

 ijgi-08-00050

ijgi-08-00050

ISPRS Int. J. Geo-Inf. 2019, 8(1), 50; doi:10.3390/ijgi8010050

Article

A Web Service-Oriented Geoprocessing System for Supporting Intelligent Land Cover Change Detection

Huaqiao Xing 1,2,*, Jun Chen 2,*, Hao Wu 2 and Dongyang Hou 3,4

1

School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

2

National Geomatics Center of China, Beijing 100830, China

3

School of Geosciences and Info Physics, Central South University, Changsha 410083, China

4

College of Geography and Environment, Shandong Normal University, Jinan 250014, China

*

Correspondence: xinghuaqiao@126.com (H.X.); chenjun@nsdi.gov.cn (J.C.)

Received: 5 November 2018 / Accepted: 16 January 2019 / Published: 20 January 2019

Abstract

:

Remotely sensed imagery-based change detection is an effective approach for identifying land cover change information. A large number of change detection algorithms have been developed that satisfy different requirements. However, most change detection algorithms have been developed using desktop-based software in offline environments; thus, it is increasingly difficult for common end-users, who have limited remote sensing experience and geographic information system (GIS) skills, to perform appropriate change detection tasks. To address this challenge, this paper proposes an online geoprocessing system for supporting intelligent land cover change detection (OGS-LCCD). This system leverages web service encapsulation technology and an automatic service composition approach to dynamically generate a change detection service chain. First, a service encapsulation strategy is proposed with an execution body encapsulation and service semantics description. Then, a constraint rule-based service composition method is proposed to chain several web services into a flexible change detection workflow. Finally, the design and implementation of the OGS-LCCD are elaborated. A step-by-step walk-through example for a web-based change detection task is presented using this system. The experimental results demonstrate the effectiveness and applicability of the prototype system.

Keywords:

land cover; intelligent change detection; web-based geoprocessing system; web service encapsulation; automatic service composition

1. Introduction

It is important to accurately acquire land cover change (LCC) information in a timely manner in order to gain an improved understanding of the environmental changes and interactions between humans and environmental systems [1,2]. With the development of free access policies to remotely sensed imagery (e.g., the Landsat series), multitemporal imagery-based change detection has become an effective approach to identify LCC information [3,4]. In recent years, research on change detection has attracted considerable attention, and many new algorithms or models have been developed and merged. However, most change detection algorithms have individual advantages and disadvantages; thus, it is difficult for users to construct suitable change detection workflows to address specific requirements [5]. More importantly, traditional change detection approaches have often been conducted using desktop-based software (e.g., ENVI, ERDAS, and ArcGIS) in offline environments, which have limitations such as being laborious, inefficient, and time-consuming [6,7]. It is increasingly difficult for common end-users, who have limited remote sensing experience and geographic information system (GIS) skills, to conduct an appropriate change detection approach, especially over a large area [7,8]. Therefore, it is urgent to develop advanced web-based tools or systems to support intelligent land cover change detection.

In recent years, with the emergence and growing maturity of service-oriented architecture (SOA) and service-oriented computing (SOC) technologies, an increasing number of remotely sensed datasets, processing algorithms, and models have been available and accessible as web services for offering geoprocessing functionality online. Workflow technology has also been widely used to chain atomic web services together to realize complex geoprocessing tasks [9,10,11,12,13]. Compared with the desktop-based geoprocessing approach, online geoprocessing has many strengths, including making functionality accessible to larger user groups, automating recurring tasks, and sharing workflows [6,14]. Additionally, online geoprocessing has the potential to make spatial analysis near-real-time, efficient, and cost-effective. Based on SOA and SOC, a number of web service-oriented geoprocessing systems have been developed over the past decades to support land cover data processing and analysis. For example, Karantzalos et al. (2015) designed and developed a land cover classification web service to efficiently and automatically process high-resolution satellite data [15]. However, a specific web-based land cover change detection system has not yet been fully investigated and implemented. In addition, land cover change detection is a comprehensive procedure that requires careful consideration of the characteristics of selected remotely sensed data and landscape complexity of the studied areas. Despite the large and great number of change detection algorithms and models that have been developed in recent years, no single approach is applicable to all types of imagery, land cover, and geographic regions. After encapsulating the change detection algorithms or models into web services, it is also necessary to provide an appropriate change detection service chain for different conditions.

To address the above challenges, this paper reports on a research effort to develop a web-based system for supporting intelligent and flexible land cover change detection. The proposed system leverages web service encapsulation technology and applies an automatic service composition approach to dynamically generate a suitable change detection service chain. Heterogeneous change detection-related algorithms are encapsulated into web services using a black box approach and semantic descriptions. Then, a constraint-rule-based service composition method is proposed to chain several web services into a flexible change detection workflow. The system provides a convenient interface that enables end-users to upload their remotely sensed data and select change detection requirements. A suitable change detection service chain can be generated and executed using the proposed method, which is integrated into the system. The major advantage of this system is that all of the processing steps can be automatically operated in an open web environment, which allows both professional and nonprofessional users to conduct land cover change detection tasks without installing any desktop-based software.

The remainder of this paper is organized as follows: Section 2 reviews the related works. Section 3 presents the web service encapsulation strategy and the automatic service composition approach. Section 4 introduces the architecture and implementation of the web service-oriented land cover change detection system, and provides a step-by-step walk-through example of using this system. Section 5 presents the evaluations and discussions of the prototype system. Finally, conclusions and future work are given in Section 6.

2. Related Works

2.1. Land Cover-Related Online Geoprocessing Systems

With the development and deep application of the Open Geospatial Consortium (OGC) services, multiple land cover data browsing and downloading services have been made available by scientific institutions and communities. For example, the National Geomatics Center of China (NGCC) has published 22 land cover web services for data browsing, including GlobeLand30 data for the years 2000 and 2010, as well as 10 single land cover types for these two years [16,17]. Additionally, NGCC provides a land cover data downloading service that supports three methods for filling in map sheet numbers, spatial coordinate ranges, and drawing spatial graphics. As of January 2018, approximately 8000 users from 120 countries have downloaded GlobeLand30 data for use in their own applications using the data browsing and downloading service [18].

The current land cover-related web services are mainly data services that facilitate access to land cover data; they cannot be used directly for online processing or analysis. Nevertheless, an increasing number of users have a strong desire to conduct land cover geoprocessing tasks by invoking existing geoprocessing services and constructing service chains over the Internet. To meet the advanced requirements, some web-based geoprocessing systems have been developed that provide online processing functions or tools to support web-based land cover data processing. These systems are compared and described in Table 1.

These systems in Table 1 address many fields of land cover processing, including web-based land cover mapping, validation, geo-tagging, and statistics. However, a specific geoprocessing system for web-based land cover change detection has not been fully discussed and developed. From the aspect of development technologies, open source technologies and software (e.g., Openlayers, GeoServer, and PostGIS) have often been used for system development because they are free and easily accessible. However, these systems were often focused on specific applications; thus, they provided relatively fixed service chains or workflows rather than appropriate and intelligent processing solutions for different user requirements or conditions.

