The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach
Abstract
:1. Introduction
2. Data
3. Methods
4. Findings and Results
4.1. Spatial Distribution and Spatial Cluster of Crimes
4.2. The Distance-to-Crime Variable
4.3. OLS Results
4.4. GWR for Property Crime
5. Discussion, Limitations, and Future Research
6. Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brantingham, P.J. Crime diversity. Criminology 2016, 54, 553–586. [Google Scholar] [CrossRef]
- Charron, M. Neighbourhood Characteristics and the Distribution of Crime in Toronto, Ontario: Analysis on Youth Crime; Statistics Canada and Canadian Centre for Justice Statistics: Ottawa, ON, Canada, 2011; No. 85–561.
- Lersch, M.K.; Hart, C.T. Space, Time, and Crime; Caroline Academic Press: Durham, NC, USA, 2011. [Google Scholar]
- Quick, M.; Law, J. Exploring hotspots of drug offences in Toronto: A comparison of four local spatial cluster detection methods. Can. J. Criminol. Crim. Justice/Rev. Can. De Criminol. Et De Justice Penale 2013, 55, 215–238. [Google Scholar] [CrossRef]
- Thompson, S.K.; Gartner, R. The spatial distribution and social context of homicide in Toronto’s neighborhoods. J. Res. Crime Delinq. 2014, 51, 88. [Google Scholar] [CrossRef]
- Wang, F. Why police and policing need GIS: An overview. Ann. GIS 2012, 18, 159–171. [Google Scholar] [CrossRef]
- Chamberlain, A.W.; Hipp, J.R. It’s all relative: Concentrated disadvantage within and across neighborhoods and communities, and the consequences for neighborhood crime. J. Crim. Justice 2015, 43, 431–443. [Google Scholar] [CrossRef]
- Broidy, L.M.; Daday, J.K.; Crandall, C.S.; Sklar, D.P.; Jost, P.F. Exploring demographic, structural, and behavioral overlap among homicide offenders and victims. Homicide Stud. 2006, 10, 155–180. [Google Scholar] [CrossRef]
- Veselak, K.M. The relationship between educational attainment and the type of crime committed by incarcerated offenders. J. Correct. Educ. 2015, 66, 30. [Google Scholar]
- Elonheimo, H.; Gyllenberg, D.; Huttunen, J.; Ristkari, T.; Sillanmäki, L.; Sourander, A. Criminal offending among males and females between ages 15 and 30 in a population-based nationwide 1981 birth cohort: Results from the FinnCrime study. J. Adolesc. 2014, 37, 1269–1279. [Google Scholar] [CrossRef]
- Kaplun, O. Female criminality in Russia: A research note from a penal colony. Int. J. Comp. Appl. Crim. Justice 2017, 41, 231. [Google Scholar] [CrossRef]
- Soo Chon, D. Residential burglary victimization: Household- and country-level mixed modeling. Int. Rev. Vict. 2017, 23, 47–61. [Google Scholar] [CrossRef]
- Maxfield, M. Lifestyle and routine activity theories of crime: Empirical studies of victimization, delinquency, and offender decision-making. J. Quant. Criminol. 1987, 3, 275–282. [Google Scholar] [CrossRef]
- Osgood, D.W.; Anderson, A.L. Unstructured socializing and delinquency. Criminology 2004, 42, 519–549. [Google Scholar] [CrossRef]
- Law, J.; Quick, M.; Chan, P. Open area and road density as land use indicators of young offender residential locations at the small-area level: A case study in Ontario, Canada. Urban Stud. 2016, 53, 1710–1726. [Google Scholar] [CrossRef]
- Fitzgerald, R.; Wisener, M.; Savoie, J. Neighbourhood Characteristics and the Distribution of Crime in Winnipeg; Statistics Canada: Crime and Justice Research Paper Series; Canadian Centre for Justice Statistics: Ottawa, ON, Canada, 2004.
