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Abstract: Debris flows in a burned area, post-fire debris flows, are considered as one of the most
dangerous geo-hazards due to their high velocity, long run-out distance, and huge destruction to
infrastructures. The rainfall threshold to trigger such hazards is often reduced compared with normal
debris flow because ashes generated by mountain fires reduce the permeability of the top soil layer,
thus increasing surface runoff. At the same time, burnt material and residual debris have very
poor geo-mechanical characteristics, e.g., their internal friction angle and cohesion are typically
low, and thus an intense rainfall can easily trigger some debris flows. Studying post-fire debris
flow enables us to get a deeper understanding of disaster management. In this paper, the debris
flow that occurred in Montecito, California, USA, and was affected by the Thomas Fire was used
as a case study. Five major watersheds were extracted based on the digital elevation model (DEM).
Remote sensing images were used to analyze the wildfire process, the extent of the burned areas,
and the burn severity. The hypsometric integral (HI) and short-duration rainfall records of the
watersheds around Montecito when the post-fire debris flows occurred were analyzed. Steep terrain,
loose and abundant deposits, and sufficient water supply are the important conditions affecting the
formation of debris flows. Taking watersheds as the research objects, HI was used to describe the
geomorphic and topographic features, open-access rainfall data was used to represent the water
supply, and burn severity represented the abundance of material sources. An occurrence probability
model of post-fire debris flow based on HI, short-duration heavy rainfall, and burn severity was
developed by using a logistic regression model in post-fire areas. By using this model, the occurrence
probability of the post-fire debris flow in different watersheds around Montecito was analyzed based
on the precipitation with time. Especially, the change characteristics of occurrence probability of
debris flows over time based on the model bring a new perspective to observe the obvious change of
the danger of post-fire debris flows and it is very useful for early warning of post-fire debris flows.

Keywords: post-fire debris flow; Montecito; hypsometric integral; logistic regression model; rainfall;
Thomas Fire; mountain hazard

1. Introduction

Vegetation in the forest has the function of conserving water and preserving soil erosion.
The branches and leaves of forest trees can greatly reduce the impact of rainwater on the surface
of the earth. The spongy vegetation layer on the ground surface of wooded areas not only can dampen
the impact of rainwater, but it can also absorb a large amount of water, thus reducing water infiltration
into the ground. At the same time, a large number of interlaced forest roots can help to stabilize soil.
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Forest fire is a common disaster in wooded areas, which poses a serious threat to the environment, life,
and property [1,2]. Forest fire burns vegetation on hillsides, which enhances water infiltration into
the ground and decreases the stability of slopes [3]. On the other hand, because there is no vegetation
protection, the rate of water absorption by the soil may not exceed the rate of rainfall, and it could
cause surface runoff. Cannon et al. [4] found that most post-fire debris flows are generated through
the process of progressive entrainment of material eroded from hillslopes and channels. Post-fire
debris flows are initiated by runoff and erosion, rather than shallow landslides [5], and they can
grow in size through erosion and scour during the movement [6]. When a large amount of ash layer
and loose sediment appear as rich material sources after mountain fires, the process of progressive
entrainment may become easier. As a result, the threshold of rainfall to induce debris flows is reduced
obviously. Short et al. [7] conducted research about a post-fire debris flow in western Montana,
and they found that the probability of debris flows increased by 50% after forest fires. Debris flow
often damages highway, railway, and other transportation facilities, even villages and towns, causing
huge losses [8–13].

Compared with traditional debris flow, some important parameters related to post-fire debris
flow should be taken into consideration when modifications of the conventional debris flow prediction
method are made. Currently, the prediction of post-fire debris flow mainly focuses on occurrence
probability, frequency, and scale. Cannon et al. [14,15] studied the peak flow prediction of post-fire
debris flows using the basin gradient, burn extent, and storm rainfall. Gartner et al. [16] also used
variables, including basin areas burned at different severities, measures of basin morphology, rock type,
soil material properties, rainfall amounts, and intensities for storms, to construct empirical models to
predict the volumes of debris flows. Cannon et al. [17] used areal burned extent, soil properties, basin
morphology, and rainfall from short-duration and low-recurrence-interval convective rainstorms to
construct models to describe post-fire debris-flow probability. Gartner et al. [18] proposed a prediction
function of erosion probability for post-fire debris flows based on channel slope, plane curvature,
and channel length by conducting a comparison among factors, including contributing drainage basin
area, channel slope, planform curvature, burn severity, and the upstream channel length, resulting in
good accuracy and precision. It could be stated that different researchers use various evaluation factors.
Based on the data-driven theory and genetic programming algorithm, Friedel [19] considered that the
nonlinear equation established by three indexes, the average slope of the basin, the total burned area,
and the total rainfall, has the least prediction error for the debris-flow scale. If only rainfall factors
are used, it is also a common method to judge the occurrence probability of post-fire debris flows by
rainfall intensity–duration thresholds [4,20].

