. Lastly, a multi-thread
approach was developed to speed up the SIFT algorithm and handle many images simultaneously,
minimizing the time cost of the manual method.

The main aim of this study was to evaluate the impacts of the incidence angle, topography,
land cover and spectral characteristics on the automatic production of GCPs using SIFT to perform
RPC refinement, determine how these parameters affect the results in terms of location accuracy
after orthorectification, and evaluate how much the designed multi-thread approach accelerates the
geometric correction process.

2. Study Area and Data

VHR satellite images of three different regions in Turkey—Istanbul, Bursa and Izmir—were
acquired by Pleiades 1A and 1B satellites. The selected study areas are in the Marmara and Aegean
regions of Turkey (Figure 1). These regions represent different topographical conditions with different
elevation and slope ranges and different LC characteristics suitable for the methodological research
design. Three images with different incidence angles were selected per study region to analyze the
impacts of varying incidence angle values on the geometric correction procedure. Table 1 summarizes
the incidence angles and data collection dates of the Pleiades 1A and 1B images. The Pleiades
1A satellite was launched on 16 December 2011, and the Pleiades 1B satellite was launched on
2 December 2012. These twin satellites have the same spatial and spectral resolution. The spatial
resolution of the panchromatic image product is 0.5 m, and the spatial resolution of the multi-spectral
image product comprising the red, green, blue and near infrared channels is 2 m [32]. Images with
a very low incidence angle (close to NADIR) were selected as the reference data for each region for
further comparison.
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Figure 1. Study sites and overview of the images used in this research: (a) Geographic distribution
of the study regions (Google Earth©); (b) Overview of the Istanbul region; (c) Overview of the Bursa
region; (d) Overview of the Izmir region.

Table 1. Specifications of the satellite images used in this study.

Region Istanbul Bursa Izmir

Date Incidence Angle Date Incidence Angle Date Incidence Angle

Reference 24 December 2015 2.03◦ 25 September 2014 1.07◦ 4 December 2015 8.90◦

Low 9 December 2016 12.53◦ 2 November 2015 1.36◦ 29 January 2017 8.22◦

High 29 April 2017 26.10◦ 9 July 2014 18.74◦ 28 March 2017 18.48◦

The Advanced Spaceborne Thermal Emission and Reflectance Radiometer Global Digital
Elevation Model (ASTER GDEM) was used as the DEM data for the orthorectification procedure
throughout the study. The ASTER GDEM was produced from stereoscopic images acquired by the
ASTER instrument onboard the Terra satellite and it covers 99% of the Earth’s surface with a 30-m
spatial resolution [33].

The topographic characteristics of the study regions were extracted from the ASTER GDEM using
slope analysis, and the LC information was retrieved from the Coordination of Information on the
Environment (CORINE) dataset, which provides up-to-date land cover/land use (LCLU) information.
The CORINE Project was started in 1985 by the European Union to manage various environmental
issues [34]. In this study, first level LC classes, namely, Artificial Surfaces, Agricultural Areas, Forest and
Semi-Natural Areas, Wetlands and Water Bodies, were used to determine the surface characteristics of
the study regions.
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The topographic and LC characteristics of the study areas are shown in Figures 2 and 3.
These figures represent the percent of area covered by different slope and LC classes for each study
region. As shown in Figure 2, most of the Istanbul region has a slope of 5–30%, whereas the Bursa
region has steeper terrain, with most slopes greater than 16%. The Izmir region has balanced slope
characteristics, including significant areas of all slope classes, concentrated at 8–16%.
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Figure 3 summarizes the general LC characteristics of the three study sites. “Artificial Surfaces”
and “Forests and Semi-Natural Lands” are the predominant LC classes in the Istanbul region.
“Agricultural Areas” and Forests and Semi-Natural Lands” classes are predominant in the Bursa
region, whereas the Izmir region comprises a mixture of the “Artificial Surfaces”, “Agricultural Areas”
and “Forests and Semi-Natural Lands” classes. These analyses provided an initial demonstration of the
suitability of the study areas for the evaluation of the topographic conditions and LC characteristics.
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3. Methodology

