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Abstract: The onset date of spring phenology (SOS) is regarded as a key parameter for understanding
and modeling vegetation–climate interactions. Inner Mongolia has a typical temperate grassland
vegetation ecosystem, and has a rich snow cover during winter. Due to climate change, the winter
snow cover has undergone significant changes that will inevitably affect the vegetation growth.
Therefore, improving our ability to accurately describe the responses of spring grassland vegetation
phenology to winter snow cover dynamics would enhance our understanding of changes in
terrestrial ecosystems due to their responses to climate changes. In this study, we quantified
the spatial-temporal change of SOS by using the Advanced Very High Resolution Radiometer
(AVHRR) derived Normalized Difference Vegetation Index (NDVI) from 1982 to 2015, and explored
the relationships between winter snow cover, climate, and SOS across different grassland vegetation
types. The results showed that the SOS advanced significantly at a rate of 0.3 days/year. Winter snow
cover dynamics presented a significant positive correlation with the SOS, except for the start date of
snow cover. Moreover, the relationship with the increasing temperature and precipitation showed a
significant negative correlation, except that increasing Tmax (maximum air temperature) and Tavg
(average air temperature) would lead a delay in SOS for desert steppe ecosystems. Sunshine hours
and relative humidity showed a weaker correlation.

Keywords: spring phenology; snow cover; climate change; temperate grasslands; Inner Mongolia

1. Introduction

Spring phenology is an important indicator of vegetation dynamics, and an important contributor
to vegetation activity and ecosystem functions. The onset date of spring phenology (SOS) can
affect the carbon cycle of terrestrial ecosystems [1–3], hydrologic processes [4], nutrient cycling [5],
and land–atmosphere interactions [6]. The spatial-temporal dynamics of SOS are sensitive to changes
in the climate and natural environment [7,8]. Moreover, the El Niño–Southern Oscillation (ENSO)
system is recognized as one of the dominant sources of climate variability at interannual timescales,
with important effects on temperature, precipitation, and drought [9]. Many studies have shown
that there is a significant correlation between ENSO events and vegetation phenology change [10,11].
Therefore, accurately monitoring SOS and exploring its responses to climate change are becoming
important aspects of global change research [12,13].

Inner Mongolia, which is located along the northern border of China, is ecologically typified by
mid-latitudinal and semi-arid temperate grassland. Furthermore, it is regarded as the typical terrestrial
transect by the International Geosphere-Biosphere Programme for global change research [14]. Due to
climate change and overgrazing, the vegetation ecosystem of Inner Mongolia is very fragile, while land
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desertification and degradation have become very severe [15]. In recent decades, the Chinese
government has implemented a ‘return-farmland-to-grassland’ strategy to reverse the land degradation
in pastures [16,17]. However, the ecosystems of this region are inherently fragile and unstable,
making them especially vulnerable to climate change [18,19].

In general, warmer temperatures or increasing precipitation would lead to advanced SOS.
Recent studies showed that increasing the maximum air temperature (Tmax) in winter had a more
significant influence on spring phenology than minimum air temperature (Tmin) [20,21]. In contrast,
Shen et al. [22] found that changes in the SOS were more strongly associated with a warmer winter Tmin
rather than Tmax in the Tibetan Plateau. However, the radiation characteristics and thermodynamic
properties of winter snow cover could affect the land (heat/cold and content of moisture), atmosphere,
biological characteristics, and ecosystem to various degrees [23–26]. The insulative properties
of snowpack also could protect the over-winter survival of vegetation from wind and low air
temperature [27]. Furthermore, winter snow cover could provide fresh water for vegetation activities.
With global warming, the timing of snowmelt advance would prompt vegetation growth. Meanwhile,
global warming would also result in the increasing number of low-temperature events. The higher
Tmin could alleviate frost damage, while the higher Tmax might exacerbate drought effects over the cold
and dry areas. In temperate regions, as the vegetation usually experiences a long cold winter season,
it does not begin to grow again without a certain cumulative temperature and precipitation. Although
previous studies have investigated the effect of snow cover on the alpine vegetation in Tibetan Plateau,
the responses of temperate grassland vegetation to changes of winter snow cover still need to be
further investigated, as the relationships between SOS and climate vary across different vegetation
types [28,29]. In addition, the effects of spring phenology and climate change (including Tmin, Tmax,
and frozen soil thawing) during the snow cover melt on SOS need to be further investigated.