- Bursik, R.J. Social disorganization and theories of crime and delinquency: Problems and prospects. Criminology 1988, 26, 519–551. [Google Scholar] [CrossRef]
- Agnew, R. A theory of crime resistance and susceptibility. Criminology 2016, 54, 181–211. [Google Scholar] [CrossRef]
- Kawachi, I.; Kennedy, B.P.; Wilkinson, R.G. Crime: Social disorganization and relative deprivation. Soc. Sci. Med. 1999, 48, 719–731. [Google Scholar] [CrossRef]
- Hipp, J.R. Block, tract, and levels of aggregation: Neighborhood structure and crime and disorder as a case in point. Am. Sociol. Rev. 2007, 72, 659–680. [Google Scholar] [CrossRef]
- Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Fitterer, J.L.; Nelson, T.A. A review of the statistical and quantitative methods used to study alcohol-attributable crime. PLoS ONE 2015, 10, e0139344. [Google Scholar] [CrossRef]
- Schreck, J.; Jean, M.; David, S.K. On the origins of the violent neighborhood: A study of the nature and predictors of crime-type differentiation across Chicago neighborhoods. Justice Q. 2009, 26, 771–794. [Google Scholar] [CrossRef]
- Andresen, M.A. Location quotients, ambient populations, and the spatial analysis of crime in Vancouver, Canada. Environ. Plan. A 2007, 39, 2423–2444. [Google Scholar] [CrossRef]
- Andresen, M.A. The ambient population and crime analysis. Prof. Geogr. 2011, 63, 193–212. [Google Scholar] [CrossRef]
- Andresen, M.A. Predicting Local Crime Clusters Using (Multinomial) Logistic Regression. Cityscape 2015, 17, 249–262. [Google Scholar]
- Andresen, M.A. An area-based nonparametric spatial point pattern test: The test, its applications, and the future. Methodol. Innov. 2016, 9, 2059799116630659. [Google Scholar] [CrossRef]
- Malleson, N.; Andresen, M.A. Spatio-temporal crime hotspots and the ambient population. Crime Sci. 2015, 4, 1–8. [Google Scholar] [CrossRef]
- IPC. Ontario’s Municipal Freedom of Information and Protection of Privacy Act: A Mini Guide; Information and Privacy Commissioner: Ottawa, ON, Canada, 2014. [Google Scholar]
- Ackerman, J.M.; Rossmo, D.K. How far to travel? A multilevel analysis of the residence-to-crime distance. J. Quant. Criminol. 2015, 31, 237–262. [Google Scholar] [CrossRef]
- Drawve, G.; Walker, J.T.; Felson, M. Juvenile offenders: An examination of distance-to-crime and crime clusters. Cartogr. Geogr. Inf. Sci. 2015, 42, 122–133. [Google Scholar] [CrossRef]
- Hodgkinsoi, S.; Tilley, N. Travel-to-crime: Homing in on the victim. Int. Rev. Vict. 2007, 14, 281–298. [Google Scholar] [CrossRef]
- Cohn, E.G.; Breetzke, G.D. The periodicity of violent and property crime in Tshwane, South Africa. Int. Crim. Justice Rev. 2017, 27, 60–71. [Google Scholar] [CrossRef]
- Matheson, F.I.; Dunn, J.R.; Smith, K.L.; Moineddin, R.; Glazier, R.H. Development of the Canadian Marginalization Index: A new tool for the study of inequality. Can. J. Public Health/Revue Canadienne de Sante’e Publique 2012, 103, S12–S16. [Google Scholar]
- Statistics Canada. Population Census; Statistics Canada: Ottawa, ON, Canada, 2016.
- Brennan, S.; Dauvergne, M. Police-Reported Crime Statistics in Canada, 2011; Component of Statistics Canada Catalogue; Juristat: Canadian Centre for Justice Statistics: Ottawa, ON, Canada, 2011; No. 85-002-X.
- Keighley, K. Police-Reported Crime Statistics in Canada, 2016; Statistics Canada: Ottawa, ON, Canada, 2017.
- Felson, M.; Boivin, R. Daily crime flows within a city. Crime Sci. 2015, 4, 1–10. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Cohen, J.; Tita, G. Diffusion in homicide: Exploring a general method for detecting spatial diffusion processes. J. Quant. Criminol. 1999, 15, 451–493. [Google Scholar] [CrossRef]
- Murray, A.T.; McGuffog, I.; Western, J.S.; Mullins, P. Exploratory spatial data analysis techniques for examining urban crime. Br. J. Criminol. 2001, 41, 309–329. [Google Scholar] [CrossRef]
- Durlauf, S.N.; Navarro, S.; Rivers, D.A. Understanding aggregate crime regressions. J. Econom. 2010, 158, 306–317. [Google Scholar] [CrossRef]
- Lee, C. The value of life in death: Multiple regression and event history analyses of homicide clearance in Los Angeles County. J. Crim. Justice 2005, 33, 527–534. [Google Scholar] [CrossRef]
- Lee, M.R. The religious institutional base and violent crime in rural areas. J. Sci. Study Relig. 2006, 45, 309–324. [Google Scholar] [CrossRef]
- Wallace, M.; Wisener, M.; Collins, K. Neighbourhood Characteristics and the Distribution of Crime in Regina; Statistics Canada: Ottawa, ON, Canada, 2006.