The reference images close to the NADIR viewing angle were geometrically corrected with an
RMSE of ±1.2 m using GCPs obtained from 30 cm resolution aerial orthophotos that was provided
by the General Commander of Mapping (Harita Genel Komutanlığı—HGK). Aerial orthophotos are
distributed as a web map service (WMS); thus, manual orthorectification was the only option for
the preparation of the reference images. After manual orthorectification of the reference images,
an automated SIFT-based orthorectification process was conducted for low- and high-incidence angle
datasets for each study region. Because most of the VHR image analysis concerned pan-sharpened
images, evaluation of the performance of the SIFT-based autonomous orthorectification method
on directly retrieved single-channel data or data generated using arithmetic operations from the
pan-sharpened images was critical. Thus, panchromatic data and the R, G, B and NIR channels of
the pan-sharpened data and data produced using the band arithmetic function with the equations
RGB/3 and RGBN/4 were prepared. Automated SIFT-based orthorectification was performed for
these seven datasets using their corresponding data types from the reference orthoimage to analyze
the impact of spectral information on the SIFT algorithm and propose the best alternative. The results
were evaluated using the RMSE of the independent check points (ICP) measured for each region.

3.1. Geometric Correction (Orthorectification)

The RPC model is an empirical model that defines the relationship between the image space and
the object space with rational polynomials [35]. The coefficients of the RPC model are estimated using
the physical parameters of the platform and delivered to the end user of the satellite image. The RPC
refinement model, which improves the accuracy of the RPC model, was selected as the geometric
correction model in this study. Figure 4 shows a simplified flowchart of the process.

As shown in Figure 4, the raw satellite image, RPC file, DEM and orthorectified reference image
were the process inputs. The overlapping area of the reference and the raw image was calculated,
and tiles with predefined raster dimensions from two images in the overlapping area were produced.
Then, spatially matching tile pairs were sent to an available CPU thread to conduct SIFT-based
image matching with a multi-thread processing approach. The initial outlier removal operation with
RANSAC was conducted for each tile pair after the image matching process, and the inlier matching
points were saved as GCP candidates. After all tiles had been processed, the resultant GCP candidates
were combined and used as inputs to the RPC refinement process. In the next step, the horizontal
coordinates of GCP candidates derived from RPC refinement and their corresponding horizontal
coordinates from the reference data were used to calculate the RMSE of each candidate. The GCP
candidate with highest RMSE was determined and if its RMSE value was greater than 5 pixels,
this candidate was considered to be outlier and removed from the dataset. Refinement procedure
is performed again as coefficients of the function and RMSE of the remaining points will change
after the point removal. This secondary outlier removal procedure is applied iteratively until RMSE
value is lower than 5 pixels for all candidates. After removing all outliers, the remaining GCPs were
used in the orthorectification process with RPC refinement. The relationships between the image
coordinates of the GCPs and the corresponding coordinates from the reference images were modeled
with polynomial equations, and the coefficients derived from these equations were used to refine the
RPC-based orthorectification.
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The two most important components of the whole process chain were the derivation
of the refinement function and the SIFT-based image matching which are explained in
Sections 3.1.1 and 3.1.2, respectively.

3.1.1. RPC Refinement

Regarding the sensors and terrain relief, random errors and biases occur in the results after
geometric correction using the RPC model [9]. The accuracy of the results obtained using the RPC
model can be improved and the remaining errors and biases can be eliminated using a refinement
function and GCPs. The refinement function is given in Equations (1) and (2) [36].

Linei
(j) = ∆p(j) + p(j)(Φk, λk, hk) + εLi (1)

Samplei
(j) = ∆r(j) + r(j)(Φk, λk, hk) + εSi (2)

where Linei
(j) and Samplei

(j) represent the image coordinates of the GCPs, ∆p(j) and ∆r(j) are the
functions of differences between the coordinates calculated using RPC and the exact coordinates
(measured from reference image) and p(j)(Φk, λk, hk) and r(j)(Φk, λk, hk) represent the rational functions
constructed with coefficients from the metadata.
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The functions of the difference, which are the essential equations used to refine the entire image,
are shown in Equations (3) and (4) [36].

