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Abstract: Point-of-Interest (POI) recommendation is attracting the increasing attention of researchers
because of the rapid development of Location-based Social Networks (LBSNs) in recent years.
Differing from other recommenders, who only recommend the next PO], this research focuses on
the successive POI sequence recommendation. A novel POI sequence recommendation framework,
named Dynamic Recommendation of POI Sequence (DRPS), is proposed, which models the POI
sequence recommendation as a Sequence-to-Sequence (Seq2Seq) learning task, that is, the input
sequence is a historical trajectory, and the output sequence is exactly the POI sequence to be
recommended. To solve this Seq2Seq problem, an effective architecture is designed based on the
Deep Neural Network (DNN). Owing to the end-to-end workflow, DRPS can easily make dynamic
POI sequence recommendations by allowing the input to change over time. In addition, two new
metrics named Aligned Precision (AP) and Order-aware Sequence Precision (OSP) are proposed to
evaluate the recommendation accuracy of a POI sequence, which considers not only the POI identity
but also the visiting order. The experimental results show that the proposed method is effective for
POI sequence recommendation tasks, and it significantly outperforms the baseline approaches like
Additive Markov Chain, LORE and LSTM-Seq2Seq.

Keywords: POI sequence recommendation; location-based social networks; deep neural network;
sequence-to-sequence

1. Introduction

It is a well-known fact in psychology that humans always tend to behave in a consistent way [1,2],
which makes it possible to learn and predict the patterns of human behaviors. On the other hand,
the Location-Based Social Networks (LBSNs) [3] are playing an increasingly important role in daily life,
through which users can share their locations and location-related contents at any time. LBSNs provide
masses of valuable data for researching the patterns of human behaviors. These data have tremendous
potential for exploitation for various applications, such as questioning and answering, advertising,
activity discovery and recommendations [4], among which Point-of-Interest (POI) recommendation is
attracting more and more attention from researchers in recent years.

The consistency of behaviors means that the human behaviors always follow a particular pattern
and preference in a certain period. Therefore, in the POI recommendation task, users’ behavior
patterns and preferences can be captured from the historical trajectories first, and then they can be
extended to make the next recommendation. However, most of the existing POI recommenders can
only recommend the next POI or a top-k list of candidate POIs [5-8], while sometimes successive POI
sequence recommendations are more practical. For example, when one wants to plan an itinerary,
what he/she expects is not a single POI recommendation, but a POI sequence recommendation.
A POI sequence contains a set of POIs and the order in which they are visited. Itinerary-planning
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is a very tedious and time-consuming process because users always need to take into account the
time constraint, distance constraint, cost constraint and so on. Therefore, it would be great if there is
a POI sequence recommender to automatically recommend POI sequences (i.e., itineraries) for users,
which will free users from the tedious and time-consuming itinerary-planning process. Compared
with the single POI recommendation, the POI sequence recommendation is more challenging because
of the following major reasons: (1) POI sequence recommendation aims to recommend a contextually
coherent POI sequence which exactly meets user’s interest and preference, instead of just a single POL
(2) users’ preferences may change over time, which increases the difficulty of dynamic recommendation;
and the (3) POI sequence recommendation is more sensitive to various factors (e.g., spatial, temporal,
categorical, etc.) [9].

There are only a few studies focusing on POI sequence recommendation. To model the POI
sequence recommendation task, some researchers proposed popularity-based approaches [10,11],
which aim to find a POI sequence that maximizes the POI popularity. In these cases, all users will get
the same recommendation. In addition, other personalization-based approaches [12-14] have also been
developed to recommend a customized and unique tour itinerary for each tourist based on his/her
interests and preferences. Nevertheless, most of the existing systems have some common drawbacks:
(1) they need to predefine the starting and ending POlIs for each recommendation, so they are not
completely automatic; and (2) they can not capture the evolution of user preferences over time, so it is
difficult to make dynamic recommendations.

This paper proposes a novel POI sequence recommendation framework, named Dynamic
Recommendation of POI Sequence (DRPS), which models the POI sequence recommendation as
a Sequence-to-Sequence (Seq2Seq) learning task, namely, the input sequence is a historical trajectory,
and the output sequence is exactly the POI sequence to be recommended. Many studies have been
carried out to address the Seq2Seq learning problem, such as [15,16]. Enlightened by the fact that
the Deep Neural Network (DNN) has made a great success in various fields [17], the architecture of
DRPS is designed based on the DNN. More specifically, DRPS is mainly composed of an encoder and
a decoder. The encoder is designed to learn the contextual information implied in the input sequence,
based on the contextual information; then, the decoder will generate the next POI one by one to form
a POI sequence recommendation. In addition, in order to achieve better performance, this model
comprehensively takes into account the POl embedding feature, the geographical and categorical
influences of historical trajectory, and the positional encoding. The proposed method is evaluated on
the Weeplace dataset, and the experimental results show the effectiveness of DRPS in a POI sequence
recommendation task.