- Savoie, J. Neighbourhood Characteristics and the Distribution of Crime, Edmonton, Halifax and Thunder Bay; Statistics Canada: Ottawa, ON, Canada, 2008.
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Jacquez, G.M. Spatial clustering and autocorrelation in health events. In Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; p. 1311e1334. [Google Scholar]
- Rogerson, P.; Yamaha, I. Statistical Detection and Surveillance of Geographic Clusters; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Anselin, L.; Cohen, J.; Cook, D.; Gorr, W.; Tita, G. Spatial analyses of crime. Crim. Justice 2000, 4, 213–262. [Google Scholar]
- Nakaya, T.; Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically weighted Poisson regression for disease association mapping. Stat. Med. 2005, 24, 2695–2717. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Wen, T. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int. J. Environ. Res. Public Health 2011, 8, 2798–2815. [Google Scholar] [CrossRef] [PubMed]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Kuo, C.C.; Wardrop, N.; Chang, C.T.; Wang, H.C.; Atkinson, P.M. Significance of major international seaports in the distribution of murine typhus in Taiwan. PLoS Negl. Trop. Dis. 2017, 11, e0005430. [Google Scholar]
- Hulchanski, J.D. The Three Cities within Toronto: Income Polarization among Toronto’s Neighbourhoods. Available online: https://tspace.library.utoronto.ca/bitstream/1807/91269/1/The%20Three%20Cities_TSpace.pdf (accessed on 20 January 2018).
- Kolpak, P.; Wang, L. Exploring the social and neighbourhood predictors of diabetes: A comparison between Toronto and Chicago. Prim. Health Care Res. Dev. 2017, 18, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Hart, T.C.; Waller, J. Neighborhood boundaries and structural determinants of social disorganization: Examining the validity of commonly used measures. West. Criminol. Rev. 2013, 14, 16. [Google Scholar]
- Drawve, G.; Thomas, S.A.; Hart, T.C. Routine activity theory and the likelihood of arrest: A replication and extension with conjunctive methods. J. Contemp. Crim. Justice 2017, 33, 121–132. [Google Scholar] [CrossRef]
- Coleman, J.S.; Fararo, T.J. Rational Choice Theory; Sage: New York, NY, USA, 1992. [Google Scholar]
- Vandeviver, C.; Van Daele, S.; Vander Beken, T. What makes long crime trips worth undertaking? Balancing costs and benefits in burglars journey to crime. Br. J. Criminol. 2015, 55, 399–420. [Google Scholar] [CrossRef]
- Block, R.; Galary, A.; Brice, D. The journey to crime: Victims and offenders converge in violent index offences in Chicago. Secur. J. 2007, 20, 123–137. [Google Scholar] [CrossRef]
- Van Daele, S.; Vander Beken, T. Journey to crime of “itinerant crime groups”. Polic. Int. J. Police Strateg. Manag. 2010, 33, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Lochner, L.; Moretti, E. The effect of education on crime: Evidence from prison inmates, arrests, and self-reports. Am. Econ. Rev. 2004, 94, 155–189. [Google Scholar] [CrossRef]
- Fella, G.; Gallipoli, G. Education and crime over the life cycle. Rev. Econ. Stud. 2014, 81, 1484–1517. [Google Scholar] [CrossRef]
- DeGuzman, P.B.; Merwin, E.I.; Bourguignon, C. Population density, distance to public transportation, and health of women in low-income neighborhoods. Public Health Nurs. 2013, 30, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Pitner, R.O.; Yu, M.; Brown, E. Which factor has more impact? An examination of the effects of income level, perceived neighborhood disorder, and crime on community care and vigilance among low-income African American residents. Race Soc. Probl. 2013, 5, 57–64. [Google Scholar] [CrossRef]
- Kilewer, W. The role of neighborhood collective efficacy and fear of crime in socialization of coping with violence in low-income communities. J. Community Psychol. 2013, 41, 920–930. [Google Scholar] [CrossRef] [PubMed]
- Altindag, D.T. Crime and unemployment: Evidence from Europe. Int. Rev. Law Econ. 2012, 32, 145–157. [Google Scholar] [CrossRef]
