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Abstract: Open areas, along with their non-forest vegetation, are often threatened by secondary
succession, which causes deterioration of biodiversity and the habitat’s conservation status.
The knowledge about characteristics and dynamics of the secondary succession process is very
important in the context of management and proper planning of active protection of the Natura
2000 habitats. This paper presents research on the evaluation of the possibility of using selected
methods of textural analysis to determine the spatial extent of trees and shrubs based on archival
aerial photographs, and consequently on the investigation of the secondary succession process.
The research was carried out on imagery from six different dates, from 1971 to 2015. The images
differed from each other in spectral resolution (panchromatic, in natural colors, color infrared), in
original spatial resolution, as well as in radiometric quality. Two methods of textural analysis were
chosen for the analysis: Gray level co-occurrence matrix (GLCM) and granulometric analysis, in a
number of variants, depending on the selected parameters of these transformations. The choice of
methods has been challenged by their reliability and ease of implementation in practice. The accuracy
assessment was carried out using the results of visual photo interpretation of orthophotomaps from
particular years as reference data. As a result of the conducted analyses, significant efficacy of the
analyzed methods has been proved, with granulometric analysis as the method of generally better
suitability and greater stability. The obtained results show the impact of individual image features on
the classification efficiency. They also show greater stability and reliability of texture analysis based
on granulometric/morphological operations.

Keywords: secondary succession monitoring; Natura 2000 threats; tree detection; archival photographs;
spectro-textural classification; granulometric analysis; GLCM

1. Introduction

In Poland, since the 1990s, a gradual cessation of agricultural use, hence the secondary succession
process, has been observed in some areas. This is also observed in valuable natural areas, including
Natura 2000 habitats, and results in deterioration of biodiversity and the habitat’s conservation status.
This process can have different characteristics and dynamics in different areas [1]. The course of
succession is influenced by, e.g., the state of abandoned land (e.g., black fallow, mowed meadow,
stubble), soil fertility in nutrients, recently grown plants, the location of the ground (including proximity
to the forest), slope, and insolation [2–4]. This knowledge plays an important role in proper planning
of active protection of the Natura 2000 habitats.
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The secondary succession process can now be effectively monitored using LiDAR (Light Detection
and Ranging) data [5,6] and hyperspectral imagery (detection of succession species) [7].
However, learning about the dynamics of this phenomenon in the past (e.g., in the 1970s, 1980s,
and 1990s of the 20th century) is only possible using archival materials—mainly aerial photographs,
which are often the only reliable source of information about the land cover. The most common method of
obtaining ranges of trees and shrubs based on archival aerial photographs is photo interpretation [8–13].
Sometimes, stereodigitalization is also used [14–18]. However, these methods are labor-intensive and
time-consuming, which is why methods of automation of this process are sought. Sometimes, the
classic spectral classification of the image is used [19], but in the case of archival images (often black
and white), it is not always possible. Another possibility for the study of the succession process of trees
and shrubs is to use the technique of dense image matching (DIM) [20]. However, according to current
research in this area [20], for the DIM technique to yield good quality results, archival data must meet
several conditions: (1) The scale of images should not be less than 1:13 000 for analog photos, or GSD
(Ground Sample Distance) should be smaller than 25 cm for digital photos; (2) the date of obtaining the
photos should provide a picture of vegetation in full development; and (3) photos should have good
radiometric quality, i.e., small image blur, adequate contrast, and no mechanical damage (in the case of
analogue photos).

A new approach to the study of the dynamics of the succession process based on archival aerial
photographs may be the application of textural analysis of the image.

Texture is one of the most important spatial features of selected terrain coverage classes.
Since it does not have an unambiguous mathematical definition, in practice, image processing
uses a variety of ad hoc texture analysis methods. The gray level co-occurrence matrix (GLCM) [21–23],
fractal analysis [24], discrete wavelet transformation [25], Laplace filters [26–28], Markov Random
Fields [29,30], and granulometric analysis [31,32] are several such methods that should be mentioned
here. Also, promising attempts have been made to use convolutional neural networks to take spatial
features of images into account [33,34].

Wooded and bushy areas are a class with a distinct texture. This is mainly due to the shape
of the tree crowns and also to their height. In areas with dense trees/bush coverage, typical grainy
texture results from the alternate occurrence of better and worse illuminated crown fragments (due to
the orientation of the surface of the tree crown relative to the light source). In areas with less dense
coverage, the shadow image of individual trees or shrubs also plays an important role.

Texture is especially important for images of very high resolution. As the size of the pixel (GSD)
increases, the clarity of texture decreases, and at the same time, its significance as an interpretive/classification
feature does too [35,36].

The texture, although potentially significant in the classification of satellite image content,
used alone might not give satisfactory results, because different LULC (Land Use/Land Cover) classes
may have similar textures [37]. Therefore, the use of textural features as a complement to spectral
features gives a much better result—in the spectro-textural approach. This is indicated by examples of
models using different texture analysis methods in combination with spectral data [22–24,33–36,38–43].

Most examples of the spectro-textural approach are based on multispectral data, including
near-infrared channels (often also mid-infrared), which are crucial for distinguishing vegetation from
other terrain coverage classes, as well as for differentiating types of vegetation. In the case of archival
aerial photographs, these type of data are often not available. Evidently, the repository of multispectral
satellite data dates back to the 1970s, but these are medium-resolution images, unsuitable for the
analysis of textures of wooded areas or for large-scale studies. On the other hand, aerial photographs
usually have adequate spatial resolution, while the registered spectral band images are less favorable
for texture analysis. Most often, these are images in natural colors or panchromatic (black and
white) photographs.