The above research shows that it is feasible to construct forecast models to study the occurrence
probability of post-fire debris flow. Complicated parameters in models would increase the
uncertainty [21] and difficulty of the model application. Therefore, using a reduced number of key
factors, like Friedel [19], may be easier to establish forecast models of watersheds affected by wide fire.
Steep terrain, loose and abundant deposits, and sufficient water supply are the important conditions
affecting the formation of debris flows. Currently, the geomorphic and topographic characteristics of
debris flow can be better reflected by hypsometric integral (HI) [22] based on watershed units. Burn
severity calculated from remote sensing images could represent the abundance of material sources.
An important effect of mountain fires is the change of the rainfall threshold for hazards occurring due
to the amount of ash produced by mountain fires. Different from the effect of long-time antecedent
rainfall for ordinary debris flow, short-duration rainfall plays an important role in the occurrence of
post-fire debris flows [23]. In this paper, HI, burn severity, and short-duration rainfall characteristics of
the watersheds around Montecito were analyzed firstly. After that, these three factors were selected to
conduct the logistic regression model of occurrence probability of the debris flows in post-fire areas.
The change of post-fire debris flow occurrence probability around Montecito was then analyzed from
the newly proposed model based on different rainfall in different periods.
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2. Background and Study Area

Montecito is an unincorporated community and census-designated place in Santa Barbara County,
California, located east of the City of Santa Barbara. Located at the foot of the Santa Ynez Mountains,
which are young and mostly of sedimentary origin, the peak elevation around Montecito has an
altitude of 981 m. Montecito experiences a cool Mediterranean climate characteristic with warmer
winters and cooler summers compared with places further inland because of Montecito’s proximity to
the ocean.

Early on the morning of 9 January 2018, about one month since the start of Thomas Fire, a heavy
rainfall caused mud and boulders from the Santa Ynez Mountains to flow down creeks and valleys into
Montecito [24] (Figure 1). This post-fire debris flows consisting of mud, boulders, and tree branches
were up to 15 feet (5 m) in height, moving at estimated speeds of up to 20 miles per hour (30 km/h)
into the lower areas of Montecito [25]. The cascading processes resulted in 21 deaths and two missing
persons [26]. About 163 people were hospitalized for various injuries [27]. The disaster caused at
least $177 millions of property damage, at least $7 millions in emergency responses, and another
$43 millions in cleaning costs [28,29].
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sensing image, it was found that debris flows affecting Montecito mainly broke out in five 
watersheds (Figure 2). The impact areas of these post-fire debris flows are different, among which 
the debris flows coming from the first and third basins caused huge damage to downstream 
residential areas (Table 1). Mass mud came out of the mountain passes and rushed into the city to 
form a number of debris-flow accumulation areas with different thicknesses of mud. 

Table 1. Watershed area and accumulation area of different debris flows. 
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② 1.47 0.08 
③ 7.60 0.69 
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Figure 1. Disaster photos in which the areas affected by the debris flows are circled with yellow lines.
(a) Homes and streets of a neighborhood affected by the Santa Barbara County mudslides in Santa
Barbara, California on 9 January 2018, from the perspective of a Coast Guard MH-65 Dolphin helicopter
crew involved in rescuing injured and stranded victims. (Modified from U.S. Coast Guard photo [30]);
(b) San Ysidro Ranch and Casa de Maria damage taken on 11 January 2018 due to the catastrophic
debris flow from heavy rains after the Thomas Fire, modified from [31].