- Neises, G.; Grüneberg, C. Socioeconomic situation and health outcomes of single parents. J. Public Health 2005, 13, 270–278. [Google Scholar] [CrossRef]
- Jablonska, B.; Lindberg, L. Risk behaviours, victimisation and mental distress among adolescents in different family structures. Soc. Psychiatry Psychiatr. Epidemiol. 2007, 42, 656–663. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.M. Relative cohort size and age-specific crime rates: An age-period-relative-cohort-size model. Criminology 1989, 27, 57–78. [Google Scholar] [CrossRef]
- Porter, J.R.; Rader, N.E.; Cossman, J.S. Social disorganization and neighborhood fear: Examining the intersection of individual, community, and county characteristics. Am. J. Crim. Justice 2012, 37, 229–245. [Google Scholar] [CrossRef]
- Kruttschnitt, C. Gender and crime. Ann. Rev. Sociol. 2013, 39, 291–308. [Google Scholar] [CrossRef]
- Barnes, J.C.; Golden, K.; Mancini, C.; Boutwell, B.B.; Beaver, K.M.; Diamond, B. Marriage and involvement in crime: A consideration of reciprocal effects in a nationally representative sample. Justice Q. 2014, 31, 229–256. [Google Scholar] [CrossRef]
- Ge, Y.; Song, Y.; Wang, J.; Liu, W.; Ren, Z.; Peng, J.; Lu, B. Geographically weighted regression-based determinants of malaria incidences in northern China. Trans. GIS 2017, 21, 934–953. [Google Scholar] [CrossRef]
- Gilbert, A.; Chakraborty, J. Using geographically weighted regression for environmental justice analysis: Cumulative cancer risks from air toxics in Florida. Soc. Sci. Res. 2011, 40, 273–286. [Google Scholar] [CrossRef]
- Cahill, M.; Mulligan, G. Using geographically weighted regression to explore local crime patterns. Soc. Sci. Comput. Rev. 2007, 25, 174–193. [Google Scholar] [CrossRef]
- Malczewski, J.; Poetz, A. Residential burglaries and neighborhood socioeconomic context in London, Ontario: Global and local regression analysis. Prof. Geogr. 2005, 57, 516–529. [Google Scholar] [CrossRef]
- Ali, K.; Partridge, M.D.; Olfert, M.R. Can geographically weighted regressions improve regional analysis and policy making? Int. Reg. Sci. Rev. 2007, 30, 300–329. [Google Scholar] [CrossRef]
- Boivin, R. Routine activity, population(s) and crime: Spatial heterogeneity and conflicting propositions about the neighborhood crime-population link. Appl. Geogr. 2018, 95, 79–87. [Google Scholar] [CrossRef]
- Ye, C.; Chen, Y.; Li, J. Investigating the influences of tree coverage and road density on property crime. ISPRS Int. J. Geo-Inf. 2018, 7, 101. [Google Scholar] [CrossRef]
- Pánek, J.; Pászto, V. Emotional mapping in local neighbourhood planning: Case study of Příbram, Czech Republic. Int. J. E Plan. Res. (IJEPR) 2017, 6, 1–22. [Google Scholar] [CrossRef]
- Semukhina, O. Unreported crimes, public dissatisfaction of police, and observed police misconduct in the Volgograd region, Russia: A research note. Int. J. Comp. Appl. Crim. Justice 2014, 38, 305–325. [Google Scholar] [CrossRef]
- Hunt, J.M. Do Crime Hot Spots Move? Exploring the Effects of the Modifiable Areal UNIT problem and Modifiable Temporal Unit Problem on Crime Hot Spot Stability; Proquest LLC.: Washington, DC, USA, 2016. [Google Scholar]
- Kwan, M.P. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- City of Toronto. Briefing Notice: FOCUS Toronto. 2016. Available online: https://www.toronto.ca/legdocs/mmis/2016/cc/comm/communicationfile-58904.pdf) (accessed on 20 January 2018).
- Ng, S.; Nerad, S. Evaluation of the FOCUS Rexdale Pilot Project. Available online: https://www.usask.ca/cfbsjs/research/pdf/research_reports/EvaluationoftheFOCUSRexdalePilotProject.pdf (accessed on 20 January 2018).
- Sheperdson, P.; Clancey, G.; Lee, M.; Crofts, T. Community safety and crime prevention partnerships: Challenges and opportunities. Int. J. Crimejustice Soc. Democr. 2014, 3, 107–120. [Google Scholar] [CrossRef]
- Toronto Police Service. Action Plan: The Way Forward. 2017. Available online: https://www.torontopolice.on.ca/TheWayForward/ (accessed on 20 January 2018).