The main objective of the presented research was to analyze the possibility of using archival
aerial imagery to determine the wooded and shrubbed areas, using selected methods of texture
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analysis, and with limited spectral data. Two methods of texture analysis were selected for the study,
the effectiveness of which has been proved by previous studies: GLCM [21,23] and granulometric
analysis [31–33,36]. In the literature can be found many studies on the use of these methods in the
analysis of satellite and aerial images, but there is almost no research on archival aerial photos.

2. Brief Presentation of Selected Methods of Texture Analysis

Here follows a brief presentation of two texture analysis methods used for this research: GLCM
and granulometric analysis. Both methods can be used to analyze the whole image, as well as for local
analysis for individual pixels. In the first case, we obtain a single value (or a set of values) describing
the feature (or features) of the whole image. This may, for example, determine what the image presents
(e.g., the dominant type of coverage/land use) [44,45]. The local analysis consists of analyzing a subset
of the image defined by a determined neighborhood of a single pixel (e.g., all pixels in the assumed
radius). Values obtained in this way are attributed to individual central pixels. This indicates the
feature of texture in the environment surrounding each central pixel (defined by the range of the
analyzed neighborhood). In practice, this consists of creating new images, where pixels are given
values depending on the individual features obtained in the analysis.

2.1. GLCM—Grey Level Co-occurrence Matrix

The GLCM method of texture analysis was first introduced by Julesz [21]. It consists of counting
the pairs of neighboring values present in the image (or in its subset) and comparing them in the
(grey level co-occurrence) matrix. For the matrix thus created, selected indicators are calculated to
analyze various aspects of the texture of the image (or its subset). Works of Haralick et al. [23], in which
numerous indicators were presented, played an important role in developing and popularizing this
method. Therefore, GLCM indicators are frequently referred to as Haralick indicators (or features).
This method is highly effective [46], which has been demonstrated in many publications [47,48],
although different authors suggest using different sets of Haralick features [38,39,41]. One of the
main advantages of GLCM is the large number of indicators describing various aspects of the texture,
enabling to analyze it from different angles. In these studies, we used a set of eight basic Haralick
indicators (formulas according to the OTB CookBook [49]).

Energy =
∑

i,j

g(i, j)2 (1)

Energy is a description of the uniformity of texture.

Entropy =
∑
i, j

g(i, j)log2g(i, j), or 0 i f g(i, j) = 0, (2)

Entropy is a measure of randomness of pixel values distribution. It is the highest when all the
frequencies g(i,j) are equal, and smaller when they are unequal. Heterogeneous images (subsets of
image) will result in a higher entropy value.

Correlation =
∑
i, j

(i− µ)( j− µ)g(i, j)
σ2 (3)

Correlation describes how a pixel is correlated to its neighborhood. Regions of similar gray level
will result in higher correlation values.

Inverse Di f f erence Moment =
∑
i, j

1

1 + (i− j)2 g(i, j), (4)
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Inverse difference moment (IDM) measures a homogeneity of an image (its subset). Homogeneous
images will result in high IDM values.

Inertia =
∑
i, j

(i, j)2g(i, j), (5)

Inertia (or contrast) measures a contrast of pixel values between a given pixel and its neighborhood.
Images with a large amount of variation will result in high inertia.

Cluster Shade =
∑
i, j

((i− µ) + ( j− µ))3g(i, j), (6)

Cluster shade is a measure of the skewness of the matrix. It describes the perceptual concepts of
uniformity [50].

Cluster Prominence =
∑
i, j

((i− µ) + ( j− µ))4g(i, j), (7)

Cluster prominence is a measure of asymmetry. The less symmetric regions will result in higher
cluster prominence values.

Haralick′s Correlation =

∑
i, j(i, j)g(i, j) − µ2

t

σ2
t

, (8)

where (i, j) is the matrix cell index, g(i, j) is the frequency value of the pair having index
(i, j), µ =

∑
i,j i ∗ g(i, j) =

∑
i,j j ∗ g(i, j) (due to matrix symmetry) and means weighted pixel average,

σ =
∑

i,j(i−µ)
2
∗ g(i, j) =

∑
i,j( j−µ)2

∗ g(i, j) (due to matrix symmetry) and means weighted pixel variance,
and µt and σt are the mean and standard deviation of the row (or column, due to symmetry) sums.

2.2. Granulometric Analysis

The granulometric analysis in a classical form consists of sequentially executing a series of
morphological openings of a binary image using structuring elements of sequentially increasing size,
and then in the calculation of derivative images demonstrating the differences [31]. By specifying the
size of each differential image (defined as the sum of all pixel values in the image) [51], we are able
to determine the number of texture grains of specific sizes found in the source image [31]. Due to
the nature of the opening operation (removal of relatively small image elements with values greater
than the background value), this applies to bright texture elements. Analogically to the analysis based
on the sequence of morphological openings, an analysis based on morphological closing operations
can be performed. Due to the dual nature of the closing operation (in opposition to the opening
operation), we obtain complementary information about the dark texture elements. This type of
analysis is sometimes referred to as anti-granulometric [35]. However, in this article, both versions of
the analysis (opening- and closing-based) are referred to as granulometric analysis. This type of global
analysis assigns a set of features called the granulometric density function to the whole image.

