A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change Detection
Abstract
:1. Introduction
2. Related Works
2.1. Land Cover-Related Online Geoprocessing Systems
2.2. Current Efforts in Geoprocessing Service Composition
3. Methodology
3.1. Heterogeneous Service Encapsulation Strategy
3.2. Constraint Rule-Based Automatic Service Composition
Algorithm 1. WSChainbyRule (, ) |
Input: , ; Output:WSChain |
1 SET = WSChain =[] 2 WHILE(){ 3 FOR EACH IN WSList{ 4 IF (){ 5 IF ( is satisfied DFinconRules){ 6 WSChain += DFC 7 }ELSE IF ( is satisfied CSinconRules){ 8 WSChain += CSC 9 } ELSE IF ( is satisfied ReinconRules){ 10 WSChain += ReC 11 } 12 WSChain += 13 IF ( satisfied hasOutputRule){ 14 RETURN WSChain 15 }ELSE{ 16 =.output 17 }}} |
4. System Architecture and Implementation
4.1. Architecture Design
4.2. System Implementation
4.3. Walk-Through Example
5. Evaluation and Discussion
5.1. Evaluation
5.2. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
References
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ban, Y.; Li, S. China: Open access to earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Andrew, P.T.; Alexis, J.C.; Nicholas, J.T.; Alistair, L.; Peter, F.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [Green Version]
- Hofer, B. Uses of online geoprocessing technology in analyses and case studies: A systematic analysis of literature. Int. J. Digit. Earth 2015, 8, 901–917. [Google Scholar] [CrossRef]
- Xing, H.; Chen, J.; Wu, H.; Zhang, J.; Liu, B. An Online Land Cover Change Detection System with Web Service Composition. In Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications, Guangzhou, China, 4–6 July 2016. [Google Scholar]
- Xing, H.; Chen, J.; Wu, H.; Zhang, J.; Li, S.; Liu, B. A service relation model for web-based land cover change detection. Int. J. Photogramm. Remote Sens. 2017, 132, 20–32. [Google Scholar] [CrossRef]
- Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P.; Gong, J. Semantic web services-based process planning for earth science applications. Int. J. Geogr. Inf. Sci. 2009, 23, 1139–1163. [Google Scholar] [CrossRef]
- Papazoglou, M.P. Service-oriented computing: Concepts, characteristics and directions. In Proceedings of the Fourth International Conference on Web Information Systems Engineering, Roma, Italy, 10–12 December 2003; pp. 3–12. [Google Scholar]
- Zhao, P.; Foerster, T.; Yue, P. The geoprocessing web. Comput. Geosci. 2012, 47, 3–12. [Google Scholar] [CrossRef]
- Di, L. Geobrain—A Web Services Based Geospatial Knowledge Building System. In Proceedings of the NASA Earth Science Technology Conference, Palo Alto, CA, USA, 22–24 June 2004; pp. 22–24. [Google Scholar]
- Zhai, X.; Yue, P.; Zhang, M. A sensor web and web service-based approach for active hydrological disaster monitoring. Int. J. Geo-Inf. 2016, 5, 171. [Google Scholar] [CrossRef]
- Tan, X.; Guo, S.; Di, L.; Deng, M.; Huang, F.; Ye, X.; Sun, Z.; Gong, W.; Sha, Z.; Pan, S. Parallel agent-as-a-service (p-aaas) based geospatial service in the cloud. Remote Sens. 2017, 9, 382. [Google Scholar] [CrossRef]
- Karantzalos, K.; Bliziotis, D.; Karmas, A. A scalable geospatial web service for near real-time, high-resolution land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4665–4674. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Wu, H.; Chen, X. Towards a collaborative global land cover information service. Int. J. Digit. Earth 2017, 10, 356–370. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and applications of globeland30: A review. ISPRS Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef]