The post-disaster high-resolution remote sensing image of WorldView-2 on 13 January 2018 was
downloaded from Google Earth. By using image interpretation of the post-disaster remote sensing
image, it was found that debris flows affecting Montecito mainly broke out in five watersheds (Figure 2).
The impact areas of these post-fire debris flows are different, among which the debris flows coming
from the first and third basins caused huge damage to downstream residential areas (Table 1). Mass
mud came out of the mountain passes and rushed into the city to form a number of debris-flow
accumulation areas with different thicknesses of mud.

Table 1. Watershed area and accumulation area of different debris flows.

Watershed Number Watershed Area (km2) Accumulation Area (km2)

1© 9.35 0.78
2© 1.47 0.08
3© 7.60 0.69
4© 1.67 0.11
5© 4.59 0.17
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Figure 2. Debris-flow watersheds and debris-flow accumulation area around Montecito.

3. Materials and Methods

3.1. Materials

Free remote sensing data are easy to obtain through the internet, such as Landsat satellite
images [32,33] of National Aeronautics and Space Administration (NASA) which can be downloaded
from the United States Geological Survey (USGS) Global Visualization Viewer (GloVis) website
(https://glovis.usgs.gov/), and Sentinel satellite images [34,35] of European Space Agency (ESA),
which can be downloaded from the Copernicus Open Access Hub website (https://scihub.copernicus.
eu/dhus/#/home). These free satellite data can be used to analyze nature hazards - mountain fires [34],
landslides [36], debris flow [37], and others. In this study, Landsat 8 data of 23 November 2017, Landsat
8 data of 9 December 2017, Sentinel-2A data of 13 December 2017, Landsat 7 data of 17 December
2017, Landsat 8 data of 25 December 2017, Sentinel-2A data of 12 January 2018, and Landsat 8 data of
26 January 2018 were downloaded to analyse the fire. The Shuttle Radar Topography Mission (SRTM)
Digital Elevation Model (DEM) data with a 30-m resolution from United States Geological Survey
(USGS) was used for watershed extraction. Rainfall data were obtained through the World Weather
Online website [38].

3.2. Methods

3.2.1. Fire Analysis Using the Shortwave Infrared (SWIR) and Normalized Burn Ratio (NBR)

Shortwave infrared (SWIR) can penetrate haze and smoke, so SWIR images can be used to identify
and analyze active forest fire [39,40]. Taking Landsat 8 data as an example, the fire smoke can be
seen in the true color image (Figure 3a). However, it is difficult to identify the burned areas. In the
false-color composite image of shortwave infrared data (R = SWIR2, G = SWIR1, and B = SWIR2),
the burned areas are revealed as pink color (Figure 3b).

https://glovis.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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(R = SWIR2, G = SWIR1, and B = SWIR2).

A normalized burn ratio (NBR) is defined to index the severity of a burn using multispectral
remote sensing images. The formula for NBR uses the near-infrared band and the short-wave infrared
band [41,42]:

NBR =
NIR − SWIR
NIR + SWIR

(1)

where NIR is the near-infrared band and SWIR is the short-wave infrared band. NIR and SWIR
can be reflectance, radiance, or digital number (DN) as measured in bands 4 (0.76–0.90 µm) and 7
(2.08–2.35 µm) of the Thematic Mapper (TM) images, in bands 4 (0.775–0.90 µm) and 7 (2.09–2.35 µm)
of the Enhanced Thematic Mapper Plus (ETM+) images, or in bands 5 (0.845–0.885 µm) and 7
(2.10–2.30 µm) of the Operational Land Imager (OLI) images.

For a burned area, NBRb is calculated before the burn and NBRp is calculated from an image
immediately following the burn. Burn severity is calculated by taking the difference between these
two index layers [43]:

∆NBR = NBRb − NBRp (2)

Table 2 from the USGS FireMon program can be used as a first approximate for interpretation of
NBR differences corresponding to different burn severity [44].

Table 2. Burn severity categories.