The use of local granulometry is presented in [32,52]. It consists of assigning the granulometric
density function to individual pixels on the basis of the analysis of their neighborhood. In practice, the
effect of local granulometric analysis is usually a set of images in which pixel values represent successive
values of the granulometric density function. Such images are called granulometric maps [30,50].
The usefulness of granulometric maps in the LULC classification has been proven, e.g., in [6,35,40,51].
It is worth noting that this type of granulometric analysis in many respects resembles a morphological
profile [53,54]; however, it differs significantly in other respects [35,43].

Among the important advantages of granulometric analysis, a multiscale should be indicated: As a
result of successive morphological operations with an increasing size of the structuring element, subsequent
values (granulometric maps) present information about the presence of texture grains of different sizes.
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Another important feature of this method is resistance to the so-called edge effect [55]. Most texture
analysis methods are based on the analysis of the spatial frequency of the image, as a result of which
the edges of the objects, even those with a low texture, are marked with values indicating high texture.
This may lead to a reduced accuracy of the classification [35,36,55]. The granulometric analysis is based
on a different principle: It removes whole elements of the image and analyzes their number; as a result
of this, it does not show the edges of objects as areas with high texture.

3. Study Area

The study area is located in the south of Poland, in the Silesian Voivodeship, near Czestochowa city
(50◦45” N; 19◦17” E) (Figure 1). This area is a part of the Olsztyn-Mirów wildlife refuge, a Natura 2000
protected area (PLH240015), established by the decision of the European Commission of 12 December
2008 No. 2009/93/EC (OJ EU L 43 of 13.02.2009) [56].ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 26 
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plants and animals from Annex II of the Habitats Directive [57]. 

The threat to the non-forest habitats of this area is primarily the process of secondary succession, 
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which has been progressing gradually since the 1990s. In order to protect valuable habitats at the 
Olsztyn-Mirów wildlife refuge within the framework of the LIFE11 NAT/PL/432 project “Protection 
of valuable non-forest habitats of the Orle Gniazda Landscape Park” (2012–2016), a number of active 
protection measures, such as the planting of bushes and trees and controlled sheep grazing, have 
been undertaken [58]. 

The part of the area selected for analysis (25 km2) covers a territory which is varied in terms of 
terrain relief and land use, and of the nature of the secondary succession process. It allows to identify 
possible problems in the automation of the process of determining the succeeding ranges of trees and 
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Figure 1. Location of the study area (blue rectangle) and overview (prepared based on: http:
//geoserwis.gdos.gov.pl/mapy/, photo: E. Sierka). The photo shows a fragment of valuable non-forest
habitats, where secondary succession is observed.

This area is characterized by large habitat diversity. Non-forest habitats present there are of
particular importance. They are associated with limestone rocks, with numerous rare and endangered
thermophilic species of plants and invertebrates (including the scarce large blue (Phengaris teleius),
a species from Annex II of the Habitats Directive). A number of species reaches here the northern edge
of their geographic range. In total, there are 13 types of habitats identified in the refuge with Annex
I of the Habitats Directive (including 4 priority habitats) and 12 species of plants and animals from
Annex II of the Habitats Directive [57].

http://geoserwis.gdos.gov.pl/mapy/
http://geoserwis.gdos.gov.pl/mapy/
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The threat to the non-forest habitats of this area is primarily the process of secondary succession,
which is the result of the abandonment of pastoralism, the lack of grazing and mowing of meadows, which
has been progressing gradually since the 1990s. In order to protect valuable habitats at the Olsztyn-Mirów
wildlife refuge within the framework of the LIFE11 NAT/PL/432 project “Protection of valuable non-forest
habitats of the Orle Gniazda Landscape Park” (2012–2016), a number of active protection measures,
such as the planting of bushes and trees and controlled sheep grazing, have been undertaken [58].

The part of the area selected for analysis (25 km2) covers a territory which is varied in terms of
terrain relief and land use, and of the nature of the secondary succession process. It allows to identify
possible problems in the automation of the process of determining the succeeding ranges of trees and
shrubs using textural analysis methods.

4. Materials and Methods

The main stages of the development methodology included:

1. Analysis and selection of archival aerial imagery;
2. Development of orthophotomaps;
3. Creation of simulated panchromatic (P) images;
4. Determination of the wooded and shrubbed areas using textural analysis, including:

a. Selection of methods and parameters of texture analysis;
b. Creation of spectro-textural data sets;
c. Classification using support vector machine (SVM); and
d. Additional processing.

5. Preparation of reference data and evaluation of the accuracy of determining the wooded and
shrubbed areas; and

6. Analysis and comparison of results.

The methodology scheme is presented in Figure 2.
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4.1. Data

The aerial photographs for the study area were obtained from the State Geodetic and Cartographic
Resource in Poland. They were photos from 1971, 1996, 2003, 2009, 2012, and 2015. They were both
analogue and digital, black and white (panchromatic—P) and color (RGB). They differed in parameters,
scale (from 1:13 000 to 1:26 000) or GSD (24 and 25 cm), and the acquisition date (different phenological
periods). The basic parameters characterizing these photographs are presented in Table 1, and in
Figure 3, selected parts of photos are visualized.

Table 1. The characteristics of aerial photographs used for analysis.