Due to its long data record and continuity since 1981, the Normalized Difference Vegetation Index
(NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used
for monitoring long-term vegetation changes at global, continental, and regional scales [30]. In this study,
we used the logistic fitting method to retrieve the vegetation spring phenology from 1982 to 2015, and
explored the relationship between winter snow cover dynamics, climate, and vegetation spring phenology
in Inner Mongolia for the first time. The main aims of this present study are described as follows:

(1) Quantify the spatial heterogeneity and temporal trends in vegetation spring phenology for
different temperate grassland vegetation types in Inner Mongolia.

(2) Explore the underlying mechanisms related to the effects of winter snow cover dynamics
(including snow depth (SD), snow cover duration (SCD), snow cover onset date (SCOD), and snow
cover end date (SCED)) on the spring phenology.

(3) Investigate the responses of the spring phenology to climate factors (including Tmin, Tmax,
Tavg, precipitation (PRE), onset date of frozen soil thawing (GST), relative humidity (RHU),
and sunshine duration (SSD)) during SCED and SOS.

The findings of this study will improve our understanding of grassland vegetation dynamics and
its connections with the climate, enhance our ability to predict the magnitude and direction of spring
phenology, and determine changes in the structure and functioning of the grassland ecosystems.

2. Materials and Methods

2.1. Study Area

Inner Mongolia is located in the northwestern part of China (37◦24′ N–53◦20′ N, 77◦10′ E–126◦29′ E)
(Figure 1a). It covers a grassland area of 792,000 km2, accounting for 67% of the total area. The elevation
of Inner Mongolia is shown in Figure 1c. The elevation increases from the northeast to the southwest,
ranging from 88 to 3365 m. The study area is a transition zone between the arid and semi-arid northwest
inland region, which is affected by Asian monsoons. The climate in Inner Mongolia can be characterized
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by a cold, dry winter and warm, rainy summer [31]. The annual rainfall decreases gradually from the
east (~400 mm) to the west (~200 mm) [32], with higher rain use efficiency than most other areas in the
semi-arid and arid regions of China. The annual mean temperature ranges from−1.6 ◦C to 9.2 ◦C [33].
The annual average SOS ranges from April to July [34,35].
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Figure 1. (a) The geographic location of Inner Mongolia; (b) the distribution of grassland vegetation
types; and (c) the elevation, weather stations and phenology observation stations of Inner Mongolia.

The distribution of grassland vegetation types is shown in Figure 1b, which was obtained from
a 1:1,000,000 map of vegetation in China (Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (RESDC), http://www.resdc.cn). Grassland vegetation types shown in
this map include three different vegetation types: meadow steppe, typical steppe, and desert steppe.

2.2. Data

The meteorological data, including daily precipitation and temperature, were acquired from
the China Meteorological Data Sharing Service System (http://www.escience.gov.cn). A total of 33
meteorological stations were selected to represent the major steppes in the Inner Mongolia (Figure 1c).

The primary data sets were the surface reflectance datasets from the AVHRR. These data sets were
developed by the Long Term Data Record (LTDR) project and distributed through NASA’s Goddard
Space Flight Center (available at http://ltdr.nascom.nasa.gov). The AVHRR archival reflectance
products (AVH09C1-version4), with a 0.05◦ spatial resolution from 1982 to 2015, are generated based
on atmospheric correction using Rayleigh scattering, ozone, water vapor, and aerosol corrections in
addition to masked out clouds and heavy aerosols [36].