∆p = a0 +aS · Sample + aL · Line + aSL · Sample
· Line + aL2 · Line2 + aS2 · Sample2 + . . .

(3)

∆r = b0 +bS · Sample + bL · Line + bSL · Sample
· Line + bL2 · Line2 + bS2 · Sample2 + . . .

(4)

where a0, aS, aL, ..., b0, bL, bS, ... are the adjustment parameters for an image and Line and Sample are
the image coordinates of a GCP.

These functions can be defined as either first- or higher-order polynomials. The unknowns of these
functions are estimated using Least Square Adjustment (LSA) with enough GCPs to solve the equation,
and the solved functions are used to refine the RPC results for all pixels in the image. In this research,
the first- and second-order polynomial functions were evaluated using the RMSEs of the GCPs they
produced (Table 2). The second-order polynomial functions had smaller RMSEs and were used to
determine the shift and rotation coefficients of correction for the PRC model (refinement process).

Table 2. RMSE results of the first- and second-order refinement functions.

RMSE (±m)

Region Istanbul Bursa İzmir

Poly. Order 1st 2nd 1st 2nd 1st 2nd
Low Incidence 1.80 1.70 3.10 3.00 4.72 4.66
High Incidence 5.13 4.90 4.86 4.71 4.96 4.95

3.1.2. SIFT Algorithm

The SIFT image-matching algorithm was developed by David Lowe et al. and has been used
in several studies. The aim of SIFT is the extraction of features that are invariant to image rotation
and scale. The rotation invariance is ensured using the gradient orientations and magnitudes of the
pixels around the key points, and the scale invariance is ensured using the scale space approach.
The steps of the algorithm are scale space production, difference of Gaussian (DOG), finding local
maximum and minimum, eliminating bad points, assigning orientation to key points and feature
transformation [25,37–40].

The SIFT algorithm first generates the scale space images by convolving the input images using
Gaussian Convolution (Figure 5a), and attains the differences between Gaussian images by subtracting
adjacent images (Figure 5b). Local maximum and minimum points are then detected by comparing
neighbor pixels with the target pixels in the current and adjacent DOG images. Local maximum
and minimums are saved as key points (Figure 5c). The key points, which lie on the edges and
have low contrast, are eliminated. In the next step, gradient orientations and magnitudes of
the neighbor pixels around the key points are calculated using Equations (5) and (6) (Figure 5d).
Histograms of gradient orientations are then created according to gradient magnitudes (Figure 5e).
Finally, a 128 dimensional vector is computed and assigned to related key points for further matching
processes. Finally, the matching process is carried out via a distance comparison between two key
point datasets. Key points, which satisfy predefined threshold values for the distance comparison
process, are saved as matching points. Figure 5 illustrates the steps of SIFT feature extraction.

m(x, y) =
√
(L(x + 1, y)− L(x − 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (5)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x + 1, y)− (x − 1, y))) (6)
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where m(x,y) is the magnitude of the gradient, θ(x,y) is the orientation of the gradient and L(x,y) is the
intensity value for the image coordinates, x and y.
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Figure 5. The steps of SIFT feature extraction: (a) scale space generation; (b) DOG image generation;
(c) detection of local maximum and minimum; (d) gradient calculation; (e) histogram calculation and
generation of 128 dimensional vectors.

4. Results and Discussion

This study proposed a fully automated process chain to improve the location accuracy of
orthorectification with the use of GCPs produced by SIFT-based image matching. GCPs were used to
determine the RPC refinement function coefficients. The effects of the incidence angle, topography,
land cover and spectral characteristics on the proposed method were tested by applying the method
on low and high incidence angle images and at three regions where LC and topographic characteristics
were significantly different. Additionally, the performance of the multi-thread code design was
evaluated by comparing the processing time with respect to single thread processing.

Several aspects of the results of the research outputs were evaluated. As a first evaluation
step, the location accuracy of the resulting image sets of each study region were determined with
Independent Check Points (ICP) whose 2D coordinates were collected from reference images. In this
evaluation step, an accuracy assessment was performed using the RMSE metrics. This evaluation
step provided valuable quantitative information about the effects of the incidence angle and the
performances of different image bands in SIFT-based orthorectification.