Date Number
of Photos

GSD or
Scale Camera Focal

Length GPS/INS Aerotrian-
Gulation (EO) Type

11.08.1971 12 1:18 000 RC51 210.20 mm NO NO P
30.05.1996 4 1:26 000 RC20 152.97 mm NO NO RGB
24.05.2003 14 1:13 000 LMK 152.30 mm NO NO P
26.04.2009/
29.04.2009 14 1:14 000 RC30 153.81 mm YES YES RGB

25.03.2012 10 24 cm UltraCamXp 100.50 mm NO NO RGB
08.08.2015 10 25 cm UltraCamXp 100.50 mm NO NO RGB, CIR
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Based on the obtained images, orthophotomaps with GSD = 0.5 m were prepared. In the case
of scanned images, first they were pre-processed in SAPC software according to the methodology
developed by Salach [59]. This methodology transforms scans to a form similar to the images captured
by a digital camera. Next, approximate values of exterior orientation (EO) parameters were obtained
using Agisoft Photoscan software. Then, these values were used as approximate EO values in Trimble
INPHO, which allowed the process of image block bundle adjustment to occur. A more detailed
description of the process of developing archival materials is in [20].



ISPRS Int. J. Geo-Inf. 2019, 8, 450 8 of 26

4.2. Simulation of Panchromatic Images

Due to the importance of spectral data for spectro-textural classification, one of the aspects of this
study was to compare the effectiveness of classification depending on the type of images available.
However, the test pictures, apart from the type, also differ in the radiometric quality, which can
undoubtedly be relevant to the accuracy of the quality of texture analysis and, as a result, to the
classification performed. In order to estimate the importance of the type of photo regardless of the
quality of the material itself, panchromatic images were simulated for RGB images.

Aerial panchromatic photographs images were most often made with the use of a yellow
(minus-blue) filter blocking blue radiation [60,61]; so only green and red radiation was registered in
panchromatic images. Therefore, simulated panchromatic images (Ps) were calculated by averaging
the values of red (R) and green (G) bands:

Ps =
R + G

2
, (9)

Simulated panchromatic images were generated for all RGB images—that is, for data from 1996,
2009, 2012, and 2015.

4.3. The Determination of Wooded and Shrubbed Areas

The determination of wooded and shrubbed areas was based on spectro-textural classification.
It was made using the support vector machine (SVM) method on combined spectral data (original CIR,
RGB, or P and simulated P) and texture data (Haralick indicators or granulometric maps).

4.3.1. Selection of Source Images for Texture Processing

Single grayscale images are proposed for texture processing. In the case of P images (both original
and simulated), the choice was obvious—to choose these P images. In the case of multispectral
images (CIR and RGB), the image of the first principal component was selected for texture processing.
This image by definition represents the greatest variation of the data set. Previous research also shows
that texture analysis based on the image of the first principal component gives the best distinction of
the texture of selected LULC classes—in addition to the near-infrared image [62], unavailable for most
of test images in this study.

4.3.2. Texture Analysis

Texture analysis was done independently using two methods: GLCM and granulometric analysis.
The two proposed methods were chosen for the following reasons. GLCM is one of the most popular
methods of texture analysis, according to the literature analysis still very often used in the analysis of
remote sensing data [22,23,41,47]. However, granulometric analysis is a relatively well-known method
of texture analysis, but its use in remote sensing is negligible. Earlier studies show that both methods
are highly effective, also when compared to other texture descriptors. In addition, these methods are
highly reliable and are easy to implement. In both cases, it was a local analysis performed in three
variants, depending on the size of the analyzed neighborhood:

• 10-pixel radius;
• 15-pixel radius; and
• 20-pixel radius.

GLCM analysis was performed using eight Haralick features, according to the formulas given
in Equations (1)–(8). As a result, eight images were obtained, which were treated as complementary
texture information, basing on all four displacement vectors. The OTB Monteverdi software was used
for the calculations.
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The granulometric analysis based on both opening and closing operations. For each image,
6 granulometric steps (opening or closing) were made, resulting in 12 granulometric maps (6 for
opening and 6 for closing), representing information about texture corresponding to the size of
structuring elements (circle-shaped, from a 1-pixel to 6-pixel radius). In order to investigate which
granulometric maps carry information of significance from the viewpoint of the analysis of the wooded
and shrubbed areas, data sets with fewer numbers of granulometric maps were also prepared. As a
result, data sets with the following numbers of granulometric maps were analyzed:

• From 1 to 3 for opening and closing (6 granulometric maps);
• From 1 to 4 for opening and closing (8 granulometric maps);
• From 1 to 5 for opening and closing (10 particle size maps); and
• From 1 to 6 for opening and closing (12 granulometric maps).

The calculations were carried out using BlueNote software [63].

4.3.3. Tested Variants

Variants (165) of data sets for classification were prepared, differing in at least one of the
following features: Date of acquisition, type of image, texture analysis method, local texture analysis
neighborhood size, or the number of granulometric maps used (in the case of granulometric analysis).
These variants are summarized in Table 2.

Table 2. Tested variants of data sets.

Year
Image
Type

GLCM Granulometric Analysis

10 15 20 10 15 20

1971 P p-1971-glcm-10 p-1971-glcm-15 p-1971-glcm-20 p-1971-x*-10 p-1971-x*-15 p-1971- *-20

1996
P p-1996-glcm-10 p-1996-glcm-15 p-1996-glcm-20 p-1996-x*-10 p-1996-x*-15 p-1996- *-20

RGB c-1996-glcm-10 c-1996-glcm-15 c-1996 glcm-20 c-1996-x*-10 c-1996-x*-15 c-1996- *-20
2003 P p-2003-glcm-10 p-2003-glcm-15 p-2003-glcm-20 p-2003-x*-10 p-2003-x*-15 p-2003- *-20

2009
P p-2009-glcm-10 p-2009 glcm-15 p-2009-glcm-20 p-2009-x*-10 p-2009-x*-15 p-2009- *-20

RGB c-2009-glcm-10 c-2009-glcm-15 c-2009-glcm-20 c-2009-x*-10 c-2009-x*-15 c-2009- *-20