2.3. Preprocessing of NDVI Time Series Data

Before NDVI calculation and data generation, pre-processing (including radiation correction,
atmospheric correction, and coordinate transformation) was needed [37,38]. After this, NDVI was
calculated from the albedo of the first channel (visible light) and the second channel (near infrared) of
the AVHRR sensor. The equation is calculated as follows:

NDVI =
NIR−VIS
NIR + VIS

(1)

where VIS is the albedo of the visible light (0.58–0.68 µm) and NIR is the albedo of the near infrared
channel (0.725–1.10 µm).

http://www.resdc.cn
http://www.escience.gov.cn
http://ltdr.nascom.nasa.gov
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Satellite-derived NDVI data are usually interrupted by contamination from the atmosphere
(e.g., aerosol and dust), clouds, and snow [39]. Although the maximum-value composite technique
has been used to reduce such contamination [40], there is still residual noise in these time series
data, which would greatly hinder further application of the data. The Savitzky−Golay filter [41] was
employed to fill the gaps and smooth the time series in a local moving window, which provided a
simplified least-squares-fit convolution for smoothing and computing derivatives of a set of consecutive
values. This filter performs best in most situations when smoothing different vegetation types using
various satellite data [42]. The Savitzky–Golay filter is computed as follows:

Y∗j =
∑i=m

i=−m(CiYj+i)

N
(2)

where Y is the original NDVI value, Y∗ is the resultant NDVI value, and Ci is the coefficient for the ith
NDVI of the smooth window. N is the number of convoluting integers and is equal to the smoothing
window size (2m + 1). The running index of the ordinate data in the original data table is represented
by j, and m represents the half width of the smoothing window.

2.4. Retrieval of Spring Phenology

In this study, the logistic fitting method was used to identify the SOS. The logistic model was
employed to fit the temporal variation of the filtered NDVI data to an annual growth phase. Figure 2
shows the schematic diagram for the retrieval of spring phenology using the logistic model. The logistic
model function has the following form [43]:

y(t) =
c

1 + ea+bt + d (3)

where y(t) is NDVI at time t, parameters a and b control the shape of the curve, c + d is the amplitude
values, and d represents the initial background NDVI value. After this, the SOS was retrieved from
pre-processed NDVI data using the inflection point-based method (RCmax), which has been described
and tested in diverse biomes in different climatic zones, and validated for robustness by extracting
phenological metrics [44]. The RCmax method is based on the rate of change (RC) of the fitted NDVI
curve, which is the derivative of the curvature calculated with Equation (4):

RC = b3cz

3z(1− z)(1 + z)3[2(1 + z)3 + b2c2z]

[(1 + z)4 + (bcz)2]
5
2

−
(1 + z)2(1 + 2z− 5z2)
[(1 + z)4 + (bcz)2]

3
2

 (4)

where z = ea+bt and a, b and c have the same definitions as in Equation (3). After this, we defined the
SOS as the time when the rate of curvature change achieved the first local maximum.
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Figure 2. A schematic diagram illustrates the retrieval of spring phenology using the logistic fitting
method [45]. The solid line indicates the fitted logistic curve and the dashed line is the rate of change in
curvature of the fitted logistic curve. Onset date of spring phenology (SOS) is defined as the first local
maximum of the dashed curve. The red line indicates that the vegetation index begin to increase rapidly.
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2.5. Statistical Analyses

The least-squares method [46] was used to simulate the temporal trends in SOS during the study
period. The trends in SOS for each pixel can be calculated using Equation (5):

Slope =
n

n
∑

i=1
iXi −

n
∑

i=1
i

n
∑

i=1
Xi

n
n
∑

i=1
i2 − (

n
∑

i=1
i)

2 , (5)

where i is the serial number from 1 to n, n is the total number of years, and Xi is the parameter (SOS) of
ith year. Furthermore, slope < 0 indicates a decreasing trend, while slope > 0 indicates an increasing
trend. In addition, the statistical significance of the slope was assessed at the 95% confidence level.

The study used the latitude and longitude of each meteorological station to extract the
corresponding SOS values from 1982 to 2015. Pearson correlation coefficients were calculated between
SOS and climatic factors (e.g., temperature and precipitation) at each station during the study period.
The correlations represented the sensitivity of SOS to climatic factors [47].

3. Results

3.1. The Performances of Satellite-Based SOS

The SOS derived from satellite data required ground observations to determine their reliability and
accuracy. Thus, we compared the satellite-derived SOS with ground-observed data from 17 phenology
field observation stations in the Inner Mongolia grassland during 2004–2013. The mean absolute
error between the satellite-derived and observed spring phenology was 8.9 days, and the root mean
square error was 10.2 days. The results indicate that the retrieved SOS data from the AVHRR NDVI
are reliable.