In a second evaluation step, the images were orthorectified using the original RPC and DEM
data only, and the location accuracy values of these images was measured in terms of RMSE using the
same ICPs as in the first evaluation step. The resulting RMSE values were compared with the RMSE
values from the first evaluation to measure the efficiency of the proposed method compared to that of
RPC-based orthorectification.

As a third evaluation step, the GCPs produced using the SIFT algorithm were analyzed with the
slope and CORINE LC maps to understand the relationship between the GCPs, topography and LC
types. The distribution of GCPs over slope groups and LC classes provided information to aid in the
understanding of the effects of topography (slope) and LC on GCP characteristics, which are direct
indicators of the performance of the proposed method.

The last step of the evaluation was performed by conducting the entire process chain in single
thread and multi-thread environments and comparing the processing times.

Detailed results of the first evaluation step are shown in Figure 6. The numbers above the
bars in the graph indicate the matching points generated by the SIFT algorithm for that specific test.
Panchromatic (PAN), pan-sharpened red (PSP_R), pan-sharpened green (PSP_G), pan-sharpened blue
(PSP_B), pan-sharpened NIR (PSP_NIR), a pan-sharpened RGBNIR (PSP_RGBNIR) combination and a
pan-sharpened RGB (PSP_RGB) combination of both low (L) and high (H) incidence angle data were
created and used as inputs for the SIFT algorithm to analyze the impacts of spectral characteristics on
image matching.
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the RMSE (number of the validated Ground Control Points (GCPs) given over each bar).

The results of this research showed that the automated orthorectification of images with low
incidence angles provided better accuracy than high incidence angle images for all three test regions
in terms of the RMSE calculated using 10 randomly distributed ICPs. In Figure 6, similar RMSEs
were obtained for seven different spectral band configurations for the images with low incidence
angles for each study area. The results from images with high incidence angles indicated anomalies in
the blue channel for the Istanbul region, the red channel and the RGBNIR/4 arithmetic data for the
Bursa region and the near infrared channel for the Izmir region. These anomalies probably occurred
due to seasonal variation, as the difference in acquisition dates between the high incidence angle
images and the reference images was comparatively greater. The results obtained from different
datasets showed that the arithmetic data produced using pan-sharpened multi-band images can be
used for automated orthorectification processes. The results also showed that a geometric accuracy
of ±1 m can be achieved with the developed automated orthorectification algorithm using SIFT on
low incidence angle satellite images. At this point, it is important to note that the geometric accuracy
mentioned here represents the relative locational agreement with the reference data and was measured
by precisely but manually selected ICPs. Thus, the accuracy metric also includes the errors related to
the orthorectification of the reference data and the selection of ICPs.

Moreover, the SIFT algorithm generated more GCPs in images with low incidence angles than high
incidence angles. The lowest incidence angle provided the best locational accuracy in the Bursa region,
whereas the highest incidence angle provided the worst geometric accuracy in the low incidence angle
dataset in the Istanbul region. In the high incidence angle dataset, the Istanbul region provided the
worst geometric accuracy with the highest incidence angle, whereas lower incidence angles resulted in
better accuracy in the Bursa and Izmir regions. The results of the analysis of the relationship between
the geometric accuracy and the incidence angle show that these two parameters are highly correlated.
Figure A1 presents the distribution of the validated GCPs and ICPs for the high and low incidence
angle images of the three test regions. The GCPs were derived from SIFT matching and outlier removal
processes belonging to the arithmetic mean of RGB channels.

In addition, the results showed that the secondary outlier removal process introduced in
this research is an important step, which determines the most accurate GCP set for use in the
orthorectification process. Although the RANSAC algorithm that was applied inside the SIFT process
eliminated the false matches, the resulting matching points (GCP candidates) still included some points
with lower locational match quality. After the proposed outlier process, 3% to 25% of the matching
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points were removed as outliers. The high incidence angle image of the Istanbul region faced an
exceptional removal rate of around 40%. Moreover, the number of outlier points increased with high
incidence angle images in general. Table A1 presents the statistical results and matching ratios after
the secondary outlier removal process in all test conditions.