2.2. Current Efforts in Geoprocessing Service Composition

To meet complex geoprocessing user requests, a collection of geoprocessing services must be composited into a service chain or workflow when no single service can fulfill those requests [28,29,30]. In general, current research efforts in geoprocessing service composition can be summarized into two categories: manual service composition and automatic service composition.

In the manual service composition approach, an abstract business workflow model is firstly designed by a service provider in advance utilizing a web service standard language, such as Web Services Business Process Execution Language (WS-BPEL) [31,32]. Then, concrete services are manually selected and bound into a workflow based on the abstract model. Finally, the concrete workflow is sent to a workflow execution engine to generate the final results. A typical example of this is GeoBrain [12], a web-based geospatial information service based on SOA technology in which human users can define, build, and manage geo-service workflows, and translate abstract workflows into a specific service chain instance by binding the related services. Manual service composition methods work well when the service functionalities, data conditions, and user requirements are relatively fixed. However, when the services in the workflow become unavailable or user requirements change frequently, the manual approach will not be able to generate a sufficiently correct service chain. Thus, these methods often lack flexibility, and are difficult to adapt to dynamic environments. Furthermore, the manual service composition approach is largely dependent on expert knowledge. It is difficult for common users to design abstract workflow models and bind the corresponding concrete web services.

In contrast, automatic service composition methods support the automatic discovery, selection, and binding of composite services [9]. By providing a set of component services and a specified requirement (e.g., user request), a suitable service chain can be generated automatically with less human intervention, by using the semantic web [9,33], artificial intelligence (AI) planning techniques, or search technologies [34,35]. Automatic service composition methods have the potential to achieve flexible and adaptable applications by selecting and combining appropriate components based on the user’s request and context. For instance, Yue et al. (2007) proposed an approach for automatic geospatial web service composition by employing ontology-based geospatial semantics for enabling the automatic discovery, access, and chaining of geospatial web services [36]. Tan et al. (2015) presented a cloud and agent-based approach for the automatic and intelligent construction of a geospatial service chain in a cloud environment [37]. However, the current studies have focused primarily on the process of automatic service discovery and selection, and have paid less attention to whether the generated service chain could be correctly and successfully executed.

To summarize, the automatic service composition approach is an ideal solution for selecting and composing web services in a dynamic environment. Despite the advantages of the automatic approach, the implementation process is challenging, and a few important issues must be addressed. On one hand, the semantic description of geoprocessing services must be machine readable to allow automatic service identification and utilization. On the other hand, the algorithms for the automatic composition of geoprocessing services must be specified, which should guarantee that the generated service chain could be executed correctly.

3. Methodology

To meet the requirements of intelligent web-based change detection, heterogeneous algorithms and models should first be encapsulated into web services with semantic descriptions; then, these services should be automatically composited into an appropriate service chain or workflow, in order to address user-specific requirements or conditions.

3.1. Heterogeneous Service Encapsulation Strategy

With the help of current OGC standards, geospatial data, processing algorithms, or even computing resources could be encapsulated and published as reusable web services that facilitate end-users to derive information by compositing them into complex workflows over an open and distributed environment [38]. In this paper, we mainly focus on studying the process of algorithm encapsulation.

Unlike general web services, change detection-related web services have unique heterogeneity domain characteristics. First, the input data of change detection services can be from different remote sensors (e.g., Landsat or MODIS) that have different radiometric, spectral, spatial, and temporal resolutions. Second, it is widely accepted that no single change detection algorithm exists that is applicable to all cases. Therefore, a change detection service often has tightly coupling and specific input requirements. Third, change detection algorithms are usually written in different programming languages and libraries (e.g., C#, IDL or GDAL), and run on different operating systems (e.g., Windows or Linux). As a result, execution of a change detection service has special constraints.

Considering the characteristics of change detection web services, this paper discusses the specification and design of two important steps for heterogeneous web services encapsulation—execution body encapsulation and service semantics description—which are shown in Figure 1.

First, the ‘black box’ theory is introduced for execution body encapsulation. A black box is a method that can be used without the users knowing how its inner algorithm works [39,40], and the users only need to know the input and output characteristics. Using this approach, the executable code written in any programming language can be encapsulated into a corresponding component object model (COM), such as a dynamic link library (DLL) or an executable program (EXE) that exposes only the interface of the input and output data and hides all of the implementation details.

To facilitate automatic service invocation and composition for change detection, it is important to represent the interface, functionality, constraint, and quality semantics of the change detection web services. In this paper, the service semantics were classified into the following four types: data semantics, operational semantics, execution semantics, and quality of service (QoS) semantics [36]. Data semantics annotate the semantics of the input/output interface in a web service. Operational semantics represent the semantics of service functionality or logical relations with other services. Execution semantics specify the constrained requirements of a service (e.g., the preconditions and effects). QoS semantics consist of a set of metrics for evaluating which service should be selected.

3.2. Constraint Rule-Based Automatic Service Composition

Land cover change detection is a complex geoprocessing task involving several computation steps, such as preprocessing, change information extraction, and postprocessing. Therefore, a collection of interoperable web services should be composited to generate a service chain to realize a complete change detection task.

Automatic service composition is an ideal approach, because the composition process can be operated under the control of computers with minimal manual intervention. The mainstream methods of automatic service composition were proposed based on a data semantic matching approach [41,42]. Assume that the user requirements and web services are represented as RE = <inputR, outputR> and WS = <input, output>, respectively. The process of automatic service composition can be regarded as a service chain search from inputR to outputR. Two semantic matching rules are usually adopted to evaluate the matching degree between a web service and the input or output data. These two rules can be formal described using Semantic Web Rule Language (SWRL), as shown in Table 2.

As discussed in Section 2.2, the data semantic matching-based automatic service composition methods are designed only at the conceptual level. Thus, the generated service chain might not be correctly executable, because the constraint conditions during the actual execution are not completely considered. Taking a spectral gradient difference (SGD) service (encapsulated from the SGD algorithm [43]) as an example, the input data type of the SGD service must be remotely sensed imagery. One constraint condition of the SGD service is that the input data format is supposed to be ‘GeoTIFF’; that is to say, the SGD service chain might not be correctly executed if the input imagery data format is ‘IMG’. To improve the robustness and correctness of the generated service chain during the actual execution process, the data semantic matching-based method is extended by judging whether the input data satisfy the constraint conditions of each atomic service in the generated service chain, as shown in Figure 2.

The improved automatic service composition method includes two steps: constraint rules construction and condition judgements between the service and its input or output. In this paper, the constraint conditions of a service are considered to be data inconsistency. Data format inconsistency, coordinate system inconsistency, and resolution inconsistency are the three main categories of data inconsistency. To eliminate these data inconsistencies automatically, the following three sets of constraint rules were constructed: DFinconRules, CSinconRules, and ReinconRules. SWRL is then used for the formal description of these constraint rules, as shown in Table 3.

With the help of the constraint rules, a robust and executable service chain can be generated by judging whether the input data constraints are satisfied for a specific service. If the input data are inconsistent with the service, corresponding preprocessing services of data format conversion (DFC), coordinate systems conversion (CSC), and resolution conversion (ReC) are selected to guarantee the correct execution of the service chain. The pseudocode of the constraint rule-based automatic service composition process is shown in Algorithm 1.