- Han, G.; Chen, J.; He, C.; Li, S.; Wu, H.; Liao, A.; Peng, S. A web-based system for supporting global land cover data production. ISPRS J. Photogramm. Remote Sens. 2015, 103, 66–80. [Google Scholar] [CrossRef]
- Chen, F.; Chen, J.; Wu, H.; Hou, D.Y.; Zhang, W.W.; Zhang, J.; Zhou, X.G.; Chen, L.J. A landscape shape index-based sampling approach for land cover accuracy assessment. Sci. China 2016, 59, 1–12. [Google Scholar] [CrossRef]
- Xing, H.; Chen, J.; Zhou, X. A geoweb-based tagging system for borderlands data acquisition. ISPRS Int. J. Geo-Inf. 2015, 4, 1530–1548. [Google Scholar] [CrossRef]
- Li, R.; Kuang, W.H.; Chen, J.; Chen, L.J.; Liao, A.P.; Peng, S.; Guan, Z.X. Spatio-temporal pattern analysis of aritificial surface use efficiency based on Globeland30 (in Chinese). Scientia Sinica Terrae 2016, 46, 1436–1445. [Google Scholar]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. Cropscape: A web service based application for exploring and disseminating us conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Fritz, S.; Mccallum, I.; Schill, C.; Perger, C.; See, L.; Schepaschenko, D.; Marijn, V.D.V.; Kraxner, F.; Obersteiner, M. Geo-wiki: An online platform for improving global land cover. Environ. Model. Softw. 2012, 31, 110–123. [Google Scholar] [CrossRef]
- See, L.; Laso Bayas, J.; Schepaschenko, D.; Perger, C.; Dresel, C.; Maus, V.; Salk, C.; Weichselbaum, J.; Lesiv, M.; McCallum, I. Laco-wiki: A new online land cover validation tool demonstrated using globeland30 for Kenya. Remote Sens. 2017, 9, 754. [Google Scholar] [CrossRef]
- Clark, M.L.; Aide, T.M. Virtual interpretation of earth web-interface tool (view-it) for collecting land-use/land-cover reference data. Remote Sens. 2011, 3, 601–620. [Google Scholar] [CrossRef]
- Bastin, L.; Buchanan, G.; Beresford, A.; Pekel, J.-F.; Dubois, G. Open-source mapping and services for web-based land-cover validation. Ecol. Inform. 2013, 14, 9–16. [Google Scholar] [CrossRef]
- Sheng, Q.Z.; Qiao, X.; Vasilakos, A.V.; Szabo, C.; Bourne, S.; Xu, X. Web services composition: A decade’s overview. Inf. Sci. 2014, 280, 218–238. [Google Scholar] [CrossRef]
- Evangelidis, K.; Ntouros, K.; Makridis, S.; Papatheodorou, C. Geospatial services in the cloud. Comput. Geosci. 2014, 63, 116–122. [Google Scholar] [CrossRef]
- Yang, C.; Chen, N.; Di, L. Restful based heterogeneous geoprocessing workflow interoperation for sensor web service. Comput. Geosci. 2012, 47, 102–110. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, P.; Di, L.; Chen, A.; Deng, M.; Bai, Y. Bpelpower—a bpel execution engine for geospatial web services. Comput. Geosci. 2012, 47, 87–101. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, M.; Tan, Z. A geoprocessing workflow system for environmental monitoring and integrated modelling. Environ. Model. Softw. 2015, 69, 128–140. [Google Scholar] [CrossRef]
- Rodriguez Mier, P.; Pedrinaci, C.; Lama, M.; Mucientes, M. An integrated semantic web service discovery and composition framework. Ieee Trans. Serv. Comput. 2016, 9, 537–550. [Google Scholar] [CrossRef]
- Feng, J.Z.; Kong, L.F.; Wang, X.H. Web service automatic composition based on semantic relationship graph. Comput. Integr. Manuf. Syst. 2012, 18, 427–436. [Google Scholar]
- Hashemian, S.V.; Mavaddat, F. A graph-based framework for composition of stateless web services. In Proceedings of the European Conference on Web Services, Zurich, Switzerland, 4–6 December 2006; pp. 75–86. [Google Scholar]
- Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial web service chains. Comput. Geosci. 2007, 33, 649–665. [Google Scholar] [CrossRef]