∆NBR Burn Severity

<−0.25 High post-fire regrowth
−0.25 to −0.1 Low post-fire regrowth
−0.1 to +0.1 Unburned
0.1 to 0.27 Low-severity burn

0.27 to 0.44 Moderate-low severity burn
0.44 to 0.66 Moderate-high severity burn

>0.66 High-severity burn

3.2.2. Watershed Extraction Method Based on 30-m Resolution Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) Data

A watershed is a hydrological unit commonly used in natural resource management and planning.
It is more common to study debris flow hazards based on watershed units [45–47]. In this paper,
the extraction of watersheds by creating a watershed boundary was achieved using 30-m resolution
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) data in ArcGIS software.
A sink is a cell or set of spatially connected cells, which are surrounded by higher value grids. Sink
filling is the first step for the extraction of the basin boundary. It can help to remove small imperfections
in the data by adding the pixel value to the lowest pixel value around it [48]. Grids whose sinks are
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filled can be used to obtain the drainage direction of each grid. The widely used method of determining
the flow direction is the eight-direction method, which makes the direction of a pixel to point to a
lower pixel, which has the maximum gradient in the surrounding eight pixels [49]. Based on the
flow-direction grids, the flow-accumulation grids list the number of pixels flowing through it for
each pixel. Using the conditional function to set a threshold of the flow-accumulation grids, drainage
networks could be obtained. Pour points at the outlet of each watershed were drawn. Using the
ArcGIS “watershed” tool, in which the flow-direction raster and pour-point data were used as input
data, the contributing areas above different pour points in a raster data were determined as ranges
of watersheds.

3.2.3. Hypsometric Integral

The hypsometric integral (HI) is a quantitative index to study the relationship between the
horizontal section area and its elevation in a watershed. HI reflects the landform erosion stage and
evolution process. Strahler [50] divided geomorphic development into three stages—young stage
(HI ≥ 0.60), mature stage (0.35 < HI < 0.60), and old stage (HI ≤ 0.35). When calculating an HI value,
contour i is chosen as a reference, the whole watershed area is A, and the area above the contour of the
basin is ai. The height difference between the contour and the lowest point of the basin is hi, and the
height difference between the highest and lowest points is H. The variables are set as:

xi =
ai
A

, (3)

yi =
hi
H

, (4)

where xi is the area percentage based on contour i, and yi is the percentage of relative height difference.
The points (xi, yi) in the rectangular coordinate system are spread to form a curve. It can be defined as:

y = f (x), (5)

On this basis, the HI value is calculated by a definite integral value in the range of 0 to 1 in
Equation (6) by using integral curve method:

HI =
∫ 1

0
f (x)dx, (6)

Formula (6) belongs to the integral curve method. Pike and Wilson [51] proposed the
elevation-relief ratio method by deducing a mathematical formula to estimate the HI value. It can be
defined as:

HI ≈ Have − Hmin
Hmax − Hmin

(7)

where Have is the average elevation value of a watershed, Hmin is the minimum elevation value of a
watershed, and Hmax is the maximal elevation value of a watershed.

By comparing the above methods, Chang et al. [52] found that the HI values calculated by the
methods are almost the same. However, the method of the elevation-relief ratio is more efficient and
simpler to calculate the HI value. Therefore, the elevation-relief ratio method used in Equation (7) was
chosen in this study.

3.2.4. Logistic Regression Model

Although there are many advanced techniques and methods, such as the neural network
method [53], conditional probability, and support vector machine [54,55], used in developing a
susceptibility mapping of natural hazards, the logistic regression model, as a widespread methodology
with the advantage of being simple and easy to implement [55–59], was used in this study to develop
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the occurrence probability model of post-fire debris flows. Logistic regression (LR) is a regression
model in which the dependent variable (DV) is categorical. The output can take only two values,
“0” and “1”, which represent outcomes, such as win/lose, alive/dead, or healthy/sick [60]. Logistic
regression is an example of a qualitative response model. In this study, the relationship between the
probability of the occurrence of post-fire debris flow and the influencing factors can be expressed
as [61]:

Z = B0 + B1X1 + B2X2 + . . . + BnXn, (8)

P =
1

1 + e−Z , (9)

In this study on the occurrence probability of post-fire debris flow, P represents the probability,
and the output result ranges from 0 to 1. Z is the sum of linear weights after superposition of variables,
and Bi is a regression coefficient.

3.2.5. Technical Route

The methods used in this paper are described above. In order to make the structure of the article
clearer, the technical route is made (Figure 4). In this study, we attempted to take the post-fire debris
flow that occurred in Montecito, California, USA as a case study to develop the occurrence probability
of post-fire debris flows using several important influencing factors. Firstly, three factors affecting
post-fire debris flow in five basins around Montecito were analyzed. We then selected a wider range of
data in a larger area covering Montecito to build the logistic regression model in order to enhance the
robustness of the model. The model was applied to the five watersheds around Montecito to find the
change of occurrence possibility of post-fire debris flow along with rainfalls at different times.

ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  7 

 

two values, “0” and “1”, which represent outcomes, such as win/lose, alive/dead, or healthy/sick 
[60]. Logistic regression is an example of a qualitative response model. In this study, the 
relationship between the probability of the occurrence of post-fire debris flow and the influencing 
factors can be expressed as [61]: 

Z = B0 + B1X1 + B2X2 + … + BnXn, (8) 𝑃 = ଵଵା௘షೋ, (9) 

In this study on the occurrence probability of post-fire debris flow, P represents the probability, 
and the output result ranges from 0 to 1. Z is the sum of linear weights after superposition of 
variables, and Bi is a regression coefficient. 

3.2.5. Technical Route 

The methods used in this paper are described above. In order to make the structure of the 
article clearer, the technical route is made (Figure 4). In this study, we attempted to take the post-
fire debris flow that occurred in Montecito, California, USA as a case study to develop the 
occurrence probability of post-fire debris flows using several important influencing factors. Firstly, 
three factors affecting post-fire debris flow in five basins around Montecito were analyzed. We then 
selected a wider range of data in a larger area covering Montecito to build the logistic regression 
model in order to enhance the robustness of the model. The model was applied to the five 
watersheds around Montecito to find the change of occurrence possibility of post-fire debris flow 
along with rainfalls at different times. 

 
Figure 4. Technical route of this study. 

4. Data Interpretation and Model Construction 

4.1. Data Interpretation 

4.1.1. The Spread of Mountain Fires and Burn Severity around Montecito 

Landsat 8 data on 9 December 2017 (Figure 5a), Sentinel 2A data on 13 December 2017 (Figure 
5b), Landsat 7 data on 17 December 2017 (Figure 5c), and Landsat 8 data on 25 December 2017 
(Figure 5d) were selected to get the burned area using SWIR false color composite images in which 
burned areas are displayed with pink color. According to the contrast of multi-temporal images, the 
Thomas Fire, which began on 4 December, had not affected Montecito until 9 December 2018. While 
on 13 December 2017, mountain fires were burning fiercely, and the range of fires in this area no 

Figure 4. Technical route of this study.

4. Data Interpretation and Model Construction

4.1. Data Interpretation

4.1.1. The Spread of Mountain Fires and Burn Severity around Montecito

Landsat 8 data on 9 December 2017 (Figure 5a), Sentinel 2A data on 13 December 2017 (Figure 5b),
Landsat 7 data on 17 December 2017 (Figure 5c), and Landsat 8 data on 25 December 2017 (Figure 5d)
were selected to get the burned area using SWIR false color composite images in which burned areas
are displayed with pink color. According to the contrast of multi-temporal images, the Thomas
Fire, which began on 4 December, had not affected Montecito until 9 December 2018. While on
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13 December 2017, mountain fires were burning fiercely, and the range of fires in this area no
longer expanded on 17 December 2017, which is more than 20 days from 9 January 2018 when
the disaster occurred.
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The Landsat 8 images on 23 November 2017 and on 26 January 2018 were used to calculate the
normalized burn ratio (NBR) separately as the pre-fire NBR and post-fire NBR. Burn severity was
calculated by taking the difference between the above two indexes (Figure 6). It can be found that most
of the watersheds were moderate burn that could provide a great deal of loose source for debris flow.
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4.1.2. Geomorphic Development Stage

Using DEM data downloaded from the USGS website [62] and the HI calculation method,
the hypsometric integral curves of the different watersheds around Montecito were drawn, as shown in
Figure 7, and HI values of them were calculated. According to the HI-based geomorphic development
stages proposed by Strahler, and the summary of watershed hypsometric integral curves [22,63],
the geomorphic development in Figure 7 is divided into three stages. The area above the convex curve
is considered as the young stage; the area below the concave curve is treated as the old stage; the area
between the two curves is known as the mature stage [8]. According to Figure 7, the five watersheds
around Montecito belong to the mature stage. In the infancy and mature periods, the terrain was steep
and the solid content of the gully was rich. Therefore, mature stage watersheds have a susceptible
geomorphic environment for debris flows.
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4.1.3. Rainfall