	Algorithm 1. WSChainbyRule (Dinit, Dreq)

	Input: Dinit, Dreq; Output:WSChain

	1 SET Dtemp=DinitWSChain =[]

2 WHILE(Dtemp≢Dreq){

3 FOR EACH wsi IN WSList{

4 IF (Dinit satisfied hasInputRule){

5 IF (Dinit is satisfied DFinconRules){

6 WSChain += DFC

7 }ELSE IF (Dinit is satisfied CSinconRules){

8 WSChain += CSC

9 } ELSE IF (Dinit is satisfied ReinconRules){

10 WSChain += ReC

11 }

12 WSChain +=wsi

13 IF (Dreq satisfied hasOutputRule){

14 RETURN WSChain

15 }ELSE{

16 Dtemp=wsi.output

17 }}}

4. System Architecture and Implementation

4.1. Architecture Design

Based on SOA and SOC principles and standards, an online geoprocessing system for land cover change detection (OGS-LCCD) is designed and developed to meet the requirements of intelligent change detection. As a subsystem of GlobeLand30 (www.globeland30.org) [18], the main function of OGS-LCCD is to facilitate professional and nonprofessional end-users to conduct web service-based change detection tasks without using any proprietary desktop-based software. The OGS-LCCD has a service-oriented architecture, which contains the following four layers: a resource layer, a service layer, a logic layer, and an application layer, as shown in Figure 3.

The resource layer lies at the bottom of the OGS-LCCD architecture, and aims to provide change detection-related data, processing algorithms, and models for supporting the upper service logical layers. Data in the resource layer mainly include the remotely sensed image, land cover classification data, land cover change data, and other reference data (e.g., sample data). The processing algorithms and models include the preprocessing, change information extraction, and postprocessing algorithms involved in the change detection process steps.

In the service layer, the data and processing algorithms in the resource layer are encapsulated into data services and processing services based on the OGC standards, such as the web map service (WMS), web feature service (WFS), and web processing service (WPS). The data services are used to display the original remotely sensed images and the final change detection results. The web processing services are published from the heterogeneous algorithms using the proposed service encapsulation approach.

The logic layer is the core component of the OGS-LCCD. Its goal is to generate land cover change results according to user requirements. In this process, several processing services in the service layer will be invoked and chained together into a suitable and executable change detection service chain using the proposed constraint-rule-based automatic service composition method.

The application layer lies at the top of the OGS-LCCD architecture, and represents a friendly user interface that enables end-users to upload the original remotely sensed data so that they can achieve the expected land change results online. Through input from the user interface, the optimal service chain can be constructed, and the execution process of the service chain can be monitored. The final land cover change results can be returned to the end-users either in the form of web services or as real data.

4.2. System Implementation

The OGS-LCCD system was implemented using a ‘‘balanced’’ browser/server (B/S) architecture with the Microsoft. NET Framework 4.0 and C# Programming language. The development environment was a computer with an Intel (R) Core (TM) i7-8550U CPU @1.80GHZ, 8.0 GB of RAM, and an Internet connection with a bandwidth of 8 MB/s.

On the server side, various geoprocessing algorithms were encapsulated into web services using the OGC WPS standard 1.0.0. The encapsulation process is shown in Figure 4. The algorithms were original written in either C++/C# with GDAL or ENVI IDL API, and then were wrapped into DLLs using Visual Studio tools and the ‘COM_IDL_CONNECT’ component. The 52° North API was used to encapsulate these DLLs into web services. The DLLs were programmed in a function inherited from ‘Abstract_Algorithm’, and service semantics were used to construct an XML document for the ‘config_wps’ to facilitate the service description. In addition, a service composition engine was developed for service chain generation and execution according to user requirements. Using this service encapsulation process, we have encapsulated more than 30 geoprocessing services in OGS-LCCD.

The browser side was represented using a user interface built with HTML, CSS, and JavaScript based on various JavaScript software development kits (SDKs), such as OpenLayers and GeoServer. High-resolution maps were imported into the browser in the form of web services, including Map World, ESRI Map, and OpenStreetMap. These lightweight scripting languages were utilized to enable the OGS-LCCD to be accessed using common browsers (e.g., Internet Explorer, Firefox, Safari, Opera, and Chrome), so that users would not need to install any additional software or plugins.

4.3. Walk-Through Example

In this section, a walk-through example of conducting a web-based land cover change detection task is presented to demonstrate the usefulness of OGS-LCCD. The overall OGS-LCCD operation involves four steps: data uploading, service chain generation, service chain execution, and results visualization, as illustrated using the unified modeling language (UML) sequence diagram in Figure 5.

Suppose we want to know where land cover changes have occurred in Wenshang County, Jining, Shandong Province from 2010 to 2018, and we have the Landsat images of Wenshang County acquired in these two years. Using the OGS-LCCD, we can easily upload the Landsat images to the server side of the system. The corresponding geoprocessing service chain will then be automatically generated and executed to derive the land cover change information; the user does not need to install and operate any desktop-based software. The main processing steps are described in the following four sections.

(1) Uploading the remotely sensed data: A jQuery plugin (i.e., uploadify) is used to enable end-users to upload the remotely sensed imagery, and an input text interface is designed for users to select their customized requirements (e.g., the expected return data type). In this example, we upload the remotely sensed imagery acquired in 2010 and 2018 to the service side of the OGS-LCCD from local desktop computers, as shown in Figure 6. The metadata of these two image files described in JavaScript object notation (JSON) format are shown in Table 4. After uploading the images, we can check and view the images in OGC WMS form, as shown in Figure 7. Additionally, we want to know which areas have been changed between 2010–2018. Therefore, we select ‘change area data’ as our expected return data type.

(2) Service chain generation: Based on the uploaded images and the user requirements, the optimal change detection service chain is generated dynamically using the proposed automatic service composition method. In this example, the two images are acquired from the same season and sensor with the same spatial resolution and the different radiometric resolutions. Therefore, the final service chain can be represented as <DFC (data format conversion) service, RC (radiometric correction) service, CVA (change vector analysis) service, EM (expectation maximization) service>. The semantics of these services in the service chain are shown in Table 5. The visualization service chain is shown in Figure 8.

(3) Execution monitoring: In this step, the generated change detection service chain is sent to the service execution engine; then, the service chain execution process can be monitored in real-time through the execution monitoring interface, as shown in Figure 9. In this example, the generated service chain includes four atomic processing services. The execution time of each service is recorded as 36 s, 58 s, 48 s, and 87 s, respectively. The execution status can also be viewed in a progress bar, as shown in Figure 9.

(4) Web-based results visualization: The final change detection results are received either by downloading from the OGS-LCCD server service or by browsing in the result visualization interface. Using the former approach, the real result data in a format such as ‘GeoTIFF’ will be returned to users. In the latter, the WMS published from GeoServer software will be browsing on the right side of the OGS-LCCD interface, as shown in Figure 10.