- Tan, X.; Di, L.; Deng, M.; Chen, A.; Huang, F.; Peng, C.; Gao, M.; Yao, Y.; Sha, Z. Cloud- and agent-based geospatial service chain: A case study of submerged crops analysis during flooding of the yangtze river basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1359–1370. [Google Scholar] [CrossRef]
- Yue, S.; Chen, M.; Wen, Y.; Lu, G. Service-oriented model-encapsulation strategy for sharing and integrating heterogeneous geo-analysis models in an open web environment. ISPRS J. Photogramm. Remote Sens. 2016, 114, 228–273. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, H.; Chen, M.; Liu, D.; Bao, Y.; Ding, Y. A framework for sharing and integrating remote sensing and gis models based on web service. Sci. World J. 2014, 2014, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chen, M.; Yue, S.; Zheng, P.; Peng, G.; Lu, G. A model-service deployment strategy for collaboratively sharing geo-analysis models in an open web environment. Int. J. Digit. Earth 2017, 10, 405–425. [Google Scholar] [CrossRef]
- Cruz, S.A.B.; Monteiro, A.M.V.; Santos, R. Automated geospatial web services composition based on geodata quality requirements. Comput. Geosci. 2012, 47, 60–74. [Google Scholar] [CrossRef]
- Ranisavljević, É.; Devin, F.; Laffly, D.; Nir, Y.L. Semantic orchestration of image processing services for environmental analysis. ISPRS J. Photogramm. Remote Sens. 2013, 83, 184–192. [Google Scholar] [CrossRef]
- Chen, J.; Lu, M.; Chen, X.; Chen, J.; Chen, L. A spectral gradient difference based approach for land cover change detection. ISPRS J. Photogramm. Remote Sens. 2013, 85, 1–12. [Google Scholar] [CrossRef]
- Steiniger, S.; Hunter, A.J.S. The 2012 free and open source gis software map—A guide to facilitate research, development, and adoption. Comput. Environ. Urban Syst. 2013, 39, 136–150. [Google Scholar] [CrossRef]
- Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing cloud computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2016, 61, 120–128. [Google Scholar] [CrossRef]
System/Tool Name | Provided Functions | Development Technologies | URL | Reference Paper |
---|---|---|---|---|
GlobeLand30 Production | Land cover data production | --Browser side: Openlayers, jQuery, Ext --Server side: PostgreSQL/PostGIS APOLLO Server, PHP, Geoserver, C# | www.globeland30.org | Han et al. (2015) [19] |
GlobeLand30 validation | Land cover validation | www.glcval.geo-compass.com | Chen et al. (2016) [20] | |
GlobeLand30 tagging | Land cover tagging | www.globeland30.org /biaobao/default.aspx | Xing et al. (2015) [21] | |
GlobeLand30 statistics | Land cover statistics | www.globeland30.org /chinese/stat/index.html | Li et al. (2016) [22] | |
CropScape | Land cover browsing, statistics | --Browser side: Openlayers, Extjs, Ajax-powered rich Internet application | www.nassgeodata.gmu.edu/CropScape | Han et al. (2012) [23] |
GeoWiki | Land cover validation | --Browser side: Openlayers, Google Earth APIs --Server side:PHP | www.geo-wiki.org | Steffen et al. (2012) [24] |
LACO-Wiki | Land cover validation | --Browser side: Openlayers --Server side: ASP.NET, C#, PostgreSQL, Geoserver, GDAL/OGR library | www.laco-wiki.net | Linda et al. (2017) [25] |
VIEW-IT | Land cover tagging | --Browser side: ArcGIS JavaScript API --Server side: ArcGIS Server, PHP, MySQL | Not found | Clark et al. (2011) [26] |
Web-based land cover validation tool | Land cover validation | --Browser side: Openlayers --Server side: IDL, PostGIS, GeoServer | www.landcover-change.jrc.ec.europa.eu/validation/videos/Birdlife_editor.html | Bastin et al. (2013) [27] |