To summarize, the major contributions of this paper are:

e this paper proposes a novel POI sequence recommendation framework named DRPS, which can
make dynamic POI sequence recommendation according to the historical trajectory;

e in order to make full use of various information about POls, the POl embedding feature,
the geographical and categorical influences of historical trajectory and the positional encoding
are jointly taken into account in DRPS;

o this paper also proposes two new metrics, i.e., the Aligned Precision (AP) and the Order-aware
Sequence Precision (OSP), which consider both the POI identity and visiting order, in order to
evaluate the recommendation accuracy of the POI sequence;

e detailed experiments are conducted to evaluate the proposed method, and the experimental
results demonstrate the effectiveness of DRPS in a POI sequence recommendation task.

The rest of this paper is organized as follows: Section 2 briefly reviews the related work. Section 3
elaborates on the proposed method. In addition, the experimental results are presented in Section 4.
Finally, Section 5 concludes this paper.
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2. Related Work

The POI recommendation tasks generally fall into two categories: single POI recommendation and
POI sequence recommendation. For the single POI recommendation, a lot of literature has developed
various recommenders by leveraging different aspects of POIs and users, such as geographical
influence, temporal influence, social influence, and user preferences. For example, in order to improve
the performance of POI recommendation, Wang et al. [18] integrated the geographical influence of
POlIs into a standard recommendation model to capture a user’s preference. For temporal influence,
Hosseini et al. [19] propose a probabilistic generative model, named Multi-aspect Time-related
Influence (MATI), to promote the effectiveness of the POI recommendation task. The MATI
model firstly detects a user’s temporal multivariate orientation using her check-in log in LBSNSs,
then performs recommendation using temporal correlations between the user and proposed POlIs.
Griesner et al. [20] used matrix factorization algorithms to model the geographical and temporal
influences of POI check-ins, and then proposed the GeoMF-TD model for POI recommendation.
Yuan et al. [21] also leveraged the temporal influence to improve the efficiency and effectiveness of
the recommendation system. Zhang and Chow [22] proposed the Rank-GeoFM algorithm to learn
the geographical, social and categorical correlations from the historical check-in data of users on
PQOlIs, and then utilize them to predict the relevance score of a user to an unvisited POI in order to
make recommendations for users. Ye et al. [23] combined the social influence with a user-based
collaborative filtering model and utilized a Bayesian model to model the geographical influence.
In addition, Aliannejadi and Crestani [24] utilized a probabilistic model to construct the mapping
between user tags and location taste keywords, which made it possible to exploit various directions to
address the data sparsity problem for POI recommendation. Feng et al. [25] proposed an algorithm
named Personalized Ranking Metric Embedding (PRME) to jointly learn the sequential transition
and user preference implicit in POIs. To recommend a “Smart POI” for a user according to the
user preferences, based on the categories and geographical information, Alvarado-Uribe et al. [26]
incorporated an aggregation operator into the user-based collaborative filtering algorithm and then
proposed the Hybrid Recommendation Algorithm (HyRA). Moreover, because of the powerful learning
ability of DNN, some DNN-based approaches were also proposed to enhance the performance of
POI recommendation. Ding and Chen [7] designed the RecNet to incorporate various features
implicit in LBSNs, such as co-visiting pattern, geographical influence and categorical correlation,
and learn their high-order interactions for personalized POI recommendation. Yang et al. [27]
proposed a deep neural architecture named Preference and Context Embedding (PACE) to model
user preference over POls, which utilizes the smoothness of semi-supervised learning to alleviate the
sparsity of collaborative filtering. Chang et al. [28] also proposed an embedding-based method, called
Content-Aware Hierarchical Point-of-Interest Embedding Model (CAPE), to utilize the text content
that provides information about the characteristics of a POI and the relationships between POIs for
POI recommendation.

For POI sequence recommendation, De Choudhury et al. [10] first proposed an approach to
automatically construct a travel itinerary based on the Orienteering Problem, which aims to find a POI
sequence that could maximize the POI popularity. Similarly, by modifying the Orienteering Problem,
Gionis et al. [29] utilized a POI category to recommend an itinerary that is constrained by a POI
category visiting order (e.g., library—restaurant—park). Bolzoni et al. [11] also designed the CLuster
Itinerary Planning (CLIP) algorithm to recommend an itinerary based on clustering, where the POIs
are clustered first; then, the clusters are used for itinerary generation. Obviously, these approaches
heavily focus on the popularity of POIs, while the personalization would be left in the basket. To solve
this problem, some personalization-based methods were developed. Lim et al. [14] proposed the
PERSTOUR algorithm to recommend personalized POI sequences for the user, which considers
not only the POI popularity, but also the user preference and the trip constraints. Baral et al. [30]
proposed the Hierarchical Contextual POI Sequence (HiCaPS) model to formulate the user preference
as a hierarchical structure and then developed a hierarchy aggregation technique for the POI sequence
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recommendation. Debnath et al. [31] designed a preference-aware POI sequence recommendation
framework named Preference-Aware, Time-Aware Travel Route Recommendation (PTTR-Reco),
which incorporates a time dimension to model the time-specific user preference, so PTTR-Reco
aims to recommend the POI sequence that matches the time-specific preference of individual user.
As mentioned earlier, the POI sequence recommendation can be modeled as a Seq2Seq learning task.
It has been proven that a recurrent neural network (RNN) is quite effective in the Seq2Seq learning
task. For instance, Sutskever et al. [16] used a multilayered Long Short-Term Memory (LSTM) to
map the input sequence to a vector of fixed dimensionality, and then designed another deep LSTM
to decode the target sequence from the vector. This Seq2Seq fashion significantly improved the
performance in the English to French translation task. In addition, Cui et al. [32] proposed a model
named Multi-View Recurrent Neural Network (MV-RNN) for sequential recommendation. MV-RNN
takes multi-view features as inputs and then applies a recurrent structure to dynamically capture the
sequential information implicit in inputs. Finally, a separate RNN and a united RNN are respectively
designed on the hidden state of MV-RNN to achieve more effective recommendation. Nevertheless,
the strong modeling power of DNN has not been well exploited in POI sequence recommendation.
To fill this gap, this paper proposed the DRPS to make a dynamic POI sequence recommendation
based on the historical trajectory.