5. Evaluation and Discussion

5.1. Evaluation

To evaluate the correctness of the proposed service composition method and the efficiency of the OGS-LCCD, two groups of contrastive experiments were performed.

The first experiment was performed between the constraint rule-based automatic service composition method, with a traditional data semantic-based method. The change detection service chains generated using these two methods are shown in Figure 11. These two service chains were also sent to an execution engine. The result was that the service chain that was based on the proposed method (i.e., Figure 11b) was executed successfully, while the service chain based on the traditional method (i.e., Figure 11a) failed to execute.

The above result occurred for the follow reasons. Although the output data type of the radiometric correction service is equal to the input data type of the CVA service, their data formats are quite different (the former is ‘IMG’ and the latter is ‘GeoTIFF’). In other words, there is a data format inconsistency. If the radiometric correction service and the CVA service are directly connected, the service chain would fail to execute, as shown in Figure 12a. The proposed service composition method detected the data inconsistence, and added the corresponding preprocessing service to the service chain to ensure the successful execution. As shown in Figure 12b, the added data format conversion service guarantees that the data formats of the radiometric correction service and CVA service are consistent.

Second, stress testing the central processing unit (CPU) and memory utilization were conducted to evaluate the OGS-LCCD system. Twenty threads were selected to simulate multiple end-users simultaneously operating the system. During stress testing, approximately one to 20 threads were activated to generate and execute the service chain. Ten instances of stress testing were conducted to record the maximum and average CPU and memory utilization values. The stress testing results are shown in Figure 13 and Figure 14. As the number of threads increased, the maximum and average CPU and memory utilization values also increased, but the CPU utilization remained lower than 40%. In addition, when the number of active threads was less than 12, the utilization changed more slowly. In contrast, when the number of activated threads was larger (more than 12), the utilization changed more rapidly. The results of these experiments show that the OGS-LCCD can maintain good stability when multiple users are simultaneously performing the web-based change detection tasks.

5.2. Discussion

Based on the results and analysis of the above walk-through example and evaluations, the proposed service composition method and OGS-LCCD exhibit certain advantages and improvements compared with traditional approaches. From the aspect of intelligent change detection, we propose an automatic service composition method to generate a suitable change detection service chain according to user requirements. That is, OGS-LCCD can enable nonprofessional end-users without owning much land cover expertise to conduct change detection tasks. In addition, with the help of the constraint rules, the proposed service composition method is more robust than the traditional semantic based methods, and can help guarantee that the service chain will be executed correctly. From the aspect of operating efficiency, the OGS-LCCD provides a user-friendly interface to conduct change detection online using a web browser, without installing any desktop and professional software or plugins. The time required to conduct a change detection service chain is significantly reduced, because many complex processing steps are decreased, such as data copying and data format conversion to accommodate different software. In addition, the OGS-LCCD performs well for multiple end-users conducting web-based change detection tasks simultaneously.

Since the OGC released the WPS specification, many open source communities have created WPS platforms, such as the ZOO-Project, 52°North, PyWPS, and Deegree [11,44]. The main goal of these open source platforms is to provide generic and standard-compliant methods for using existing open source libraries and algorithms as WPS-based geoprocessing services. In the proposed system, 52°North APIs are used for change detection and service encapsulation. In contrast to these open-source platforms, OGS-LCCD is a system that is focused primarily on the change detection domain, and is intended to support web-based land cover change detection. In addition, the proposed system provides a constraint-rule-based automatic service composition mechanism that enable end-users to conduct a web-based land cover change detection task with minimal manual intervention.

Despite the advantages of the OGS-LCCD, the development of the web-based system for supporting intelligent land cover geoprocessing is still in its early stages. Similar to general web-based geoprocessing systems, OGS-LCCD possesses several limitations, and some important issues should be improved.

First, remotely sensed imagery data are often large, and uploading these data with the proposed system is onerous and time consuming. With the development of recent cloud computing infrastructure (e.g., Azure Cloud and Alibaba Cloud), it becomes possible to provide large-capacity cloud servers and powerful computing resources. By using such infrastructures, free satellite images (e.g., Landsat image series) can be collected and stored in advance. The end-users would need only to specify the boundaries of their area of interest (AOI) to select the input data rather than upload large amounts of data from their local to server.

Second, change detection models are computationally intensive, and require large amounts of computing resources. The hardware and network configuration of the current system is not enough to handle large-scale computation. To improve the computing efficiency of web-based land cover change detection, the traditional geoprocessing mode should be extended by integrating a state-of-the-art distributed computing mechanism (e.g., Spark or Hadoop) for image data processing [45], which offers powerful and affordable alternatives to run large-scale computations.

Third, land cover change detection over a large area is a complex task; the system should provide additional LCC web services to allow it to address different situations. To address this challenge, multisource and heterogeneous change detection algorithms (e.g., oriented toward long time-series images) will be steadily encapsulated into web services. In addition, the system needs to integrate the strategy of code transmission [38], which facilitates end-users to upload their own algorithms to the server side to conduct personalized change detection tasks.

6. Conclusions and Future Work

This paper presents a web service-based geoprocessing system for supporting intelligent land cover change detection. The OGS-LCCD system provides a novel geoprocessing platform that enables end-users to conduct change detection tasks in an open web environment. The encapsulation of the heterogeneous web services approach and a constraint-rule-based automatic service composition method are proposed to generate an executable change detection service chain for different conditions. The prototype system is then designed and implemented using several available online geoprocessing technologies and open source software.

The walk-through example using OGS-LCCD demonstrates that the proposed system has the potential to enable both professional or nonprofessional end-users to conduct change detection tasks easily using only general web browsers. A comparison experiment between the constraint rule-based automatic service composition method and a traditional data semantic-based method is performed. The results indicate that OGS-LCCD could generate a suitable and executable service chain based on the user’s requirements. The stress testing experiments show that OGS-LCCD maintains good efficiency for supporting multiple end-users to conduct web-based change detection tasks simultaneously.

Our future work will focus on improving the efficiency of web-based land cover change detection by integrating a state-of-the-art distributed computing mechanism (e.g., Spark or Hadoop) and collecting frequently used remotely sensed big data on the server side. In addition, we plan to further enrich the geoprocessing web services by encapsulating multisource and heterogeneous change detection algorithms, allowing OGS-LCCD to address more complex land cover change detection situations.

Author Contributions

Conceptualization, H.X. and J.C.; Data curation, D.H.; Methodology, H.X. and J.C.; Resources, J.C. and H.W.; Software, H.W. and D.H.; Validation, J.C. and D.H.; Writing—original draft, H.X. and J.C.; Writing—review & editing, H.X. and D.H.

Funding

This research was funded by the National Science Foundation of China, grant number 41801308 and 41701443; Doctoral Research Fund of Shandong Jianzhu University, grant number XNBS1804; and Natural Science Foundation of Shandong Province, grant number ZR2018MD008.

Acknowledgments

The authors would like to thank the editors and the anonymous reviewers for their constructive comments and suggestions, which greatly helped to improve the quality of the manuscript.