For the second evaluation procedure, the RMSE values were obtained using the images that were
orthorectified by original RPC model, and the results are shown in Figure 7. Better locational accuracy
values were obtained for satellite images with low acquisition angles.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 18 
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Figure 7. Accuracy of the results obtained using the original RPC model.

The difference between the RMSEs of low and high incidence angle images was higher for the
Bursa and Izmir regions. A comparative analysis was conducted by calculating the improvement
ratio of the proposed SIFT-based RPC refinement method over the original RPC results (Figure 8).
The comparison showed that the proposed model improved the spatial accuracy the most in the Izmir
region, with improvement ratios of over 80% (85% for panchromatic—low incidence angle data).
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Figure 8. Improvement ratio of the GCPs retrieved using SIFT to the results using the original
RPC-based orthorectification results as a reference.

The effects of the surface topography and land use/land cover parameters on the proposed
method were also analyzed to fulfill the third evaluation step. Slope maps were produced from ASTER
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GDEM, and an analysis was conducted using seven predefined slope classes from these maps and the
GCPs for each slope class. The number of GCPs and their RMSEs for each class are shown in Table 3.

Table 3. Distribution of the number of GCPs and mean RMSEs (m) for different slope groups in the
study regions (Ct.: GCP Count).

Region/Incidence 0–2% 2–5% 5–8% 8–16% 16–30% 30–45% 45+%

Ct. RMS Ct. RMS Ct. RMS Ct. RMS Ct. RMS Ct. RMS Ct. RMS

Istanbul
Low 3 1.135 14 1.328 19 1.367 70 1.406 65 1.348 18 1.305 3 1.720
High 1 1.912 3 1.970 4 2.212 11 2.307 6 1.927 1 2.388 0 0.000

Bursa
Low 1 0.969 3 0.516 5 0.692 33 0.638 75 0.520 60 0.506 31 0.529
High 0 0.000 1 1.240 2 1.454 12 1.793 24 1.507 12 1.937 5 2.043

Izmir
Low 8 1.744 19 1.586 22 1.409 44 1.510 44 1.642 19 1.737 8 2.741
High 3 2.473 8 1.934 10 1.700 22 1.766 25 2.129 5 2.311 1 2.920

According to Figure 2 and Table 3, the distribution of the GCPs was in proportion with the
area covered by the related slope groups. More GCPs were generated in slope groups that covered
larger areas. Significantly, the RMSE results were similar and did not indicate a relationship with the
slope groups. The reason behind this phenomenon can be related to the DEM data that was used
in both the orthorectification of the reference dataset and the automated procedure which lead to
similar performances and error characteristics, reducing the topographic effects and distortions in
the vertical plane. This result indicates a need for further analysis with different DEM data in order
to quantify the effects of the DEM quality in the automated orthorectification process, especially for
hilly and mountainous areas. On the other hand, our analysis on the three regions with different
topographic conditions indicated that SIFT algorithm was not affected by the topographic conditions
while producing 2D GCPs by image matching, but the absolute horizontal location accuracy of these
points may have been dependent on the used DEM data.

To evaluate the effects of the LC type on the SIFT algorithm and orthorectification process,
CORINE data for Turkey was used, which was updated in 2015. An analysis was conducted to
determine the relationships between the five generalized LC classes and the results of orthorectification
process. The number of GCPs and mean RMSEs of the GCPs for each class are shown in Table 4.

Table 4. Distribution of the number of GCPs and mean RMSEs (m) for different LC classes in the
study regions.