3.2. Spatial Variation in Vegetation Spring Phenology

By using long-term satellite NDVI data and the least-squares method, we simulated the temporal
trends in SOS during the study period of 1982–2015. SOS showed a wide dynamic range, ranging
from day of year (DOY) 100 to 150. Early SOS regions were mainly located in the eastern part of
Inner Mongolia. A small region in the southwest also had an early SOS, i.e., between DOY 80 and 100.
Regions with late SOS, e.g., after DOY 130, were found at the north borders of the study area and the
west regions. For other regions, SOS generally fell in the range between DOY 106 and 135, which is
generally consistent with previous results [20].

Furthermore, the inter-annual trends of SOS were calculated over the entire grassland vegetation
types (Figure 3b). Most regions showed a significant advanced trend in SOS, accounting for the total
area of 52.7%. There was a delaying trend in 34.30% of the study area. However, regions with a
delayed SOS were mainly located in the east and west. Overall, the mean SOS over the entire study
area significantly advanced at a rate of 0.3 ± 0.74 days/year (p < 0.05) from 1982 to 2015. Over 34 years,
all three grassland vegetation types exhibited an earlier spring season, as the SOS significantly
advanced by 0.27 ± 0.47 days/year (p < 0.05) for temperate meadow steppe, 0.32 ± 0.65 days/year
(p < 0.05) for temperate typical steppe, and 0.47 ± 1.48 days/year (p < 0.05) for temperate desert steppe.

The statistical results of the SOS and the trends of three grassland vegetation types are shown
in Figure 4. On average, the SOS occurs on DOY 120 for meadow steppe and typical steppe, and on
DOY 130 in the desert steppe. In general, the SOS of meadow steppe varies from DOY 110 to 130,
and between DOY 100 and 140 for typical steppe. The desert steppe shows a wider range, with the SOS
ranging from DOY 90 to 150. In addition, meadow steppe shows an advanced trend at rates between
−0.5 and 0.5 days/years. The desert steppe has similar advanced trends, with that of typical steppe
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within 1 day/year. A majority of the trends in desert steppe vary from −1 to −0.5, which indicates
that the onset date of spring season is experiencing a faster advance in temperate China.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 6 of 13 
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Figure 4. 34 year average of SOS and its change trends for different vegetation types: (a) meadow
steppe, (b) typical steppe, and (c) desert steppe. Each bin represents a 10 day range of SOS. The height
and color of each bin indicate the number and fitting slope (i.e., the change trend) of the pixels that fall
within the bin, respectively, with the color bar of the slope on the bottom of the figure. Only statistically
significant trends (p < 0.05) are included.
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3.3. Temporal Variations in Vegetation Spring Phenology

The changes in the SOS regime are not only spatially complex, but also exhibit distinct temporal
variations. The trends over a long time period of several decades conceal short-term fluctuations in
the SOS. To assess the impact of the analysis timeframe on our regression results, we analyzed trends
with different window sizes (i.e., the length of the study period) ranging from one year to 34 years,
across all start-year and window-size combinations, which were averaged over the different grassland
vegetation types (Figure 5).
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Figure 5. The change trends of SOS for different vegetation types with different window lengths
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Within the study period, the regional average SOS shows that there were significant negative
trends universally (i.e., earlier spring phenology), regardless of the timeframe over which the regression
was performed. For meadow steppe, the average SOS fluctuated but generally advanced from 2006
with some short positive trends (1986–1988, 1998–2000, and 2004–2005). The temporal variation of
the SOS change for typical steppe vegetation indicated that there were two obvious receding trends
(1982–1984, 1996–1999). After this time period, there was a rapid advance, especially after 2010.
The desert steppe displayed different patterns. The average SOS showed significant receding trends
during these periods (from 1982 to 1987 and 1998 to 2004). This implies that while the three decade
trend in SOS has been negative, the trend has become more variable in the past decade. These anomalies
may be attributed to the strong effects of the EI Niño and La Niña events [48]. Therefore, the vegetation
phenology can act as a comprehensive indicator of climate changes.

3.4. The Relationship between Winter Snow Cover, Climate, and Vegetation Spring Phenology

To further explore the relationship between winter snow cover dynamics and vegetation spring
phenology in the temperate grasslands of Inner Mongolia, we defined three parameters to investigate
the snow cover dynamics in each hydrological year (1 August to 31 July of the next year) [46].