Post-fire debris flows generally are triggered by one of two processes: Surface erosion caused
by rainfall-induced runoff, and slope failure caused by rainfall infiltration. Runoff-dominated
processes are by far the most prevalent because fires commonly reduce the infiltration capacity of
soils, which increases runoff and erosion [64]. Rainfall conditions are often regarded as the triggering
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factor of post-fire debris flows. The influence of mountain fire makes the threshold of rainfall decrease
obviously compared with ordinary debris flow. The debris can begin to slide after a rain of 8 mm with
a time interval of only 30 min [23]. In the current study, Montecito’s local rainfall data of a three-hour
interval were obtained through the World Weather Online website [38]. The first measurable rain for
the area around Montecito fell on 8 January 2018. Ash and loose sediment generated by forest fires
formed the source of debris flow development. A heavy rainfall process occurred at about 3:00 on
the morning of 9 January 2018 (Figure 8a), causing mud and boulders from the gullies to flow along
several drainage basins into Montecito. The comparison of rainfall data during the same period in 2018
with 2017 is shown in Figure 8. It is observed that no debris flow occurred on 9 January 2017, with a
cumulative precipitation of 16.5 mm (Figure 8b), while the debris flow occurred on 9 January 2018,
with a cumulative precipitation of less 13.7 mm (Figure 8a). It can be seen that the rainfall threshold of
debris flows in the burned area decreased obviously after the Thomas Fire.
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4.2. Model Construction of Post-Fire Debris Flow Occurrence Probability

In the current study, burn severity, HI, and short-duration rainfall in the Montecito post-fire debris
flow disaster were discussed to illustrate their relationships with post-fire debris flows. To build a good
model between them, we needed more data to support it. The watersheds affected by the Thomas
Fire were detected using an SWIR false-color image of Sentinel-2A data on 12 January 2018 (Figure 9).
Firstly, 380 rainfall records of 63 watersheds at different times were obtained. Remote sensing images
of Google Earth at different times after the Thomas Fire were used to determine whether or not the
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post-fire debris flows occurred. We took the scouring and accumulation characteristic of debris flows
at the outlet of the main river course as the criterion for the occurrence of debris flow. Debris flows that
did not produce significant deposits at the basin outlet were not included. 1 and 0 were used to express
the occurrence and non-occurrence and were input into the logistic regression model. As shown in the
figure below, 30 of the watersheds used to construct the model can be identified traces of debris flows
in the main channel.
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Figure 9. Watersheds selected to establish the prediction model to analyze the occurrence probability
of post-fire debris flows.

To construct a model between the debris flow occurring and the factors, including burn severity,
HI, and short-duration (3-h interval) rainfall data, rainfall data were obtained through the World
Weather Online website [38]. The burn severity image was calculated using the Landsat 8 data of
23 November 2017 and 26 January 2018 (Figure 10). The percentages of burn severity, including
low-severity burn and high and moderate severity burn, of each watershed were calculated. The HI
factors could also be calculated using DEM.
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Taking the burn severity, HI, and rainfall as the independent variable, and the debris flow
occurring as a dependent variable, by using the logistic regression model, the prediction model of the
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post-fire debris flow occurrence probability was constructed according to Equation (9), as shown in
Equation (11). The fitting parameter, R2, of the model was 0.887, which indicates a good fitting degree.

Z = −22.563 + 20.263(HI) + 0.554(PR) + 8.6(%Low-severity burn) + 7.404(%High and moderate severity burn), (10)

P =
1

1 + e−z , (11)

In the above equations, P represents the probability of the occurrence of post-fire debris flows. Z is
the sum of linear weights after superposition of variables. The probability of debris-flow occurrence
(P) of an individual basin can be estimated as a function of:

- Hypsometric integral value of each basin (HI);
- total three-hour precipitation (PR, mm);
- percent of the low-severity burned area in each basin (%Low-severity burn); and
- percent of the high and moderate severity burned area in each basin (%Low-severity burn).