3. Methodology

3.1. Problem Statement

A POI sequence consists of a set of POIs and the order of visiting them. Now,
the POI sequence recommendation task can be defined as follows: given a user’s historical
trajectory H = (hy, hp, h3, ..., hy), the goal is to recommend a contextually coherent POI sequence
R = (11,12, 13, ..., 1) for the user, where 1 is the length of historical POI sequence, and k is the length of
the recommended POI sequence. Here, a contextually coherent POI sequence is exactly a POI sequence
closely following the historical trajectory. The contextual coherence means that it should meet the same
interest and preference implicit in the historical trajectory of the user. For instance, if a user has visited
such a POl list: (A, B,C,D, E,F,G, H), it can be considered that (E, F, G, H) is exactly a contextually
coherent POI sequence of (A, B, C, D). POI sequence recommendation is actually a Seq2Seq learning
task. Corresponding to the Seq2Seq model, the historical POI sequence and the recommend POI
sequence can be denoted as input sequence and target sequence, respectively.

3.2. Overview of the Proposed Framework

Usually, a historical POI sequence implicitly represents the recent preference and behavior pattern
of a user. The objective of a POI sequence recommender is to capture this preference and behavior
pattern, and extend them to recommend the next POI sequence. This problem is modeled as a Seq2Seq
learning task in this paper. Enlightened by the Transformer model [33], a neural machine translation
model that is powerful for modeling a Seq2Seq task, this paper proposes a framework named Dynamic
Recommendation of POI Sequence (DRPS). The DRPS is mainly composed of an encoder and a decoder
(Figure 1). This encoder-decoder structure is the key to model the Seq2Seq learning task. The encoder
is used to learn the contextual information implied in the input sequence H, and the decoder is used
to generate the POI sequence recommendation R. To capture abundant information from the input
POI sequence, the DRPS integrates the POI embedding, category embedding, geographical influence
and positional encoding as the input of the encoder. Following the decoder, the main branch will
recommend the next POIs one by one to form a POI sequence recommendation, and the other two
auxiliary branches are respectively used to predict the categories and locations of the corresponding
POlIs. As additional constraints, these two auxiliary branches are designed to help train the model.
Note that, in the recommended POI sequence, the POIs are generated one by one, and, when generating
the next POI, the decoder also takes the previously generated POls as additional input.
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Figure 1. The architecture of DRPS.

3.3. Details of Module Design

The DRPS framework can be divided into three modules, ie., an input module,
an encoder—-decoder module, and an output module. The details about each module are described in

the following sections.

3.3.1. Input Module

In order to learn rich contextual information implicit in the POI sequence, four features of POI
sequences are considered in the input module, including POI embedding, category embedding,
geographical influence, and positional encoding, as shown in Figure 1.

POI embedding Intuitively, a POI sequence can be represented with a set of ordered POI IDs.
However, the ID is insufficient to characterize a POI. Feature embedding is an important representation
learning technique that can embed the original feature into a more effective vector representation [34].
Similarly, a learnable POI embedding is used to map each POLID to a d-dimension latent vector f ,, in
this research, which actually describes the intrinsic feature of POI. Formally, the POI embedding of
a POl sequence S € R! is denoted by a matrix Fpe € R4, where the I is the length of POI sequence,
and d is the dimension of latent vector. The POl embedding is first randomly initialized and then it
can be learnt by training the neural network.

Category embedding Category is an important attribute of POI, which is widely used in many
POI recommendation systems, such as Ding and Chen [7], Bolzoni et al. [11], Lin et al. [35].
The categorical influence of a POI sequence is also taken into account in DRPS. A POI sequence
actually corresponds to a POI category sequence. Similar to POI embedding, the category embedding
is also used to map each POI category to a d-dimension latent vector f . Thus, the category embedding
of a POI sequence S can be denoted by a matrix F., € R/*%.