2012
P p-2012-glcm-10 p-2012-glcm-15 p-2012-glcm-20 p-2012-x*-10 p-2012-x*-15 p-2012- *-20

RGB c-2012-glcm-10 c-2012-glcm-15 c-2012-glcm-20 c-2012-x*-10 c-2012-x*-15 c-2012- *-20

2015
P p-2015-glcm-10 p-2015-glcm-15 p-2015-glcm-20 p-2015-x*-10 p-2015-x*-15 p-2015- *-20

RGB c-2015-glcm-10 c-2015-glcm-15 c-2015-glcm-20 c-2015-x*-10 c-2015-x*-15 c-2015- *-20
CIR cir-2015-glcm-10 cir-2015-glcm-15 cir-2015-glcm-20 cir-2015-x*-10 cir-2015-x*-15 cir-2015-x*-20

* x represents the number of subsequent granulometric maps (after opening and closing) used to create a given
variant of the data set (from 3 to 6).

4.3.4. Performing the Classification

In total, a classification was made on 165 variants of data sets. Fifteen variants were tested for
each of the source images: 3 variants based on GLCM analysis and 12 variants based on granulometric
analysis (the larger number is due to testing 4 sub-variants depending on the number of granulometric
maps used).

The classification was made using the support vector machine (SVM) using ArcGIS software.
This method was chosen because of its high efficiency compared to other machine learning methods,
such as random forest or maximum likelihood [64].

The training fields were developed as a result of manual digitalization based on the visual
interpretation of the original spectral images. All variants developed within one date of acquisition
were classified based on the same set of training data. The final effect of each classification was
the binary mask of wooded and shrubbery areas, created as a result of aggregation of individual
classes based on individual training fields. The basic parameters related to the implementation of the
classification are presented in Table 3.
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Table 3. Basic parameters of the classification of test images.

Date Number of Variants
Tested

Number of Training Fields: Wooded and
Shrubbed Areas/Other Classes
(Number of Pixels in Brackets)

1971 15 6/12 (1812/12180)
1996 30 4/15 (3832/4825)
2003 15 6/15 (2653/9057)
2009 30 13/32 (1379/6032)
2012 30 7/18 (8531/9520)
2015 45 11/17 (4590/5445)

4.3.5. Additional Processing

After obtaining the binary masks of wooded areas, they were additionally processed using
morphological closing by reconstruction [65]. This operation was aimed at increasing the accuracy by
removing any discontinuities in the mask of the wooded areas. Such discontinuities resulted mainly
from the occurrence of shaded areas, i.e., those whose spectral features could significantly differ from
those of other parts of wooded areas. Direct allocation of these areas to the wooded area mask could
lead to an over-classification of this class in other parts of the image, and thus to a significant increase
in the excess error and, as a result, to a decrease in the accuracy of the classification.

Closing by reconstruction removes (closes) relatively small discontinuities (of a size smaller than
the size of the structuring element) in binary masks; at the same time, it does not change the shape of
other objects, unlike other filters of a similar type (simple closure, median filter, majority, etc.).

The operation used closing by reconstruction using a 10-pixel radius structuring element. It was
applied to all 165 classification variants obtained and the accuracy of newly obtained masks was
independently assessed. The processing was carried out in the BlueNote software [63].

4.4. Accuracy Assessment

Evaluation of the accuracy of determining the wooded and shrubbed areas using various
approaches to textural analysis was carried out, comparing their results with the reference data,
which were the results of detailed visual interpretation of orthophotomaps prepared on the basis of
the same archival materials. The entire analysis area was digitized for accuracy assessment purposes.
Orthophotomaps were developed with GSD = 0.5 m. The smallest separation was of 2 m2; that is,
it covered about 3 × 3 pixels. Thanks to such detailed visual interpretation, it was possible—in the
later stages—to indicate: (1) Which of the textural analysis variants gives the best results, and (2)
what size of wooded and shrubbed areas can be automatically determined on the basis of individual
archival materials.

The following accuracy indicators were used to assess the efficacy of individual approaches:
Overall accuracy (OA), recall, precision, Cohen’s kappa coefficient, and F1-score [66,67]. In addition,
the sum of the area resulting from errors of omission and commission (EO + EC) was analyzed to
indicate the variant with the smallest error area.

5. Results

The results of the analysis of the accuracy of determining the range of trees and shrubs using
spectro-textural classification are presented in Table 4 and in the diagrams in Figure 4.
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Table 4. Results of the accuracy assessment obtained for individual images and analysis variants (the
best results are marked in green).

Variant
P RBG (C) CIR

K OA F1 PA UA K OA F1 PA UA K OA F1 PA UA

1971

3-10 0.722 0.932 0.762 0.714 0.816 - - - - - - - - - -
3-15 0.633 0.910 0.685 0.645 0.731 - - - - - - - - - -
3-20 0.634 0.913 0.684 0.663 0.707 - - - - - - - - - -
4-10 0.726 0.936 0.763 0.752 0.775 - - - - - - - - - -
4-15 0.644 0.916 0.693 0.677 0.709 - - - - - - - - - -
4-20 0.624 0.912 0.675 0.667 0.683 - - - - - - - - - -
5-10 0.714 0.933 0.752 0.746 0.759 - - - - - - - - - -
5-15 0.669 0.921 0.715 0.694 0.737 - - - - - - - - - -
5-20 0.614 0.914 0.663 0.696 0.633 - - - - - - - - - -
6-10 0.692 0.929 0.733 0.738 0.727 - - - - - - - - - -
6-15 0.641 0.921 0.687 0.726 0.652 - - - - - - - - - -
6-20 0.563 0.904 0.618 0.660 0.581 - - - - - - - - - -

glcm-10 0.775 0.945 0.807 0.754 0.868 - - - - - - - - - -
glcm-15 0.676 0.928 0.717 0.758 0.681 - - - - - - - - - -
glcm-20 0.682 0.932 0.720 0.791 0.661 - - - - - - - - - -