Region/Incidence Artificial Surfaces Agricultural Areas Forest and S. Natural Wetlands Water Bodies

Ct. RMS Ct. RMS Ct. RMS Ct. RMS Ct. RMS

Istanbul
Low 37 1.478 13 1.340 139 1.351 0 0 3 1.943
High 11 2.181 5 1.688 9 2.517 0 0 1 1.136

Bursa
Low 2 0.573 38 0.615 167 0.522 0 0 0 0
High 1 1.266 13 1.593 43 1.747 0 0 0 0

Izmir
Low 48 1.666 35 1.686 81 1.623 0 0 0 0
High 19 1.821 23 2.162 33 1.951 0 0 0 0

According to the LC-based analysis, the “Forest and Semi-Natural Areas” class had the highest
number of GCPs generated in all regions. The Artificial Surfaces class for the Istanbul and Izmir
regions and the Agricultural Areas class for Bursa had the second-highest number of GCPs generated.
These numbers are in agreement with the percentage of each LC class represented in Figure 3. As only
1% of the area was covered with Artificial Surfaces, there were fewer GCPs in the “Artificial Surfaces”
class in the Bursa region. Image matching using SIFT in the “Forest and Semi-Natural Areas” class was
successful, because the textural and spectral characteristics were not affected by seasonal conditions.
Moreover, because artificial surfaces are static in terms of the spectral response in different seasons,
the decrease in the number of GCPs for these areas in Istanbul and Izmir could have been due to the
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impact of the increasing incidence angle. In general, the RMSEs of the GCPs for LC classes did not
indicate dramatic changes.

According to of the multi-thread performance analysis, the processing of the arithmetic data
took 180 min using a single thread, whereas the same arithmetic data process took 26 min using a
multi-thread approach. Additionally, it took 116 min for panchromatic data using a single thread,
whereas it took 7 min to complete image matching for the same panchromatic data using a multi-thread
approach for a single image scene. These results show that the multi-thread approach hastens the
process by seven-fold for the arithmetic data and 16-fold for the panchromatic data (Figure 9).ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  13 of 18 
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The difference in the improvement ratios between the arithmetic and panchromatic data was
due to the time cost of reading the separate bands of RGBN data from the hard drive. These results
indicate the need for multi-thread design, as the single thread processing time is inefficient for a single
image scene.

When the findings of this research are summarized, it can be concluded that the SIFT-based GCP
production in combination with the proposed iterative outlier removal process enabled the construction
of a highly accurate refinement function and improved the orthorectification accuracy when compared
to the original RPC-based process. These findings are consistent with the findings of previous research
conducted by Long et al. and Sedaghat et al., which proposed outlier removal to increase the accuracy
of SIFT-based GCPs. However, our research proposed an iterative process for outlier removal which
evaluates the GCP after performing a complete RPC refinement process, thus taking the topographic
effects into account by use of DEM [25,26]. Additionally, the proposed outlier removal strategy is
simpler than the one conducted in Sedaghat et al., which used combinations of contrast matching,
curvature analysis and entropy calculation [25]. Moreover, our evaluation related to surface topography
and LC characteristics meant that the accuracy and the number of GCPs produced by SIFT was not
affected by topographic variation. The efficiency of GCP production was comparatively higher in the
“Forests and Semi-Natural Areas” class, which can be explained by the consistent spectral and textural
structure of this class across different seasonal conditions. The main influencing factor behind the GCP
production process was the incidence angle of images. We reported an increase in number of GCPs
and the orthorectification accuracy for low incidence angle images. Additionally, the multi-thread
approach reduced the processing time cost which is a well-known drawback of the SIFT algorithm
concerning high-resolution data for large areas. The findings on processing time improvement are
also compatible with a previous study conducted by Huo et al. [22]. Lastly, automation of the whole
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process provided advantages when several images need to be orthorectified by minimizing the time
cost and preventing additional errors that arise from manual GCP selection.

On the other hand, the proposed method is only usable when the reference pre-orthorectified
image archive is available which can be considered to be a general drawback of image matching-based
analyses. Additionally, the efficiency of the method was tested with the use of input and reference
images from the same satellite. The performance of the method with different sensor data with different
spectral and spatial resolution has not been evaluated yet. Lastly, the effect of DEM quality on the
proposed method has not been evaluated, and DEM data was the only constant data used in this
research. Further studies are planned to evaluate the mentioned limitations by use of the satellite
images from different sensors and using other DEM data.