Geographical influence It has been proven that geographical influence has a significant impact on
POI recommendation [18]. The geographical influence exists not only between POIs and POlIs, but also
between POls and users. According to Tobler’s first law of geography, the closer two POls are, the more
similar they are, which makes the geographical coordinates an important way to measure the similarity
between POlIs. On the other hand, the geographical influence can also reflect the preference of users
to locations. For example, users may prefer to visit places close to home. Therefore, the geographical

influence is an important aspect of POI characteristics. To model the geographical influence of POI,
a Multi-Layer Perceptron (MLP) [36] is adopted to convert the coordinates of each POI to a d-dimension
vectorf,;. Namely, the f; is given by Equation (1):

fgi(c) = ReLU(ReLU(cWq + b1)W, + by), (1)

where ¢ = (x,y) is the coordinates of a POI, b; and b, are the biases, W; and W, are the weight matrices,
and ReLU [37] is a nonlinear activation transformation. The biases and the weight matrices are the
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parameters that need to be trained. Similarly, a matrix F; € R4 is used to describe the geographical
influence of a POI sequence S.

Positional encoding To make use of the order of the POI sequence, which provides vital contextual
information, the “positional encoding” is introduced into DRPS. As in Vaswani et al. [33], each position
is encoded to a d-dimension vector; in this way, a matrix Fyos € R!*4 can be constructed to represent
the positional encoding of a POI sequence. Specifically, each element of Fy,; is given by Equation (2):

sin(—F—),  ifiisan even number,
Fpos(p,1) = 10007 @
8 cos(—E—), otherwise,
1000 4

where p € {1,2,3,...,1} is the positon of a POl in the sequence, and i € {1,2,3,...,d} denotes the i-th
dimension of the d-dimension vector.
After the above features of POI sequence are calculated, they will be integrated together by
following naive summation:
Fint:Fpe+Fce+ng+Ppos~ (3)

Then, F;,; is fed into the downstream module.

3.3.2. Encoder-Decoder Module

The encoder-decoder structure has strong power for a Seq2Seq learning task [15,16]. This paper
also follows this structure. Specifically, an encoder is designed to capture the contextual information
implied in the input sequence H; then, a decoder is used for generating the POI sequence
recommendation R based on the output of encoder, as shown in Figure 1.

Encoder The encoder consists of a stack of N identical blocks. Each block contains a multi-head
attention (MHA) layer and a feed-forward layer. The attention mechanism has proven to be an effective
approach for a sequence modeling task in a deep neural network [38]. The attention function can be
perceived as mapping a set of key-value pairs (K-V) and a query (Q) to an output, where the keys,
values and queries are all derived from different transformation of the integrated feature. The output
is actually a weighted sum of the values, where the weight assigned to each value depends on the
similarity of the query to the corresponding key. Here, a MHA structure similar to Vaswani et al. [33]
is added into DRPS. Formally, MHA is given by Equation (4):

MHA(K,V,Q) = Concat(Atty, Atty, ..., Atty )W, (4)
where the Concat function is used to concatenate Att; ~ Att,;, and
Att; = Attention(KWK, VWY, QWR), i € {1,2,3, ..., m} . (5)
The Attention function is defined as Equation (6)

QK™
Vik

where dg is the dimension of K, and the softmax function is used for normalizing the output
probabilities. The above parameters’ matrices WZ.K, WZ-V, WiQ, W, are all trainable. Following the
MHA layer, a two-layer Feed-Forward Network (FFN) is used to generate the output of encoder.
The FEN is given by Equation (7),

Attention(K,V,Q) = softmax(

)V, (6)

FFN(x) = ReLU(xW}™N 4 pFPNYWEEN 4 pIFN, )
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where WlF FN and Wf EN are the weight matrices, blF FN and bg FN are the biases. In addition, the residual
connection [39] is also employed to improve the performance.

Decoder The decoder also consists of a stack of N identical blocks. While each block, compared
with the encoder, has an additional Masked Multi-Head Attention (Masked-MHA) layer, which takes
the previous output of a POI sub-sequence as input when generating the next POL The mask ensures
that the POI recommendation for position i depends only on the known outputs at positions less than
i. In addition, the MHA layer in the decoder also takes the output of the encoder as input and is then
followed by a two-layer FEN. The residual connection is also exploited in the decoder.

3.3.3. Output Module

The output module contains three branches, i.e., a main branch and two auxiliary branches.
The main branch is used to recommend the next POI one by one to form a POI sequence
recommendation. In addition, the other two auxiliary branches are respectively used to predict
the categories and locations of the corresponding POIs, which aims to add additional constraints to the
learning task to help train the model and improve the performance. Combining these three branches,
the total loss can be written as follows:

k k k
L= Z CE(y;, 9;) + Z CE(cat;, cat;) + Z MSE(loc;, loc;), 8)
i=1 i=1 i=1

where CE is the Cross Entropy function, y; is the one-hot encoding of true POI ID on position i, and ¥;
is the recommendation probabilities of all POIs on position i. Similarly, cat; is the one-hot encoding of
a true POI category and cat; is the predicted probabilities of all categories on position i. MSE is the
Mean Square Error function, loc; and loc; are respectively the true and predicted location of POI on
position i. The training objective is to minimize the loss function L.