References

	

Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed]

	

Chen, J.; Ban, Y.; Li, S. China: Open access to earth land-cover map. Nature 2014, 514, 434. [Google Scholar]

	

Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]

	

Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]

	

Andrew, P.T.; Alexis, J.C.; Nicholas, J.T.; Alistair, L.; Peter, F.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar]

	

Hofer, B. Uses of online geoprocessing technology in analyses and case studies: A systematic analysis of literature. Int. J. Digit. Earth 2015, 8, 901–917. [Google Scholar] [CrossRef]

	

Xing, H.; Chen, J.; Wu, H.; Zhang, J.; Liu, B. An Online Land Cover Change Detection System with Web Service Composition. In Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications, Guangzhou, China, 4–6 July 2016. [Google Scholar]

	

Xing, H.; Chen, J.; Wu, H.; Zhang, J.; Li, S.; Liu, B. A service relation model for web-based land cover change detection. Int. J. Photogramm. Remote Sens. 2017, 132, 20–32. [Google Scholar] [CrossRef]

	

Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P.; Gong, J. Semantic web services-based process planning for earth science applications. Int. J. Geogr. Inf. Sci. 2009, 23, 1139–1163. [Google Scholar] [CrossRef]

	

Papazoglou, M.P. Service-oriented computing: Concepts, characteristics and directions. In Proceedings of the Fourth International Conference on Web Information Systems Engineering, Roma, Italy, 10–12 December 2003; pp. 3–12. [Google Scholar]

	

Zhao, P.; Foerster, T.; Yue, P. The geoprocessing web. Comput. Geosci. 2012, 47, 3–12. [Google Scholar] [CrossRef]

	

Di, L. Geobrain—A Web Services Based Geospatial Knowledge Building System. In Proceedings of the NASA Earth Science Technology Conference, Palo Alto, CA, USA, 22–24 June 2004; pp. 22–24. [Google Scholar]

	

Zhai, X.; Yue, P.; Zhang, M. A sensor web and web service-based approach for active hydrological disaster monitoring. Int. J. Geo-Inf. 2016, 5, 171. [Google Scholar] [CrossRef]

	

Tan, X.; Guo, S.; Di, L.; Deng, M.; Huang, F.; Ye, X.; Sun, Z.; Gong, W.; Sha, Z.; Pan, S. Parallel agent-as-a-service (p-aaas) based geospatial service in the cloud. Remote Sens. 2017, 9, 382. [Google Scholar] [CrossRef]

	

Karantzalos, K.; Bliziotis, D.; Karmas, A. A scalable geospatial web service for near real-time, high-resolution land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4665–4674. [Google Scholar] [CrossRef]

	

Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A pok-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]

	

Chen, J.; Li, S.; Wu, H.; Chen, X. Towards a collaborative global land cover information service. Int. J. Digit. Earth 2017, 10, 356–370. [Google Scholar] [CrossRef]

	

Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and applications of globeland30: A review. ISPRS Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef]

	

Han, G.; Chen, J.; He, C.; Li, S.; Wu, H.; Liao, A.; Peng, S. A web-based system for supporting global land cover data production. ISPRS J. Photogramm. Remote Sens. 2015, 103, 66–80. [Google Scholar] [CrossRef]

	

Chen, F.; Chen, J.; Wu, H.; Hou, D.Y.; Zhang, W.W.; Zhang, J.; Zhou, X.G.; Chen, L.J. A landscape shape index-based sampling approach for land cover accuracy assessment. Sci. China 2016, 59, 1–12. [Google Scholar] [CrossRef]

	

Xing, H.; Chen, J.; Zhou, X. A geoweb-based tagging system for borderlands data acquisition. ISPRS Int. J. Geo-Inf. 2015, 4, 1530–1548. [Google Scholar] [CrossRef]

	

Li, R.; Kuang, W.H.; Chen, J.; Chen, L.J.; Liao, A.P.; Peng, S.; Guan, Z.X. Spatio-temporal pattern analysis of aritificial surface use efficiency based on Globeland30 (in Chinese). Scientia Sinica Terrae 2016, 46, 1436–1445. [Google Scholar]

	

Han, W.; Yang, Z.; Di, L.; Mueller, R. Cropscape: A web service based application for exploring and disseminating us conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]

	

Fritz, S.; Mccallum, I.; Schill, C.; Perger, C.; See, L.; Schepaschenko, D.; Marijn, V.D.V.; Kraxner, F.; Obersteiner, M. Geo-wiki: An online platform for improving global land cover. Environ. Model. Softw. 2012, 31, 110–123. [Google Scholar] [CrossRef]

	

See, L.; Laso Bayas, J.; Schepaschenko, D.; Perger, C.; Dresel, C.; Maus, V.; Salk, C.; Weichselbaum, J.; Lesiv, M.; McCallum, I. Laco-wiki: A new online land cover validation tool demonstrated using globeland30 for Kenya. Remote Sens. 2017, 9, 754. [Google Scholar] [CrossRef]

	

Clark, M.L.; Aide, T.M. Virtual interpretation of earth web-interface tool (view-it) for collecting land-use/land-cover reference data. Remote Sens. 2011, 3, 601–620. [Google Scholar] [CrossRef]

	

Bastin, L.; Buchanan, G.; Beresford, A.; Pekel, J.-F.; Dubois, G. Open-source mapping and services for web-based land-cover validation. Ecol. Inform. 2013, 14, 9–16. [Google Scholar] [CrossRef]

	

Sheng, Q.Z.; Qiao, X.; Vasilakos, A.V.; Szabo, C.; Bourne, S.; Xu, X. Web services composition: A decade’s overview. Inf. Sci. 2014, 280, 218–238. [Google Scholar] [CrossRef]

	

Evangelidis, K.; Ntouros, K.; Makridis, S.; Papatheodorou, C. Geospatial services in the cloud. Comput. Geosci. 2014, 63, 116–122. [Google Scholar] [CrossRef]

	

Yang, C.; Chen, N.; Di, L. Restful based heterogeneous geoprocessing workflow interoperation for sensor web service. Comput. Geosci. 2012, 47, 102–110. [Google Scholar] [CrossRef]

	

Yu, G.; Zhao, P.; Di, L.; Chen, A.; Deng, M.; Bai, Y. Bpelpower—a bpel execution engine for geospatial web services. Comput. Geosci. 2012, 47, 87–101. [Google Scholar] [CrossRef]

	

Yue, P.; Zhang, M.; Tan, Z. A geoprocessing workflow system for environmental monitoring and integrated modelling. Environ. Model. Softw. 2015, 69, 128–140. [Google Scholar] [CrossRef]

	

Rodriguez Mier, P.; Pedrinaci, C.; Lama, M.; Mucientes, M. An integrated semantic web service discovery and composition framework. Ieee Trans. Serv. Comput. 2016, 9, 537–550. [Google Scholar] [CrossRef]

	

Feng, J.Z.; Kong, L.F.; Wang, X.H. Web service automatic composition based on semantic relationship graph. Comput. Integr. Manuf. Syst. 2012, 18, 427–436. [Google Scholar]

	