(1) Snow cover duration (SCD): the number of snow covered days in a hydrological year;
(2) Onset date of snow cover accumulation (SCOD): the start dates (Julian day) of the stable snow

cover duration in a hydrological year [49,50]. It is defined as the first day when snow cover is
initially observed to exist for at least five consecutive days;

(3) End date of snow cover (SCED): the ending date (Julian day) of the snow cover. It is defined as
the last day when snow cover is last observed to exist for at least five consecutive days.

Although some researchers have investigated the relationship between the SOS, temperature,
and precipitation in different months, they did not take the impact of climate change during the
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SCED and SOS into account [51,52]. In this study, we not only explored the relationship between
the winter snow cover and vegetation spring phenology, but also considered the various climate
factors (e.g., GST, PRE, Tavg, Tmax, Tmin, RHU, and SSD) during SCED and SOS. We found that the
mean winter snow depth presented a declining trend (0.01 cm/year) in the desert steppe, and an
increasing trend (>0.01 cm/year) in both the meadow steppe and typical steppe during the study period
(Figure 6). Additionally, the mean snow cover duration presented a significant decrease (p < 0.1) at
rates of−0.342 days/year,−0.069 days/year and−0.038 days/year for meadow steppe, typical steppe,
and desert steppe, respectively. The SCOD presented a significant delay in both meadow steppe and
desert steppe. The advanced rate of SCED in typical steppe (−0.225 days/year) was larger than that in
meadow steppe (−0.08 days/year) and desert steppe (−0.007 days/year).
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Figure 6. The interannual variability of each climate factor in different grassland types. The value in
each grid indicates the rate of change for each climate factor. Values are also color-coded, with blue
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value, with the color bar on the right of the table. The asterisks (*) indicate the climate factors trends
that are statistically significant at the p < 0.1 level, and the double asterisks (**) indicate significance at
the p < 0.05 level.

Focusing on the climate factors during SCED and SOS, we also found that the temperatures (Tavg,
Tmax, and Tmin) followed an increasing trend from 1982 to 2015. The precipitation in desert steppe
presented a non-significant trend. The SSD presented a negative trend, which might be due to the
increase in atmospheric anthropogenic aerosols [53]. The RHU presented a positive trend at rates of
0.123, 0.011 and 0.188 for meadow steppe, typical steppe and desert steppe, respectively. The start date
of frozen soil thawing (the first day when ground soil temperature above 0 ◦C) presented a slight but
non-significant increase (from −0.257 to −0.07 days/year) for the whole study area.

For the three vegetation types, changes in the SOS were closely correlated with temperature,
precipitation and winter snow cover (Figure 7). Many climate factors showed a positive relationship
between the SOS, winter snow cover parameters (e.g., SD, SCD and SCED), and GST for three grassland
vegetation types. This indicates that deeper snow depth (or later snowmelt, later frozen soil thawing,
or longer duration of snow cover) might lead to later SOS. In contrast, later snowfall might lead to
an earlier SOS. The temperate meadow steppe and the typical steppe were more weakly associated
with the start of snow cover compared with other snow cover parameters. By contrast, the SOS and
SCOD had a significant correlation for the desert steppe. Moreover, the SOS was more sensitive to
variations of temperature and precipitation during the SCED and SOS. In contrast, the SOS showed a
positive correlation with Tmax and Tavg for the desert steppe. In addition, it was also reported that the
increase in relative humidity had a weak effect on advancing the SOS for the three vegetation types in
Inner Mongolia.
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4. Discussion

Previous studies have investigated the spatial-temporal change of annual SOS and its responses to
temperature and precipitation in Inner Mongolia. As one of the three most stable snow regions in China,
the snow depth increases in winter and decreases in spring over the Inner Mongolia region [54,55].
However, the impacts of winter snow cover dynamics on spring phenology in the Inner Mongolia
grassland are still unknown. This might be because previous studies [20,22] have paid more attention
to the influence of the temperature (Tmax, Tavg, and Tmin) and precipitation in different months and
seasons on the vegetation phenology. Although many studies have explored the impacts of winter
snow cover on alpine vegetation in the Tibetan Plateau [56,57], the impacts of winter snow cover
on temperate grassland vegetation are thought to be similar to those on alpine vegetation. As the
relationships between the SOS and winter snow cover might vary across different vegetation types,
the possible effects of winter snow cover across temperate grassland vegetation in Inner Mongolia
should be further investigated.