1996

3-10 0.724 0.895 0.794 0.720 0.883 0.753 0.904 0.817 0.727 0.931 - - - - -
3-15 0.727 0.891 0.800 0.691 0.948 0.749 0.901 0.815 0.710 0.956 - - - - -
3-20 0.621 0.850 0.720 0.630 0.840 0.690 0.877 0.772 0.671 0.907 - - - - -
4-10 0.714 0.892 0.785 0.721 0.863 0.744 0.905 0.806 0.758 0.860 - - - - -
4-15 0.671 0.863 0.761 0.633 0.955 0.735 0.894 0.806 0.693 0.963 - - - - -
4-20 0.647 0.857 0.742 0.632 0.901 0.702 0.883 0.780 0.684 0.906 - - - - -
5-10 0.703 0.884 0.780 0.691 0.894 0.733 0.893 0.804 0.695 0.952 - - - - -
5-15 0.672 0.863 0.762 0.633 0.958 0.744 0.898 0.812 0.702 0.963 - - - - -
5-20 0.668 0.866 0.757 0.647 0.912 0.668 0.869 0.755 0.663 0.876 - - - - -
6-10 0.695 0.878 0.776 0.669 0.923 0.723 0.889 0.797 0.685 0.951 - - - - -
6-15 0.650 0.854 0.747 0.619 0.941 0.707 0.880 0.786 0.665 0.962 - - - - -
6-20 0.611 0.846 0.713 0.622 0.835 0.642 0.860 0.735 0.648 0.850 - - - - -

glcm-10 0.527 0.796 0.661 0.533 0.869 0.597 0.820 0.714 0.561 0.982 - - - - -
glcm-15 0.337 0.723 0.521 0.431 0.657 0.572 0.811 0.696 0.551 0.944 - - - - -
glcm-20 0.243 0.687 0.450 0.377 0.558 0.305 0.716 0.493 0.418 0.602 - - - - -

2003

3-10 0.761 0.889 0.846 0.757 0.957 - - - - - - - - - -
3-15 0.750 0.886 0.836 0.768 0.919 - - - - - - - - - -
3-20 0.756 0.890 0.838 0.790 0.892 - - - - - - - - - -
4-10 0.755 0.887 0.841 0.763 0.937 - - - - - - - - - -
4-15 0.760 0.892 0.842 0.787 0.904 - - - - - - - - - -
4-20 0.734 0.883 0.820 0.804 0.837 - - - - - - - - - -
5-10 0.754 0.886 0.841 0.754 0.951 - - - - - - - - - -
5-15 0.761 0.892 0.843 0.782 0.915 - - - - - - - - - -
5-20 0.739 0.885 0.824 0.802 0.848 - - - - - - - - - -
6-10 0.735 0.879 0.826 0.762 0.902 - - - - - - - - - -
6-15 0.761 0.892 0.843 0.784 0.910 - - - - - - - - - -
6-20 0.727 0.881 0.815 0.809 0.821 - - - - - - - - - -

glcm-10 0.749 0.884 0.838 0.751 0.947 - - - - - - - - - -
glcm-15 0.748 0.885 0.835 0.767 0.917 - - - - - - - - - -
glcm-20 0.700 0.862 0.805 0.730 0.898 - - - - - - - - - -
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Table 4. Cont.

Variant
P RBG (C) CIR

K OA F1 PA UA K OA F1 PA UA K OA F1 PA UA

2009

3-10 0.756 0.879 0.869 0.837 0.903 0.763 0.881 0.875 0.826 0.929 - - - - -
3-15 0.735 0.868 0.859 0.820 0.901 0.802 0.902 0.892 0.876 0.908 - - - - -
3-20 0.744 0.872 0.865 0.816 0.919 0.781 0.891 0.883 0.843 0.928 - - - - -
4-10 0.773 0.887 0.877 0.848 0.908 0.770 0.886 0.873 0.867 0.879 - - - - -
4-15 0.757 0.879 0.870 0.833 0.909 0.786 0.894 0.883 0.864 0.904 - - - - -
4-20 0.739 0.869 0.862 0.815 0.914 0.777 0.889 0.880 0.850 0.912 - - - - -
5-10 0.764 0.883 0.872 0.848 0.897 0.780 0.890 0.881 0.853 0.911 - - - - -
5-15 0.757 0.879 0.870 0.838 0.904 0.773 0.887 0.878 0.849 0.909 - - - - -
5-20 0.728 0.864 0.854 0.822 0.887 0.756 0.879 0.869 0.836 0.905 - - - - -
6-10 0.767 0.884 0.875 0.842 0.910 0.782 0.892 0.881 0.862 0.902 - - - - -
6-15 0.752 0.877 0.866 0.841 0.892 0.772 0.887 0.876 0.858 0.894 - - - - -
6-20 0.747 0.874 0.863 0.838 0.889 0.762 0.882 0.871 0.847 0.896 - - - - -

glcm-10 0.791 0.896 0.888 0.852 0.927 0.816 0.909 0.899 0.890 0.908 - - - - -
glcm-15 0.776 0.889 0.878 0.857 0.901 0.796 0.899 0.888 0.875 0.901 - - - - -
glcm-20 0.768 0.885 0.873 0.856 0.892 0.793 0.897 0.886 0.875 0.898 - - - - -