3.4. Dynamic Recommendation

Users’ historical trajectories always change over time, which means that their interests and
preferences may also change over time. Therefore, a dynamic recommendation system is more
practical than a static one. In this research, when the model finishes training, DRPS can easily make
dynamic recommendations by allowing the input POI sequence to change over time. When the input
POI sequence changes, the DRPS can dynamically capture the recent interest and preference of the user,
and then recommend the most suitable POI sequence. In contrast to other approaches, which require
expensive computation resources to re-calculate the features of the changing input, the DRPS can easily
recommend a POI sequence dynamically in an end-to-end way.

4. Experiments

In this section, a series of experiments are conducted to evaluate the performance of the proposed
framework DRPS.

4.1. Experimental Settings

4.1.1. Dataset

In this paper, the experiments are conducted on the Weeplace dataset [40], which is collected from
Weeplace, a website that aims to visualize users’ check-in activities in LBSN. This dataset contains
7,658,368 check-ins generated by 15,799 users over 971,309 POIs. These POls cover the whole world.
In addition, the category and location (i.e., the longitude and latitude) of each POI are also provided
in this dataset. Considering the practicability, the dataset is divided into different parts by the city,
and then the proposed method is evaluated on some major cities, including New York, San Francisco,
Brooklyn, and London. Table 1 presents the statistic details of the data of each city.
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Table 1. Statistics of the data of each city.

City #Check-In #User #POI
New York 720,350 4811 28,333
San Francisco 330,975 3220 13,366
Brooklyn 159,946 2724 7334

London 147,610 1935 10,405

In the dataset, the users with less than 40 check-ins and the POIs with less than 10 visits are
ignored. Each user may have a long historical trajectory, therefore, many samples can be constructed
for each user by moving a lag along the history. In each sample, the first n POIs compose the input
POI sequence, denoted by I = (iy,1,13, ..., i), and the latter k POIs compose the target POI sequence,
denoted by T = (t1,1y,t3,..., t), where n and k are the lengths of input and output, respectively.
In this paper, the lag is also set as k.

4.1.2. Evaluation Metrics

In the single POI recommendation tasks, precision@k and recall@k are usually chosen as
evaluation metrics, both of which are evaluated on the top k POIs in a ranked recommendation
list. Nevertheless, what needs to be recommended in the POI sequence recommendation tasks is
not a ranked POI list, but an ordered POI sequence. Thus, precision@k and recall@k are no longer
appropriate in this work. The most used metrics for evaluating POI sequence recommendation are
precision, recall, and F1 score [6,30,35,41]. However, a common drawback of these metrics is that they
all ignore the order of POI in the sequence, while the order is actually an important aspect of POI
sequence recommendation. To solve the problem, two new metrics named Aligned Precision (AP) and
Order-aware Sequence Precision (OSP) are proposed to evaluate the recommendation accuracy of POI
sequence, considering both the POl identity and visiting order.

Specifically, AP is calculated by Equation (9):

k C—
AP = ZiZl I(]fl —1"1), (9)

where g; and r; are the ground truth and recommendation on position i, respectively, and

1, if i =T
I(gi=ri) = { 8 (10)

0, otherwise.

Equation (9) shows that the AP is equal to 1 only when each position of sequence is correctly
recommended. In other words, if a POI sequence recommendation contains correct POI identities but
the wrong order, its AP will be still 0. Obviously, the metric AP is so strict. Therefore, a gentler but still
effective metric OSP is also proposed in this research, which is given by Equation (11):

GNR M
OSP = —— - —, 11
T (11)

where % measures the degree of overlap between the recommended POI sequence R and ground

truth G (without considering the order), and % measures the order precision of the overlapped
sub-sequence, where C is the number of all POI pairs in the overlapped sub-sequence, and M is the
number of the pairs that contain correct order.

For example, if a recommended POI sequence is (B, A, D, C, F) and the corresponding ground
truthis (A, B,C, D, E), it can be easily calculated that AP= 0. As for OSP, the overlapped sub-sequence
(B, A, D, C) can be obtained first, which contains four common POIs, so % = 0.8. In addition, all the
ordered POI pairs in the overlapped sub-sequence include {BA,BD,BC, AD, AC,DC}, ie., C = 6.
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Nevertheless, only {BD, BC, AD, AC} have correct orders as ground truth, so M = 4. Naturally, it can
be calculated that the OSP= 0.53. This example shows that AP is much stricter than OSP, and OSP
considers not only the degree of overlap between sequences, but also the order in sequence.

Besides AP and OSP, the most used metrics, i.e., the precision and recall, are also used to evaluate
the models in this research. The precision and recall can be calculated from the confusion matrix,
and they are both averaged over all the POls.