Hashemian, S.V.; Mavaddat, F. A graph-based framework for composition of stateless web services. In Proceedings of the European Conference on Web Services, Zurich, Switzerland, 4–6 December 2006; pp. 75–86. [Google Scholar]

	

Yue, P.; Di, L.; Yang, W.; Yu, G.; Zhao, P. Semantics-based automatic composition of geospatial web service chains. Comput. Geosci. 2007, 33, 649–665. [Google Scholar] [CrossRef]

	

Tan, X.; Di, L.; Deng, M.; Chen, A.; Huang, F.; Peng, C.; Gao, M.; Yao, Y.; Sha, Z. Cloud- and agent-based geospatial service chain: A case study of submerged crops analysis during flooding of the yangtze river basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1359–1370. [Google Scholar] [CrossRef]

	

Yue, S.; Chen, M.; Wen, Y.; Lu, G. Service-oriented model-encapsulation strategy for sharing and integrating heterogeneous geo-analysis models in an open web environment. ISPRS J. Photogramm. Remote Sens. 2016, 114, 228–273. [Google Scholar] [CrossRef]

	

Chen, Z.; Lin, H.; Chen, M.; Liu, D.; Bao, Y.; Ding, Y. A framework for sharing and integrating remote sensing and gis models based on web service. Sci. World J. 2014, 2014, 57–78. [Google Scholar] [CrossRef] [PubMed]

	

Wen, Y.; Chen, M.; Yue, S.; Zheng, P.; Peng, G.; Lu, G. A model-service deployment strategy for collaboratively sharing geo-analysis models in an open web environment. Int. J. Digit. Earth 2017, 10, 405–425. [Google Scholar] [CrossRef]

	

Cruz, S.A.B.; Monteiro, A.M.V.; Santos, R. Automated geospatial web services composition based on geodata quality requirements. Comput. Geosci. 2012, 47, 60–74. [Google Scholar] [CrossRef]

	

Ranisavljević, É.; Devin, F.; Laffly, D.; Nir, Y.L. Semantic orchestration of image processing services for environmental analysis. ISPRS J. Photogramm. Remote Sens. 2013, 83, 184–192. [Google Scholar] [CrossRef]

	

Chen, J.; Lu, M.; Chen, X.; Chen, J.; Chen, L. A spectral gradient difference based approach for land cover change detection. ISPRS J. Photogramm. Remote Sens. 2013, 85, 1–12. [Google Scholar] [CrossRef]

	

Steiniger, S.; Hunter, A.J.S. The 2012 free and open source gis software map—A guide to facilitate research, development, and adoption. Comput. Environ. Urban Syst. 2013, 39, 136–150. [Google Scholar] [CrossRef]

	

Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing cloud computing to address big geospatial data challenges. Comput. Environ. Urban Syst. 2016, 61, 120–128. [Google Scholar] [CrossRef]

[image: Ijgi 08 00050 g001 550]

Figure 1. Process of encapsulating change detection algorithms into web processing services.

Figure 1. Process of encapsulating change detection algorithms into web processing services.

[image: Ijgi 08 00050 g001]

[image: Ijgi 08 00050 g002 550]

Figure 2. Preprocessing service selection to satisfy the execution constraint of service A.

Figure 2. Preprocessing service selection to satisfy the execution constraint of service A.

[image: Ijgi 08 00050 g002]

[image: Ijgi 08 00050 g003 550]

Figure 3. Online geoprocessing system for supporting intelligent land cover change detection (OGS-LCCD) architecture.

Figure 3. Online geoprocessing system for supporting intelligent land cover change detection (OGS-LCCD) architecture.

[image: Ijgi 08 00050 g003]

[image: Ijgi 08 00050 g004 550]

Figure 4. Implementation of web processing service (WPS) service encapsulation from geoprocessing algorithms.

Figure 4. Implementation of web processing service (WPS) service encapsulation from geoprocessing algorithms.

[image: Ijgi 08 00050 g004]

[image: Ijgi 08 00050 g005 550]

Figure 5. Unified modeling language (UML) sequence diagram of OGS-LCCD operation.

Figure 5. Unified modeling language (UML) sequence diagram of OGS-LCCD operation.

[image: Ijgi 08 00050 g005]

[image: Ijgi 08 00050 g006 550]

Figure 6. Uploading Landsat 5 data (for year 2010) using OGS-LCCD.

Figure 6. Uploading Landsat 5 data (for year 2010) using OGS-LCCD.

[image: Ijgi 08 00050 g006]

[image: Ijgi 08 00050 g007 550]

Figure 7. Uploading Landsat 8 data (for year 2018) using OGS-LCCD.

Figure 7. Uploading Landsat 8 data (for year 2018) using OGS-LCCD.

[image: Ijgi 08 00050 g007]

[image: Ijgi 08 00050 g008 550]

Figure 8. Service chain generation for change detection.

Figure 8. Service chain generation for change detection.

[image: Ijgi 08 00050 g008]

[image: Ijgi 08 00050 g009 550]

Figure 9. Monitoring of the execution of a change detection service chain.

Figure 9. Monitoring of the execution of a change detection service chain.

[image: Ijgi 08 00050 g009]

[image: Ijgi 08 00050 g010 550]

Figure 10. Change detection results (purple regions) visualized using a web map service (WMS).

Figure 10. Change detection results (purple regions) visualized using a web map service (WMS).

[image: Ijgi 08 00050 g010]

[image: Ijgi 08 00050 g011 550]

Figure 11. Two generated change detection service chains: (a) service chain based on the traditional method; (b) service chain based on the proposed method.

Figure 11. Two generated change detection service chains: (a) service chain based on the traditional method; (b) service chain based on the proposed method.

[image: Ijgi 08 00050 g011]

[image: Ijgi 08 00050 g012 550]

Figure 12. Actual implementation of the two service chains: (a) executed failed; (b) executed successfully.

Figure 12. Actual implementation of the two service chains: (a) executed failed; (b) executed successfully.

[image: Ijgi 08 00050 g012]

[image: Ijgi 08 00050 g013 550]

Figure 13. Central processing unit (CPU) utilization (%).

Figure 13. Central processing unit (CPU) utilization (%).

[image: Ijgi 08 00050 g013]

[image: Ijgi 08 00050 g014 550]

Figure 14. Memory utilization (%).

Figure 14. Memory utilization (%).

[image: Ijgi 08 00050 g014]

[image: Table]

Table 1. A detailed list of existing land cover-related online geoprocessing systems and tools.

Table 1. A detailed list of existing land cover-related online geoprocessing systems and tools.