A receiver operating characteristic (ROC) curveis a graphical plot that illustrates the diagnostic
ability of a binary classification system as its discrimination threshold is varied. The area under
the curve is defined as the AUC (area under the curve, with a numeric range between 0.5 and 1).
The classifier with a larger AUC value would be much better [65]. In this research, 22 new watersheds
(Figure 11a), which were different from the ones for conducting the model, were used to generate the
ROC curve. Using the “ROC curve” tool in the SPSS software, taking the P value calculated using the
above model as the “Test Variable”, the actual occurrence of the debris flow as the “State Variable”
(“Value of State Variable” is 1), the ROC curve could be drawn, and the AUC value was calculated
automatically (Figure 11b). Fressard et al. defined five classes of accuracy using the parameter, AUC:
Excellent accuracy for AUC values from 0.9 to 1.0; good accuracy for AUC values from 0.8 to 0.9;
fair accuracy for AUC values from 0.7 to 0.8; poor accuracy, for AUC values from 0.6 to 0.7; and fail
accuracy, for AUC values from 0.5 to 0.6 [66]. In this paper, the AUC value was 0.876, which indicates a
good accuracy of the prediction ability of the logistic regression model. We used 0.5 as the threshold of
probability of the logistic regression model to judge the occurrence of debris flows. For the prediction
of debris flow occurrence probability in the 22 watersheds, only one basin showed a negative result.
The classification accuracy was 95%, which is a satisfactory result.
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5. Model Application around Montecito

The occurrence probabilities of post-fire debris flows in different watersheds around Montecito at
a different time were calculated (Figures 12 and 13) by putting burn severity, HI, and rainfall into the
model (Equations (10) and (11)). The probability change of post-fire debris flows due to the change of
rainfall could reflect the danger change of post-fire debris flows in a long time.

The probability of debris flow occurrence in five watersheds varied differently with the rainfall
process, as shown in Figures 12 and 13. It is observed that HI, short-duration heavy rainfall, and burn
severity played different roles in this process.

(1) The occurrence probability of post-fire debris flow of watershed 1 increased first at the time of
21:00 on January 8. At the same time, the occurrence probability of post-fire debris flows of watershed
2 was lower than watershed 1, even with a higher burn severity. This may be attributed to a relatively
lower HI value in watershed 2. A high value of HI indicates a steep terrain, which could enhance
debris initiation. In these five watersheds, it was found that both watershed 2 and 4 also had a low
probability of debris flow because of their small HI values.

(2) For a single basin, with the increase of rainfall, the probability of post-fire debris flow increased.
All five basins had a peak of occurrence probability when the maximum rainfall occurred during the
rainfall process. They faced the greatest threat when the rainfall reached its peak at 6:00 am on January
9 when rainfall played a dominant effect (Figure 12).

(3) The influence of the burn severity for the post-fire debris flows could be reflected by comparing
watershed 1 with 3. The two watersheds experienced the same rainfall process and had similar HI
values. However, watershed 3 was calculated with a higher probability of debris flow occurrence
than watershed 1. This was mainly attributed to the different burn severity of the fire. According to
Formula (10), it was found that the percent of the low-severity burned area and high and moderate
severity burned area in each basin had a similar coefficient (8.6 compared with 7.4) in the equation.
This means a similar effect when using them as the input to calculate the P value—the occurrence
probability of post-fire debris flows. The reason why watershed 3 had a higher probability of debris
flows was that it had a higher proportion of fire burn (89.8%) than watershed 1 (82.7%). A higher
proportion of fire burn, including low-severity burn, high, and moderate severity burn, meant more
material sources for the debris flows.

ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  13 

 

The occurrence probabilities of post-fire debris flows in different watersheds around Montecito 
at a different time were calculated (Figures 12 and 13) by putting burn severity, HI, and rainfall into 
the model (Equations (10) and (11)). The probability change of post-fire debris flows due to the 
change of rainfall could reflect the danger change of post-fire debris flows in a long time. 

The probability of debris flow occurrence in five watersheds varied differently with the rainfall 
process, as shown in Figures 12 and 13. It is observed that HI, short-duration heavy rainfall, and 
burn severity played different roles in this process. 

(1) The occurrence probability of post-fire debris flow of watershed 1 increased first at the time 
of 21:00 on January 8. At the same time, the occurrence probability of post-fire debris flows of 
watershed 2 was lower than watershed 1, even with a higher burn severity. This may be attributed 
to a relatively lower HI value in watershed 2. A high value of HI indicates a steep terrain, which 
could enhance debris initiation. In these five watersheds, it was found that both watershed 2 and 4 
also had a low probability of debris flow because of their small HI values. 