4.1.3. Baseline Methods

The proposed model DRPS is compared with the following baseline methods:

Random Selection (RAND) In the RAND model, each POI in the recommended sequence is
randomly selected from all POls.

Additive Markov Chain (AMC) [42] The AMC model recommends POI sequence by exploiting
the sequential influence. Specifically, given a historical trajectory S, of user 1, when recommending
the POI on position p, AMC first calculates the probability of the user visiting each POI based on all the
POls before position p; then, the POI with maximum probability will be recommended on position p.

LOcation REcommendation (LORE) [41] The LORE model first mines sequential patterns implicit
in POI sequences and represents the sequential patterns as a dynamic Location—-Location Transition
Graph (L2TG). Based on the L2TG and geographical influence, LORE can then predict the user’s
probability of visiting each POL

LSTM-Seq2Seq [16] The LSTM-Seq2Seq model adopts a multilayered Long Short-Term Memory
(LSTM) to map the input sequence to a vector of a fixed dimension, and then uses another deep LSTM
to decode the target sequence from the vector.

4.1.4. Parameter Setting

In the experiments, all the samples are divided into three subsets, i.e., a training set, a validation
set and a test set, and their proportions are 70%, 20% and 10%, respectively. The training set is used to
train the model parameters of DRPS, the validation set is used to select the parameters when training,
and the test set is used to evaluate the performance of the model. In addition, the dimension d of
input feature is set to 64, the number of blocks N in encoder (decoder) is set to 2, and the number of
the “header” of the MHA layer m is set to 8. In addition, the experiments are conducted with two
different settings of input/output POI sequence lengths (#, k), including (30, 5) and (25, 10). In order to
evaluate the performance of the proposed algorithm more effectively and reduce the risk of overfitting,
every experiment in this paper is repeated 10 times, and the mean and variance of multiple results are
used to measure the performance of the model. In addition, all the experiments are implemented with
TensorFlow [43].

4.2. Experimental Results

A series of experiments are carried out according to the above settings. The performances
of different POI sequence recommendation approaches in terms of AP and OSP are presented in
Tables 2 and 3. The difference between Tables 2 and 3 is the setting of input/output POI sequence
lengths, that is, the former is (30, 5) and the latter is (25, 10).

It is apparent in Tables 2 and 3 that DRPS significantly outperforms the other baselines when
measured with AP and OSP on all four cities. The RAND method gives the recommendation just by
naively random selection without utilizing any additional information, so its accuracy is very low but
stable. The AMC and LORE achieve similar performance. More specifically, when the input length
is longer (30) and output length is shorter (5), LORE is better than AMC in most cases. Conversely,
when the input length gets shorter (25) and output length gets longer (10), AMC almost always
outperforms LORE. LSTM-Seq2Seq reaches the closest performance to DRPS, while, no matter how
long the input/output sequences are, DRPS always achieves the best performance. On the other hand,
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it is easy to find that the values of OSP are always higher than the ones of AP, which verifies that,

as m

entioned in the previous analysis, AP is stricter than OSP.

Table 2. Performance comparison on four cities in terms of AP and OSP under the setting where the
input and output lengths are, respectively, 30 and 5. The numbers in bold face indicate the ones with
the best performances.

o New York San Francisco Brooklyn London
’ AP osP AP osP AP osp AP osp
RAND 0.011+£0.0006  0.052+0.0015  0.02340.0022  0.108 +0.0031  0.049£0.0039  0.221+£0.0057  0.035+0.0019  0.157 4 0.0049
AMC 7.3734+0.4386  10.040 £ 0.5494 8.1604+0.3533  10.840 +0.3217 9.267 £0.7745  13.1734+1.3283  11.6804+0.2993  16.471 4 0.2554
LORE 8.107+0.3785  10.680 & 0.3767 9.0134+0.2660 10427 +0.3583  10.6534+0.8213  12.507 +1.1437  13.467 +0.5310  15.547 4 0.4031
LSTM-Seq2Seq  9.014 £0.0092  13.0604+0.0297  11.3524+0.6135 15766 +1.0097  10.772+0.5439  22.293 £0.6308  14.666 £0.7064  27.723 +0.7408
DRPS 9.982+0.3985 19.511+0.2400 13.653 £0.1611 18.747 £0.3048 11.933 +0.4434 23.240+£0.9827 15413 £0.2294 29.513 £ 0.8359

Table 3. Performance comparison on four cities in terms of AP and OSP under the setting where the
input and output lengths are, respectively, 25 and 10. The numbers in bold face indicate the ones with
the best performances.

o New York San Francisco Brooklyn London
o
AP osp AP osp AP osp AP oSspP

RAND 0.011 £ 0.0005 0.093+0.0011  0.022 4+ 0.0012 0.190 +0.0016 0.053 +0.0022 0.387 +0.0015 0.039 +0.0021 0.278 +0.0061
AMC 7.067 £0.3117  11.698 £0.4837 6.710+0.1445  11.530 £ 0.4276 8560+0.0712  14.892£0.1127 11.473+0.6824  20.490 +0.7428
LORE 6.833+0.4873 10347 £0.5788  6.920 +0.1728 8.860 +0.1840 8727 +£0.2265 11.320£0.4109 12947 4+0.3488  16.090 +0.3813
LSTM-Seq2Seq  8.208 0.3165  19.068 +0.3939  8.136+0.3347  19.083 + 0.5741 9452 +04460  18.227 £0.5413 12951 +0.5010  27.850 + 0.7589
DRPS 9.547 +£0.0929  21.040 £0.2204 8.927 +0.2877 19.502+£0.0408 11.475+0.8351 21.223+0.0719 14.485+0.3118 29.533 +0.1363

In addition to AP and OSP, the precision and recall are also chosen to evaluate the above models.