	
System/Tool Name

	
Provided Functions

	
Development Technologies

	
URL

	
Reference Paper

	
GlobeLand30 Production

	
Land cover data production

	
--Browser side:

Openlayers, jQuery, Ext

--Server side:

PostgreSQL/PostGIS APOLLO Server, PHP, Geoserver, C#

	
www.globeland30.org

	
Han et al. (2015) [19]

	
GlobeLand30 validation

	
Land cover validation

	
www.glcval.geo-compass.com

	
Chen et al. (2016) [20]

	
GlobeLand30 tagging

	
Land cover tagging

	
www.globeland30.org /biaobao/default.aspx

	
Xing et al. (2015) [21]

	
GlobeLand30 statistics

	
Land cover statistics

	
www.globeland30.org /chinese/stat/index.html

	
Li et al. (2016) [22]

	
CropScape

	
Land cover browsing, statistics

	
--Browser side:

Openlayers, Extjs, Ajax-powered rich Internet application

	
www.nassgeodata.gmu.edu/CropScape

	
Han et al. (2012) [23]

	
GeoWiki

	
Land cover validation

	
--Browser side:

Openlayers, Google Earth APIs

--Server side:PHP

	
www.geo-wiki.org

	
Steffen et al. (2012) [24]

	
LACO-Wiki

	
Land cover validation

	
--Browser side:

Openlayers

--Server side:

ASP.NET, C#, PostgreSQL, Geoserver, GDAL/OGR library

	
www.laco-wiki.net

	
Linda et al. (2017) [25]

	
VIEW-IT

	
Land cover tagging

	
--Browser side:

ArcGIS JavaScript API

--Server side:

ArcGIS Server, PHP, MySQL

	
Not found

	
Clark et al. (2011) [26]

	
Web-based land cover validation tool

	
Land cover validation

	
--Browser side:

Openlayers

--Server side:

IDL, PostGIS, GeoServer

	
www.landcover-change.jrc.ec.europa.eu/validation/videos/Birdlife_editor.html

	
Bastin et al. (2013) [27]

	
Geospatial service for land cover mapping

	
Land cover mapping

	
--Browser side:

Openlayers, GeoExt

--Server side:

Orfeo Toolbox, OpenCV, LibSVM

Rasdaman database

	
Not found

	
Karantzalos et al. (2015) [15]

[image: Table]

Table 2. Examples of semantic matching rules and their formal description. SWRL: Semantic Web Rule Language.

Table 2. Examples of semantic matching rules and their formal description. SWRL: Semantic Web Rule Language.

	Constraint Rules
	SWRL-Based Formal Description

	hasInputRule
	Service:presents (? Service, ?profile)∩

Profile:hasInput(?profile,? input)∩

Process:paraType(?input,? input_req)∩

rdf:type(? input, owl: class)→

rule: hasInputRule (? Service, ? input_req)

	hasOutputRule
	Service:presents (? Service, ?profile)∩

Profile:hasInput(?profile,? output)∩

Process:paraType(?input,? output_req)∩

rdf:type(?output, owl: class) →

hasOutputRule (? Service, ? output _req)

[image: Table]

Table 3. SWRL-based formal description of constraint rules.

Table 3. SWRL-based formal description of constraint rules.

	Constraint Rules
	SWRL-Based Formal Description

	DFinconRules
	hasInputRule (?Service, input)∩

rdf:format(?input, formati) ∩

rdf:format(?data, formatj)→

rule:DFinconRules (?Service, ?data)

	CSinconRules
	hasInputRule (?Service, input)∩

rdf:coordinate (?input, coordinatei) ∩

rdf:coordinate (?data, coordinatej) →

rule:CSinconRules (?Service, ?data)

	ReinconRules
	hasInputRule (?Service, input)∩

rdf:resolution (?input, resolutioni) ∩

rdf:resolution (?data, resolutionj) →

rule:RinconRules (?Service, ?data)

[image: Table]

Table 4. JavaScript object notation (JSON) description of input1 image (left) and input2 image (right).

Table 4. JavaScript object notation (JSON) description of input1 image (left) and input2 image (right).

	{"Sensor": "Landsat 5 TM",
	{"Sensor": "Landsat 8 OLI",

	"Acquire_time": "2010/06/22",
	"Acquire_time": "2018/06/12",

	"Spatial_resolution": "30",
	"Spatial_resolution": "30",

	"Coverage":{"Type": "Rectangle",
	"Coverage":{"Type": "Rectangle",

	"UL_lat":"35.82","UL_lon":"116.59",
	"UL_lat":"35.82","UL_lon":"116.59",

	"UR_lat":"35.82","UR_lon":"116.69",
	"UR_lat":"35.82","UR_lon":"116.69",

	"BL_lat":"35.74","BL_lon":"116.59",
	"BL_lat":"35.74","BL_lon":"116.59",

	"BR_lat":"35.74","BR_lat":"116.69",}
	"BR_lat":"35.74","BR_lat":"116.69",}

	"Radiometric_resolution": "8 bit",
	"Radiometric_resolution": "12 bit",

	"Format": "IMG",
	"Format": "GeoTIFF",

	"Data_size":"245242"}
	"Data_size":"718239"}

[image: Table]

Table 5. Service semantics of the services in the service chain. DFC: data format conversion, RC: radiometric correction, CVA: change vector analysis, and EM: expectation maximization.

Table 5. Service semantics of the services in the service chain. DFC: data format conversion, RC: radiometric correction, CVA: change vector analysis, and EM: expectation maximization.

	Service Name
	Service Semantics

	DFC
	The DFC service is used to transform image data from the ‘IMG’ format into the ‘GeoTIFF’ format. The input and output data type of the DFC service is imagery data.

	RC
	The RC service is used to convert the digital number (DN) value of image data to surface reflectance. The input and output data type of the RC service is imagery data.

	CVA
	The CVA service is used to acquire a change magnitude image by computing the difference vectors between two image analysis units. The input type of the CVA service is imagery data, and its output data type is change magnitude data.

	EM
	The EM service is used to acquire the changed area from a change magnitude map based on an iterative threshold selection method. The input type of the EM service is change magnitude data, and its output data type is change area data.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file26.jpg
Memory Utilization/%

1234567 89 1011121314151617 181920
Number of threads

——Memory-Max =—m=Memory-Ave.

media/file8.jpg
Users | | User Interface | | Composer SRC

T Datauploading | T

Requirement analysis

Service chain generation

Service finding
Service availabl

Service chain execution

WMS results

[—
Truthful data

media/file27.png
Memory Utilization/%

1

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of threads

e \emory-Max — e\ emory-Avg

media/file13.png
Online Land Cover Change [+

ke C O 9 f¥ @ localhost:30282/Default.aspx Q 5 ¢
@GLOBELAND% Home Papers Download Geo-tagging Geo-Statistics Change detection News About

- @ - - W) Global view +, Zoomin (=, Zoom out ‘ Pan 2 Measure area g Measure distance
i - K ‘h“'?““ RS 0E
Jus B A -
(el Zhuanpc ur! :] * i 8 -
Lo o Eo A
9 »

1

Data Uploading Data Finding Requirements

Imagery T1(*):