(2) For a single basin, with the increase of rainfall, the probability of post-fire debris flow 
increased. All five basins had a peak of occurrence probability when the maximum rainfall occurred 
during the rainfall process. They faced the greatest threat when the rainfall reached its peak at 6:00 
am on January 9 when rainfall played a dominant effect (Figure 12). 

(3) The influence of the burn severity for the post-fire debris flows could be reflected by 
comparing watershed 1 with 3. The two watersheds experienced the same rainfall process and had 
similar HI values. However, watershed 3 was calculated with a higher probability of debris flow 
occurrence than watershed 1. This was mainly attributed to the different burn severity of the fire. 
According to Formula (10), it was found that the percent of the low-severity burned area and high 
and moderate severity burned area in each basin had a similar coefficient (8.6 compared with 7.4) in 
the equation. This means a similar effect when using them as the input to calculate the P value—the 
occurrence probability of post-fire debris flows. The reason why watershed 3 had a higher 
probability of debris flows was that it had a higher proportion of fire burn (89.8%) than watershed 1 
(82.7%). A higher proportion of fire burn, including low-severity burn, high, and moderate severity 
burn, meant more material sources for the debris flows. 

 
Figure 12. Change of post-fire debris flow occurrence probability of each watershed around 
Montecito along with rainfalls at different times. 

Figure 12. Change of post-fire debris flow occurrence probability of each watershed around Montecito
along with rainfalls at different times.



ISPRS Int. J. Geo-Inf. 2019, 8, 5 14 of 18
ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  14 

 

 

Figure 13. Spatial display of post-fire debris flow occurrence probability of each watershed around 
Montecito at different times on 9 January 2018: (a) 0:00 AM; (b) 3:00 AM; (c) 6:00 AM; (d) 9:00 AM 

6. Discussion and Conclusions 

As a special type of geological disasters, post-fire debris flow is significantly different from an 
ordinary debris flow. In particular, the threshold of rainfall required for the occurrence of post-fire 
debris flows is reduced because mountain fires produce a large number of material sources. When 
studying the probability of post-fire debris flow by constructing a model, the factors selected by 
different scholars are different. Determining the key factors and reducing factor quantities are not 
only conducive to reducing uncertainty, but also can improve the accuracy of the forecast model for 
post-fire debris flow. The burn severity, HI, and rainfall factors selected in this paper play an 
important role in the formation of post-fire debris flow. The characteristics of burn severity, HI, and 

Figure 13. Spatial display of post-fire debris flow occurrence probability of each watershed around
Montecito at different times on 9 January 2018: (a) 0:00 AM; (b) 3:00 AM; (c) 6:00 AM; (d) 9:00 AM.

6. Discussion and Conclusions

As a special type of geological disasters, post-fire debris flow is significantly different from
an ordinary debris flow. In particular, the threshold of rainfall required for the occurrence of
post-fire debris flows is reduced because mountain fires produce a large number of material sources.
When studying the probability of post-fire debris flow by constructing a model, the factors selected
by different scholars are different. Determining the key factors and reducing factor quantities are not
only conducive to reducing uncertainty, but also can improve the accuracy of the forecast model for
post-fire debris flow. The burn severity, HI, and rainfall factors selected in this paper play an important
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role in the formation of post-fire debris flow. The characteristics of burn severity, HI, and rainfall
factors in the post-fire debris flows of watersheds around Montecito were first analyzed. On a larger
scale, 380 rainfall records corresponding to 380 events’ records of 63 watersheds at different times
were obtained, and a prediction model of post-fire debris flow was made by using a logistic regression
model to represent the occurrence probability of debris flows in each watershed. The application of
the model used for the five watersheds of Montecito had good results and also reflected the change of
occurrence probability of post-fire debris flows around Montecito during a rainfall process. The change
of occurrence probability due to changes in rainfall is very help for an early warning of post-fire
debris flows.

On the other hand, one of the advantages of this model is that it is easy to use and practical. Input
parameters are easy to obtain from the public source data. The HI value of each basin can be obtained
before mountain fires. After the fire, the severity of the fire can be obtained by using remote sensing
images quickly. Based on the weather forecast, the future rainfall can be known, and then by inputting
the above variables into the model, the occurrence probability of future post-fire debris flows after
fires can be obtained. It is helpful for disaster prevention and reduction. Nevertheless, the model is
based on the mountain fire area in California, and the practicability of other regions needs further
verification and the model parameters may need to be adjusted.
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