Tables 4 and 5 present the experimental results. Table 4 is for the case where the input and output
lengths are, respectively, 30 and 5, and Table 5 is for the case where the input and output lengths are,
respectively, 25 and 10.

Based on the results, it can be observed that DRPS can still outperform almost all the baselines

when measured with precision and recall. In addition, with the input length getting shorter and the
output length getting longer, the POI sequence recommendation also gets harder. Surprisingly, DRPS
can still achieve competitive (even better) performance, which proves that DRPS is powerful for the
POI sequence recommendation task.

Table 4. Performance comparison on four cities in terms of precision and recall under the setting where
the input and output lengths are, respectively, 30 and 5. The numbers in bold face indicate the ones
with the best performances.

o New York San Francisco Brooklyn London
’ Precision Recall Precision Recall Precision Recall Precision Recall
RAND 0.021 £0.0194 0.033+0.0310  0.013+0.0137  0.043+0.0117 0.015 £ 0.0138 0.025+0.0232  0.005 £ 0.0055 0.011 £0.0109
AMC 0.823 £ 0.6556 1.840 +1.6125 3573+£2.0724  3.25240.5875 5.409 + 1.6053 14.732 £ 3.4203 4.260 + 0.5859 11411 +£0.6116
LORE 3.151 +£1.1616 7.355+2.8026  6.652+1.6381 1.004 +£0.7220 2.857 £0.6719 11.401 £ 2.2280 5.400 + 1.0526 11.999 + 4.4562
LSTM-Seq2Seq  4.703 £0.0036  9.035 4 0.0065 6.021£0.9436  4.673+0.7343 7.191+0.3673 15.853 £0.8100  6.239 + 0.4209 12.459 +0.7952
DRPS 5254 +0.6595 11.152+0.8343  7.806 +1.0156  6.353 +1.0308 8557 +0.8870  15.669+1.0639  7.846+1.2103  14.577 +1.3540

Table 5. Performance comparison on four cities in terms of precision and recall under the setting where
the input and output lengths are, respectively, 25 and 10. The numbers in bold face indicate the ones
with the best performances.

o New York San Francisco Brooklyn London
o

Precision Recall Precision Recall Precision Recall Precision Recall
RAND 0.002 + 0.0022 0.003 £ 0.0037 0.025 £+ 0.0121 0.021 +0.0116 0.034 4+ 0.0149 0.061 £ 0.0286 0.017 +0.0127 0.028 £ 0.0210
AMC 0.752 4 0.6590 3.326 +2.7543 5.352 4 1.9037 2.667 £ 0.7595 3.977 +£0.9521 11.555 + 1.7694 3.083 +0.7702 6.964 £ 1.7802
LORE 1.916 £ 0.3494 7.978 +1.6981 3.676 +2.2748 2419+ 0.2754 2.22540.3266 12.097 + 2.0696 2.255 + 0.4506 8.856 + 2.6079

LSTM-Seq2Seq  2.134 £0.0829 837502178  8.41540.3744 3.597 £0.3681 4.956 £ 0.3066 13.645 £ 0.7883 3.90240.7636  10.975 £2.1515
DRPS 3.142+£04779  8.466 -1.1623 8.207 £0.6381 4.000£0.5911  6.536+:0.7484  14.424+£0.9999  4.7371+0.5935 11.190 & 1.1647
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4.3. Effect of Components

As described in Section 3.3.1, four features are considered in the input module of DRPS, including
the POI embedding (PE), category embedding (CE), geographical influence (GI), and positional
encoding (Pos). This part aims to investigate the effect of each of these components. Specifically,
each component is removed from the input module, respectively, for demonstrating the effectiveness
of the corresponding component. The experimental results have been shown in Table 6.