Offenders | 2014–2016 |
---|---|
Property crime | 3419 |
Violent crime | 21,999 |
Total | 25,418 |
Offender Characteristics | Property Crime % (n = 3419) | Violent Crime % (n = 21,999) |
---|---|---|
Age (%) | ||
≤17 | 9 | 8 |
18–34 | 50 | 51 |
35–54 | 36 | 32 |
≥55 | 5 | 8 |
Gender (%) | ||
Male | 89 | 83 |
Female | 11 | 16 |
Marital status (%)* | ||
Single (single, divorced, separated, widowed) | 59 | 37 |
Couple (common law, married) | 9 | 17 |
Statistics | Property Crime (km) | Violent Crime (km) |
---|---|---|
Average | 7.6 | 4.9 |
Median | 4.2 | 1.3 |
Minimum | 0 | 0 |
Maximum | 49.2 | 36.6 |
Parameter | Coefficient | Std Error | p-Value | VIF |
---|---|---|---|---|
Property crime model | ||||
Intercept | 13.94 * | 3.23 | 0.000 | |
% Age (18 to 34) | −81.31 * | 12.97 | 0.000 | 1.72 |
% Couple | 1340.09 * | 75.78 | 0.000 | 1.57 |
Distance-to-crime | 0.50 | 0.45 | 0.267 | 1.27 |
Instability index | 5.12 * | 2.01 | 0.012 | 1.48 |
Deprivation index | 2.08 | 2.06 | 0.314 | 1.92 |
Ethnic Concentration index | −6.26 * | 1.45 | 0.000 | 1.87 |
Dependency index | −1.51 | 3.21 | 0.640 | 1.31 |
Adjusted R2 | 0.71 | |||
AIC | 1136.98 | |||
Violent crime model | ||||
Intercept | 71.43 * | 14.83 | 0.000 | |
% Age (18 to 34) | 297.79 * | 25.38 | 0.000 | 3.25 |
% Couple | −525.68 * | 116.86 | 0.000 | 3.37 |
Distance–to-crime | 0.96 | 3.81 | 0.801 | 1.56 |
Instability index | 13.51 * | 6.33 | 0.035 | 1.70 |
Deprivation index | 37.78 * | 6.53 | 0.000 | 2.23 |
Ethnic Concentration index | −5.16 | 4.67 | 0.271 | 2.22 |
Dependency index | −11.40 | 9.40 | 0.228 | 1.29 |
Adjusted R2 | 0.73 | |||
AIC | 1439.48 |
Parameter | Min | 25th Percentile | 50th Percentile | 75th Percentile | Max |
---|---|---|---|---|---|
Intercept | 8.92 | 10.24 | 11.99 | 15.21 | 27.76 |
% Age (18 to 34) | −131.79 | −92.89 | −74.69 | −68.22 | −16.58 |
% Couple | 494.91 | 1245.57 | 1478.91 | 1558.48 | 1695.65 |
Instability | −1.52 | 2.32 | 3.22 | 4.10 | 8.94 |
Deprivation | −7.03 | −0.66 | 3.01 | 5.79 | 12.92 |
Ethnic Concentration | −8.18 | −6.75 | −5.43 | −4.75 | −1.62 |
Dependency | −14.15 | −7.93 | −3.49 | 0.82 | 3.88 |
Distance–to-crime | −0.46 | 0.30 | 0.48 | 0.58 | 1.13 |
Condition number | 6.79 | 7.12 | 7.58 | 8.31 | 14.06 |
Adjusted R2 | 0.80 | ||||
AICc | 1102.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Lee, G.; Williams, I. The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 51. https://doi.org/10.3390/ijgi8010051
Wang L, Lee G, Williams I. The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach. ISPRS International Journal of Geo-Information. 2019; 8(1):51. https://doi.org/10.3390/ijgi8010051
Chicago/Turabian StyleWang, Lu, Gabby Lee, and Ian Williams. 2019. "The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach" ISPRS International Journal of Geo-Information 8, no. 1: 51. https://doi.org/10.3390/ijgi8010051
APA StyleWang, L., Lee, G., & Williams, I. (2019). The Spatial and Social Patterning of Property and Violent Crime in Toronto Neighbourhoods: A Spatial-Quantitative Approach. ISPRS International Journal of Geo-Information, 8(1), 51. https://doi.org/10.3390/ijgi8010051