2012

3-10 0.578 0.785 0.784 0.692 0.903 0.569 0.779 0.784 0.676 0.934 - - - - -
3-15 0.672 0.836 0.825 0.763 0.897 0.688 0.844 0.832 0.779 0.892 - - - - -
3-20 0.653 0.828 0.808 0.776 0.843 0.698 0.849 0.837 0.782 0.902 - - - - -
4-10 0.556 0.774 0.774 0.680 0.897 0.550 0.768 0.777 0.663 0.939 - - - - -
4-15 0.650 0.825 0.812 0.756 0.876 0.585 0.790 0.785 0.702 0.891 - - - - -
4-20 0.581 0.794 0.762 0.758 0.766 0.656 0.830 0.809 0.785 0.835 - - - - -
5-10 0.537 0.762 0.770 0.660 0.923 0.581 0.786 0.789 0.684 0.933 - - - - -
5-15 0.661 0.831 0.817 0.764 0.878 0.602 0.799 0.793 0.713 0.893 - - - - -
5-20 0.636 0.819 0.800 0.765 0.838 0.658 0.832 0.808 0.793 0.824 - - - - -
6-10 0.598 0.795 0.795 0.698 0.923 0.608 0.801 0.798 0.710 0.910 - - - - -
6-15 0.644 0.824 0.803 0.774 0.835 0.481 0.732 0.745 0.630 0.912 - - - - -
6-20 0.684 0.844 0.824 0.801 0.848 0.684 0.845 0.820 0.821 0.818 - - - - -

glcm-10 0.701 0.849 0.843 0.762 0.944 0.613 0.802 0.805 0.698 0.950 - - - - -
glcm-15 0.675 0.836 0.831 0.745 0.939 0.643 0.819 0.816 0.726 0.932 - - - - -
glcm-20 0.659 0.830 0.816 0.764 0.876 0.597 0.802 0.772 0.765 0.780 - - - - -

2015

3-10 0.414 0.711 0.763 0.661 0.902 0.549 0.777 0.813 0.716 0.941 0.7040.853 0.8700.8000.955
3-15 0.372 0.691 0.758 0.372 0.936 0.452 0.730 0.783 0.452 0.943 0.6980.850 0.8700.6980.970
3-20 0.321 0.667 0.748 0.614 0.957 0.467 0.738 0.790 0.672 0.958 0.6910.847 0.8680.7820.974
4-10 0.422 0.715 0.764 0.667 0.894 0.498 0.752 0.794 0.695 0.925 0.6780.840 0.8600.7860.950
4-15 0.408 0.708 0.763 0.656 0.913 0.526 0.766 0.805 0.705 0.938 0.6480.826 0.8520.7580.973
4-20 0.431 0.719 0.774 0.662 0.931 0.483 0.745 0.795 0.679 0.959 0.6560.830 0.8560.7610.977
5-10 0.388 0.698 0.749 0.655 0.873 0.469 0.737 0.780 0.687 0.902 0.6680.835 0.8570.7750.959
5-15 0.433 0.721 0.773 0.666 0.921 0.518 0.762 0.801 0.704 0.930 0.6470.825 0.8510.7610.965
5-20 0.434 0.721 0.776 0.662 0.937 0.494 0.751 0.799 0.683 0.963 0.6230.813 0.8440.7430.976
6-10 0.416 0.713 0.772 0.654 0.942 0.491 0.749 0.797 0.683 0.958 0.6690.836 0.8600.7680.977
6-15 0.402 0.706 0.767 0.648 0.940 0.489 0.748 0.796 0.684 0.953 0.6340.819 0.8470.7520.970
6-20 0.377 0.694 0.763 0.635 0.956 0.485 0.746 0.797 0.679 0.963 0.6420.823 0.8480.7590.962

glcm-10 0.398 0.704 0.770 0.643 0.961 0.593 0.798 0.827 0.741 0.935 0.6910.847 0.8670.7850.967
glcm-15 0.246 0.631 0.730 0.587 0.967 0.425 0.717 0.778 0.654 0.962 0.7090.856 0.8740.7940.974
glcm-20 0.264 0.640 0.736 0.592 0.970 0.397 0.704 0.770 0.643 0.959 0.5910.798 0.8330.7270.976
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Figure 4. Comparison of accuracy results for different variants of textural analysis (Cohen’s kappa coefficient of agreement and F1-score).
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Generally, it was found that the best results for most archival materials were obtained using a
local texture analysis radius of 10 or 15 pixels. A larger radius of the area of analysis (20 pixels) gave
better results only in 2012 (early spring). Visualizations of the results of the texture analysis operation
at various analysis parameters (before closing) for a fragment of the research area are presented in the
figures included in Supplementary 1 (Figures S1–S14).

In the case of black and white aerial photographs (P) from 1971, the highest accuracy was
obtained using the GLCM method and a radius of texture analysis of 10 pixels (Table 4, Figure 4).
Slightly lower values of individual accuracy parameters were obtained for granulometric analysis
p-1971-4-10, p-1971-3-10, and p-1971-5-10.

For 1996, the best results were obtained based on granulometric analysis: c-1996-3-15, c-1996-3-10,
p-1996-3-15, and p-1996-3-10. The GLCM method for these photographs is characterized by the lowest
values of all analyzed accuracy parameters (Table 4, Figure 4).