Table 6. Effect of different components on four cities in terms of AP and OSP under the setting where
the input and output lengths are, respectively, 30 and 5.

o New York San Francisco Brooklyn London
’ AP osp AP osp AP OospP AP osp
DRPS 9.9824+0.3985 19.5114+0.2400 13.653 £0.1611 18.747 £0.3048 11.9334+0.4434  23.240£0.9827 15413+0.2294  29.513 £ 0.8359

Without PE  2.0124+0.0160  3.0524+0.0382  3.020 £0.0155  5.088 £0.0312  3.054 +0.0237 6.222 £0.0707  4.030 £ 0.0205 7.176 £0.0720
Without CE  6.396+0.3026  9.938+0.4332  7.332+£0.5356 10.830+0.4786  8.086+0.3146  14.426+0.4782 11.712+0.4892 17.404 £ 0.4020
Without GI  7.154+0.2549  9.988+0.2268  8.026 £0.2367 10.170+0.2587 8718 +0.3214  13.338 £0.3804 12.478 +0.4352 14.644 £ 0.4751
Without Pos  3.014+0.0092  4.060 +0.0297  6.352+£0.6135  9.766 +£1.0097  7.77240.5439 11.293+0.6308  9.666 4 0.7064 12.723 £ 0.7408

According to the results presented in Table 6, when the POI embedding and positional encoding
are removed from the input module, the AP and OSP always get lower values, and the AP and
OSP always get higher values when removing the category embedding and geographical influence.
It means that POl embedding and positional encoding are the more important features in POI sequence
recommendation. Meanwhile, the category embedding and geographical influence are also effective at
improving the model performance.

4.4. Cold-Start Scenario

Recommendation systems always face the cold-start problem, where the recommendation systems
have difficulty recommending reliable results because of the initial lack of data. Similarly, DRPS also
faces the challenge of a cold-start when the input data are limited. In this paper, those users who have
less than 35 and more than 15 check-ins are used to validate the performance of the proposed algorithm
in a cold-start scenario. Specifically, each incomplete trajectory is extended to a sequence of a fixed
length (35) by padding with leading-zeros. Then, the first 30 POlIs are input into the trained model
to get a recommendation, and the last five POIs are used to evaluate the recommendation accuracy.
The experimental results have been presented in Table 7. It can be found that the performances of
all methods (except for RAND) in a cold-start scenario get worse (compared with Table 2). However,
DRPS is still significantly superior to the other baselines.

Table 7. Performance comparison in a cold-start scenario. The numbers in bold face indicate the ones
with the best performances.

o New York San Francisco Brooklyn London
o
AP osp AP ospP AP osp AP osp

RAND 0.010 4 0.0013 0.044 £ 0.0021 0.018 £ 0.0020 0.098 + 0.0059 0.038 £ 0.0029 0.222 4 0.0037 0.032 £ 0.0023 0.172 £ 0.0067
AMC 6.376 +0.5018 9.792+0.5886  4.330 +0.3404 5.876+0.3287  6.268 +0.3375 8.330 4+ 0.4973 5.952 +0.5250 8.344 £ 0.4870
LORE 6.998+0.3104  9.614+0.4888  4.830+0.2738 5.276 +0.3725 7.588 £ 0.4761 9.330 + 0.6523 8.126 +0.3813 10.654 4 0.5957
LSTM-Seq2Seq  6.568 +0.3652  10.666 + 0.4190 6.776 £ 0.4029 9.009 £ 0.7750 9.302+ 04369 18.241+0.3784  11.038 £0.3721 21.633 + 0.6624
DRPS 7.128 +0.5427 13.312 £ 0.6444 8.2124+0.2969 12.454 +0.6282 9.506 +0.3323  19.529 +0.4302 11.256 £ 0.5722 25.293 £0.6157

4.5. An Illustrative Example

Figure 2 illustrates an example from New York. The solid grey lines represent the historical
trajectory of a user. This trajectory starts with P and ends with Q. The solid blue lines are the ground
truth transitions after Q of this user. In addition, the dash purple lines are the recommended sequence
by DRPS. In this case, the ground truth of output sequence is (A, B, C, D, E), and the recommended
sequence is (A, C, B, D, F). According to Equations (9) and (11), the AP and OSP can be easily calculated,
that is, AP = 0.4 and OSP = 0.67.
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Figure 2. An example of POI sequence recommendation.

5. Conclusions and Future Work
This paper proposes the framework DRPS to recommend POI sequence based on users” historical
trajectories. DRPS first models the POI sequence recommendation as a Seq2Seq learning task, and then
develops a DNN-based architecture to solve it. DRPS takes the POI embedding feature, the geographical
and categorical influences of historical trajectory as input, and outputs the POI sequence recommendation
that the user is most interested in. Owing to the end-to-end workflow, DRPS can easily make dynamic
POI sequence recommendation by allowing the input to change over time. In addition, other than
precision and recall, two new metrics named AP and OSP are proposed to evaluate the recommendation
accuracy of POI sequence. Differing from precision and recall, AP and OSP both take into account the
visiting order of POI sequence, which provide a more reasonable way to evaluate the recommendation
accuracy of POI sequence. In addition, the experimental results of each of the above metrics demonstrate

the significant advantages of DRPS in the POI sequence recommendation task.
DRPS has shown its effectiveness; however, there are still some works worthy of further

exploration. First, in order to get better recommendations, some other helpful information, such as
the social relationship in LBSNs, should be also considered in the future. Second, considering
more practical constraints when making recommendations is another important work in the future.
These constraints may include time constraint, cost constraint, distance constraint, etc.
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