5. Conclusions

The assessment of the geometric accuracy of satellite images is critical, as the needs and
requirements for positional accuracy vary by application, and the positional accuracy of a satellite
image depends on several factors. The incidence angle affects the number of key points and GCPs
generated using the SIFT algorithm and the final accuracy of the orthorectification. Low incidence
angles over three different landscape characteristics resulted in automatic selection of more key
points and GCPs and better RMSEs (better than 1 m) compared to high incidence angle images.
The land cover analysis illustrated the predominant impact of the incidence angle in terms of the
number of GCPs compared to seasonal effects, as the artificial surfaces had static geometry and
spectral responses in different seasons within the analysis period, and there was a decrease in the
number of SIFT-based GCPs as the increased incidence angle increased. The topographic conditions
(slope properties) of the surface had no observable effects on the performance of SIFT in producing
key points and GCPs. A similar number of points and RMSEs were achieved for different slope
groups. As an important output for this study, SIFT-based automatic matching point production
improved the RPC refinement process using polynomial transformation equations. The GCPs derived
from matching points provided a better estimation of the polynomial coefficients, thus improving
the accuracy of the rotations and shifts determined by these equations. Moreover, the designed
multi-thread process approach effectively hastened the process and reduced the time cost, even with
a mid-level desktop computer. The ASTER GDEM elevation model was the only unchanged data
in this research; thus, the impact of the DEM on the location accuracy provided by the introduced
process chain was not investigated. Additional research to evaluate the impact of various DEM
data is planned. Lastly, the designed process chain provides automated orthorectification of satellite
images with reference to a pre-orthorectified image data; thus, the accuracy results represent a relative
horizontal location agreement between datasets. Therefore, the suggested method will be affective in
situations where a highly accurate reference dataset is available, as demonstrated in this study.
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Appendix A

Figure A1 provides the distribution of the validated GCPs and ICPs for the high and low incidence
angle images of three test regions. The GCPs were derived from SIFT matching and outlier removal
processes belonging to the arithmetic mean of the RGB channels.
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Table A1 provides the number of matching points and the number of validated GCPs after the
iterative outlier removal procedure for all test conditions. The matching ratios produced from these
numbers are also given as statistical indicators.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  15 of 18 
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Table A1. Statistical comparison of matching points and validated GCPs derived from these points after outlier removal.

Region/Incidence Angle Point Type Spectral Band/Number of Points Matching Ratio (%)

Istanbul PAN PSP_R PSP_G PSP_B PSP_NIR PSP_RGB PSP_RGBN PAN PSP_R PSP_G PSP_B PSP_NIR PSP_RGB PSP_RGBN

Low Incidence
Matching Points 197 194 207 211 193 224 178

97% 96% 96% 95% 95% 96% 96%Validated GCPs 191 186 199 200 183 215 170

High Incidence Matching Points 44 52 50 51 38 37 49
64% 56% 68% 47% 42% 59% 59%Validated GCPs 28 29 34 24 16 22 29

Bursa PAN PSP_R PSP_G PSP_B PSP_NIR PSP_RGB PSP_RGBN PAN PSP_R PSP_G PSP_B PSP_NIR PSP_RGB PSP_RGBN

Low Incidence
Matching Points 224 225 229 227 188 225 203

96% 96% 95% 96% 95% 96% 95%Validated GCPs 214 216 217 217 179 216 192

High Incidence Matching Points 62 66 65 82 49 71 58
92% 91% 89% 89% 86% 87% 86%Validated GCPs 57 60 58 73 42 62 50

Izmir PAN PSP_R PSP_G PSP_B PSP_NIR PSP_RGB PSP_RGBN PAN PSP_R PSP_G PSP_B PSP_NIR PSP_RGB PSP_RGBN

Low Incidence
Matching Points 156 178 188 171 185 179 147

96% 96% 95% 96% 96% 95% 97%Validated GCPs 150 170 178 164 177 170 142

High Incidence Matching Points 92 100 56 73 101 99 98
87% 91% 71% 79% 76% 89% 89%Validated GCPs 80 91 40 58 77 88 87
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