It is worth noting that the SOS changes were related not only to the temperature and precipitation,
but also to other factors (e.g., winter snow cover, GST, SSD, and RHU). Winter snow cover could
add soil moisture, arrest soil heat exchange, and have crucial effects on soil heat and moisture
preservation [58,59], which would protect the over-winter survival of vegetation from wind and
low air temperatures. Thus, it could influence the exchange of gas, moisture, and dissolved matter.
Furthermore, it could affect the activity of the microbes in the soil as well as the transformation of soil
organic matter and nutrients. In general, deeper snow depth may lead to a later SOS. The reason might
be that a deeper snow depth would have a longer SCD and later SCED, which would not be beneficial
for soil respiration in winter and the accumulation of heat needed to unfold leaves in spring [60–62].
Earlier snow cover could shield vegetation from low temperatures by keeping the temperature at
a favorable level and protecting the activity of the soil microorganisms during the winter, which
could ensure positive vegetation growth during the growing season in the following year. Moreover,
the spring phenology was more strongly and negatively associated with temperature and precipitation
during the SCED and SOS, which indicates that the SOS will advance with warmer temperatures or
more precipitation. In contrast, the SOS showed a significant positive correlation with Tmax and Tavg
for desert steppe. Increased temperatures (Tmax and Tavg) would result in the loss of copious amounts
of water by evaporation [20] and exacerbate the effects of drought in dry regions, which would delay
the SOS for desert steppe [63,64]. Increasing Tmin could reduce frost damage to stimulate vegetation
growth. A suitable sunshine environment, which plays a role equally important as precipitation
and temperature, is beneficial for photosynthesis and respiration. Meanwhile, excess SSD may also
contribute to the aggravation of drought through evapotranspiration. The relative humidity exhibited
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a negative relationship with the SOS, and its change was usually associated with the temperature,
sunshine, wind, and precipitation.

In addition, the frequency of extreme events has been increasing under rapid climate change.
Extreme events during the SCED and SOS, such as drought and frost, will influence spring vegetation
phenology in the snow cover regions. Therefore, the impacts of the extreme events on the spring
phenology should be investigated.

5. Conclusions

This paper investigated the SOS of grassland vegetation in Inner Mongolia from 1982 to 2015,
and explored the responses of SOS to the winter snow cover, climate change during snow cover melt,
and growing season climate factors (including average temperature, precipitation, relative humidity,
and sunshine duration). The conclusions of this study can be drawn as follows:

(1) During 1982–2015, 52.7% of the Inner Mongolia grassland experienced a significant advancing
trend in SOS and 34.30% exhibited a delaying trend. The average SOS occurred on DOY 120 for
meadow steppe and typical steppe, and on DOY 130 in the desert steppe. All three grassland
vegetation types exhibited an earlier spring season at a rate of 0.3 ± 0.74 days/year across
all of grassland vegetation types, and rates of 0.27 ± 0.47 days/year, 0.32 ± 0.65 days/year,
and 0.47 ± 1.48 days/year for temperate meadow steppe, typical steppe, and desert
steppe, respectively.

(2) Winter snow cover showed a positive correlation with the SOS. By contrast, SCOD showed
an opposite correlation. Focusing on the correlation between snow cover and SOS, we found
that the SOS was more strongly associated with SCED, SD, and SCOD for meadow steppe,
typical steppe, and desert steppe, respectively. Furthermore, the climate during snowmelt and
SOS was also a significant factor contributing to the change in SOS. Higher temperatures and
more precipitation advanced SOS, whereas Tmax and Tavg showed a positive correlation with
SOS for desert steppe. Increasing Tmin would reduce the number of frost events and promote
vegetation growth. Sunshine hours and relative humidity showed weaker correlations.

It should also be noted that this present study may have several limitations. Although the
vegetation type data are fairly reliable, the possible effects of human activities, such as grazing,
cannot be excluded completely.
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