CDimage2010

Imagery T2(*): F
CDimage2018 ;
Globeland30 data:
CDimage2018 (22.44MB) x

Step2:Selecting Change Detection Algorithm
Step3:Execution monitoring

Step4:Change Results Outputs

media/file12.jpg
i C 05 e kb asav @

media/file18.jpg

media/file9.png
User Interface Composer SRC

Data uploading

Requirement analysis
|

Service composition request

Service chain generation

_—
-
o

“Service finding
) . Service availabléD
Service unavailable | k————————————__

——— —————————— ———— o ——— ————— — ——— — — —

|
|
|
I
) |
!
|
|
|

|
Results visualization

WMS results

media/file14.jpg

media/file20.jpg

media/file28.png

media/file23.png
- - = #data flow

— control flow

media/file5.png
— o ——— —

2>
- - : : :
g=l i Data Service chain Execution Change result
o m;_,- o uploading generation monitoring visualization
. ! ! ! !
©]
=
Y User Interface of OGS-LCCD
P
e L L L e LR el Ly t ___________________________________
Change detection
g service chain
aq
o Constraint rules Condition Automatic service
% construction Judgment composition
<
@
=
e 5 e mmm i ——— - e
% ; Data service b Processing service
I |G |
el
3 ' | Web Map Web Feature Web Coverage i 1 | WPS-based service Service semantic
~u K Service Service Service o encapsulation description
V¥ -
@ F
Bl il _:'_"t_ e R R e A e B ik
w 'f--_-__--___-—\\ e 'f ------ E—— s
& | Radlome:trlc i ! | CVA I | SAM | o Conmst?nce i
o : correction 7L il detection ;
= : -
o . | Geometric | ! | | SGD | | SAD | i] Quality]
@ | correction GLn ¥ i inspection | |
QT : I et e : : 1
< \ ; l D II
a
= |

media/file15.png
| Online Land Cover Change [+

C 0 9 % © localhost:30282/Default.aspx Q 5 5%
i
,QGLOBELANDM Home Papers Download Geo-tagging Geo-Statistics Change detection News About
- LE‘T - - W) Global view (+, Zoomin -4 Zoom out & Pan =M —

- SC LN

Step1:Selecting AOIl and Imagery Data ‘s ' N-d-,,u,,,“,; ‘.‘.’
.

Step2:Selecting Change Detection Algorithm

O~
(u
| -G+ @

.

O—C

Step4:Change Results Outputs

media/file19.png
Online Land Cover Change [’ > +

= C 0O 9 v @ localhost:30282/Default.aspx Q 5 ¢ PEEE
F‘"‘)GLOBELAN D30 Home Papers Download Geo-tagging Geo-Statistics Change detection News About
- - » ‘ - |) Global view (+] Zoomin (=, Zoom out | & Pan B8 Measure area e Measure distance

Step1:Selecting AOIl and Imagery Data o taseth
Step2:Selecting Change Detection Algorithm g-

Step3:Execution monitoring

media/file2.jpg
Input data or Output
of precursor service

Service A

Preprocessing
service

nav.xhtml

 ijgi-08-00050

 		
 ijgi-08-00050

media/file11.png
Online Land Cover Change [+

C 0O 9 v @ localhost:30282/Default.aspx Q 5 %
@GLOBELAND30 Home Papers Download Geo-tagging Geo-Statistics Change detection News About

- Eﬂ - - 'Globai view +, Zoomin =, Zoom out ‘ Pan = Measure area =Measure distance
WSy ~ [ZRTane B
| :
L
» €

Imagery T1(*):

CDimage2010 =

A b A~ : < g
, S : <«Q» ‘ A
Data Uploading Data Finding Requirements \VJ e % oG | 2
. R - 40

'..‘.) G
Imagery T2(*): r ' .‘

[
L

Pareloucting
[—s
uploading

CDimage2010 (23.44MB) x

Globeland30 data:

Step2:Selecting Change Detection Algorithm

Step3:Execution monitoring

Step4:Change Results Outputs

bl
Houshlw huane
-

media/file6.jpg
WPS Services

I—Iﬁ

function xml semantics

—_ ——=

52° North AP

Abstract_Algorithm Config WPS. |, | Service |

Dynamic Link Library
(DLL)

Visual Studio COM_IDL_CONNECT
tools component

C+/CH + ENVIIDL
GDAL APL

Change information
extraction

B | |

media/file24.jpg
ization/%

=
=
4
s}

2

3

4

5

67 8 9 10 111213 1415 16 17 18 19 20
Number of threads

=——CPU-Max ===CPU-Avg

media/file1.png
Algorithm Web Processing Service

Execution code Execution body Service semantics
o description
Operation(input) encapsulate
» Data Operation
semantics semantics
return output m Execution QoS
} semantics semantics

media/file10.jpg

media/file7.png
o ———————————

- ——
%

.

WPS Services

| |
Abstract Algorithm Contig WPS. | | Service
function xml semantics

Dynamic Link Library
(DLL)

_—

Visual Studio COM_IDL CONNECT

tools component
F 3 F

i+ ENVI IDL
GDAL API

T e e e o e mm o e M e M T M W e M M M S M M M e M W e M M M M M W M e W M e M M M W M M e M e e e e o

Change information
extraction

- - S . . S S e e S S S S S S S S S S S S S S S S e S S e S S e S EE e e S e S S e e e e e e S e e e

media/file16.jpg
- cosn

SeLoseLaos

media/file3.png
Input data or Output
of precursor service

Service A

Preprocessing
service

media/file22.jpg
a b
o -~ > data flow
— control flow

media/file17.png
Online Land Cover Change [> +

L C 0O 9 ¢ @ localhost:30282/Default.aspx Q 5 9y
F")GLOBELAND% Home Papers Download Geo-tagging Geo-Statistics Change detection News About

- H - - W) Global view (+] Zoomin =4 Zoom out 0 Pan 2 Measure area g Measure distance

Step1:Selecting AOIl and Imagery Data

LA g

e
7 Eel?l\e@:uun

Step2:Selecting Change Detection Algorithm

Service Chain Execution

EM:

- 4
. 2
Nesicmag * -

o t ’
+' il s necun]
R LA g J = { y
- . - n L
e . ‘ﬁ :

Step4:Change Results Outputs

media/file4.jpg
L pan][servicechain [[Execuion | [coangeresu
& uploading gencaation monitoring visualization

i H

‘ User Interface of OGS-LCCD

1

[1oke] woneordds

g
B [contminntes][conditon Ao v
5 compostion
&
g

7|
3 { Data service 1y

& ["webmap | [WebFesture |[web Coverage |} | [[WPS-based service | [Service semantic
1| senice Senvice Senvice |1 | | encapsulation description
2l !

HE

oke] 20mosay

media/file25.png
CPU Utilization/%

45
40
35
30
25
20
15
10

5

0

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of threads

e CPU-Max emm=CPU-Avg

media/file0.jpg
Algorithm

Execution code

Web Processing Service

Operation(inpur) | nput
{

retum ouput @}

3

Exceution body, Service semantics
deseription
encapsulate
B | [Operaion
Treion | [@
semanics | | semantics

media/file21.png
’_--------‘

\
Cropping Cropping i
v v :
- - - - |
Radiometric Radiometric |1
correction correction I
|
|
' :
CVA :
|
+ |
EM :
__________ TESE R
|
change
area

’---------ﬁ.

\
cropping cropping i
|
Radiometric Ra diotnetric :
correction correction :
Data format :
conversion ¢ :
CVA -
L2 I
EM ;
__________ e
|
change
area

- -=%»data flow

— control flow