Geospatial service for land cover mapping | Land cover mapping | --Browser side: Openlayers, GeoExt --Server side: Orfeo Toolbox, OpenCV, LibSVM Rasdaman database | Not found | Karantzalos et al. (2015) [15] |
Constraint Rules | SWRL-Based Formal Description |
---|---|
hasInputRule | Service:presents (? Service, ?profile)∩ Profile:hasInput(?profile,? input)∩ Process:paraType(?input,? input_req)∩ rdf:type(? input, owl: class)→ rule: hasInputRule (? Service, ? input_req) |
hasOutputRule | Service:presents (? Service, ?profile)∩ Profile:hasInput(?profile,? output)∩ Process:paraType(?input,? output_req)∩ rdf:type(?output, owl: class) hasOutputRule (? Service, ? output _req) |
Constraint Rules | SWRL-Based Formal Description |
---|---|
DFinconRules | hasInputRule (?Service, input)∩ rdf:format(?input, formati) ∩ rdf:format(?data, formatj) rule:DFinconRules (?Service, ?data) |
CSinconRules | hasInputRule (?Service, input)∩ rdf:coordinate (?input, coordinatei) ∩ rdf:coordinate (?data, coordinatej) rule:CSinconRules (?Service, ?data) |
ReinconRules | hasInputRule (?Service, input)∩ rdf:resolution (?input, resolutioni) ∩ rdf:resolution (?data, resolutionj) rule:RinconRules (?Service, ?data) |
{"Sensor": "Landsat 5 TM", | {"Sensor": "Landsat 8 OLI", |
"Acquire_time": "2010/06/22", | "Acquire_time": "2018/06/12", |
"Spatial_resolution": "30", | "Spatial_resolution": "30", |
"Coverage":{"Type": "Rectangle", | "Coverage":{"Type": "Rectangle", |
"UL_lat":"35.82","UL_lon":"116.59", | "UL_lat":"35.82","UL_lon":"116.59", |
"UR_lat":"35.82","UR_lon":"116.69", | "UR_lat":"35.82","UR_lon":"116.69", |
"BL_lat":"35.74","BL_lon":"116.59", | "BL_lat":"35.74","BL_lon":"116.59", |
"BR_lat":"35.74","BR_lat":"116.69",} | "BR_lat":"35.74","BR_lat":"116.69",} |
"Radiometric_resolution": "8 bit", | "Radiometric_resolution": "12 bit", |
"Format": "IMG", | "Format": "GeoTIFF", |
"Data_size":"245242"} | "Data_size":"718239"} |
Service Name | Service Semantics |
---|---|
DFC | The DFC service is used to transform image data from the ‘IMG’ format into the ‘GeoTIFF’ format. The input and output data type of the DFC service is imagery data. |
RC | The RC service is used to convert the digital number (DN) value of image data to surface reflectance. The input and output data type of the RC service is imagery data. |
CVA | The CVA service is used to acquire a change magnitude image by computing the difference vectors between two image analysis units. The input type of the CVA service is imagery data, and its output data type is change magnitude data. |
EM | The EM service is used to acquire the changed area from a change magnitude map based on an iterative threshold selection method. The input type of the EM service is change magnitude data, and its output data type is change area data. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Chen, J.; Wu, H.; Hou, D. A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change Detection. ISPRS Int. J. Geo-Inf. 2019, 8, 50. https://doi.org/10.3390/ijgi8010050
Xing H, Chen J, Wu H, Hou D. A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change Detection. ISPRS International Journal of Geo-Information. 2019; 8(1):50. https://doi.org/10.3390/ijgi8010050
Chicago/Turabian StyleXing, Huaqiao, Jun Chen, Hao Wu, and Dongyang Hou. 2019. "A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change Detection" ISPRS International Journal of Geo-Information 8, no. 1: 50. https://doi.org/10.3390/ijgi8010050
APA StyleXing, H., Chen, J., Wu, H., & Hou, D. (2019). A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change Detection. ISPRS International Journal of Geo-Information, 8(1), 50. https://doi.org/10.3390/ijgi8010050