In the case of 2003, relatively small differences were observed in the evaluation of the accuracy of
individual variants of granulometric analysis and GLCM (Kappa coefficient from 0.70 to 0.76) (Table 4).
The variants with the highest accuracy were: p-2003-3-10, p-2003-4-15, p-2003-5-15, and p-2003-6-15.

In turn, as far as 2009 is concerned, the best results were obtained using the GLCM method,
and this applies to the analysis of both the simulated image P and the original RGB images (Table 4,
Figure 4). The highest accuracy was obtained for the following variants: c-2009-glcm-10, c-2009-3-15,
and p-glcm-2009-10.

The GLCM method proved to be the most effective in relation to the imagery from 2012—the
variant p-2012-glcm-10 was characterized by the highest accuracy (OA, kappa, F1, UA) (Table 4,
Figure 4). In the case of granulometric analysis, the best results were obtained by analyzing RGB
images in the variant c-2012-3-20.

Imagery from 2015 enabled to carry out the widest list of experiments—using the simulated P
picture, as well as RGB and CIR images. Definitely the highest accuracy was obtained on the basis
of CIR image analysis (Table 4, Figure 4). The highest values of individual accuracy indicators were
characterized by the following variants: cir-2015-glcm-15, cir-2015-3-10, cir-2015-3-15, and c-2015-3-20.

Comparing the results obtained on the basis of RGB images and of the P images simulated on
their basis (Figure 4) in most cases, higher accuracy was obtained for RGB images.

6. Discussion

The tested variants differed in many features: Type of spectral data (P, RGB, CIR), type of textural
data (method and selected processing parameters), but also in the quality of the source spectral
data related to the type of images (analog, digital), original image scale, original spatial resolution,
and general radiometric quality of photos. However, the analysis of the results allows one to see
some patterns.

Firstly, the comparison between variants differing only with the type of spectral data used in
the classification (P/RGB/CIR; images from 1996, 2009, 2012, 2015) unambiguously indicate a strong
relationship between spectral resolution or the type of spectral bands used, and the accuracy of
classification, also using textural analysis. Variants using RGB images were more accurate compared
to P in almost all cases (Table 4, Figure 4). The only case in which this relationship is not completely
unambiguous is the classification of the photo from 2012; however, this is an early spring photo, and at
the time of exposure, the deciduous plants were free of (visible) leaves (see Figure 3), which caused the
spectral differences between them and the other classes of land cover to be much smaller than in the
case of photos from other periods (with visible leaves). This affected both the texture of wooded and
bushy areas, as well as the areas of meadows that dominate in this area.

In addition, the case of the imagery from 2015 confirmed the thesis about the importance of the
near-infrared range (Figure 5, Figure 6). The accuracy of classification of selected variants of this
imagery was generally low (measured by the Cohen’s kappa coefficient, the F1-score achieves quite
high values); however, variants using CIR images were significantly better than the other variants:
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The kappa coefficient values were at 0.1–0.2 higher than for RGB variants and 0.2–0.3 higher than for
P variants (Table 4). Also, PA and UA are the highest in the case of CIR image analysis (Figure 5).
The difference in accuracy (measured by the Cohen’s kappa coefficient and the F1-score) between the P
and RGB variants is lower than between RGB and CIR, and this is the case for each analyzed variant
of textual analysis (Figure 5). It shows the important role of near-infrared range in the analysis of
vegetation. This spectral band, as more sensitive to the diversity of plant cover, allows better detection
of trees and shrubs. In the case of P and RGB photographs, there is an overestimation of the ranges of
trees and shrubs for herbaceous vegetation (Figure 6), with the largest overestimation for the P imagery.
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The above conclusions correspond with the results obtained in previous studies, showing the
importance of appropriate spectral resolution in the classification using both spectral data and texture
analysis results [68,69], and the importance of image quality for the results of texture analysis itself [70].

Another basically unambiguous conclusion is the usefulness of the proposed additional processing
that is closing by reconstruction, applied to individual masks of wooded areas obtained as a result
of classification. Closing is an extensive operation, which means that in its result, the mask can only
increase (or remain unchanged). At the same time, the use of the operation by reconstruction does
not lead to a change in the shape of the original mask, but only to filling of relatively small holes.
According to a detailed accuracy analysis, the use of the closing by reconstruction operation led to
a decrease in UA, but at the same time, to a more significant increase in PA and, as a result, to an
increase in the overall accuracy of classification. This is presented in Figure 7. Unfortunately, in the
case of small trees and shrubs growing in a large dispersion, this may lead to overestimation of the
area occupied by them, which is also seen in the analysis of texture for 2012 presented for two variants
(granulometry and GLCM) in Figure 8.
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The comparison of the effectiveness of two methods: GLCM and granulometric analysis do not
give a clear indication of the better one. In two cases (1971 and 2009), better results were obtained by
using the GLCM method, although the differences between the two methods were relatively small
(the difference between kappa values between the best variants was around 0.05 for 1971 and 0.01
for 2009, in favor of GLCM). In one case (2015), the accuracy obtained for the best variants measured
by the kappa coefficient and other general indicators were basically identical; the difference in favor
of one of the GLCM variants was 0.005, which can be considered as negligible. In the remaining
three cases, greater accuracy was observed for variants based on granulometric analysis. In two
cases (2003 and 2012), the differences in accuracy were very small (differences between the kappa
coefficient values for the best variants amounted to approximately 0.01, in favor of granulometric
analysis). However, in the case of 1996, these were very large differences (between 0.2 and 0.5) in favor
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of granulometric analysis, which is mainly due to the very low accuracy of GLCM based variants.
This is a case worth a separate commentary.
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Analyzing Figure 4 in the context of the dates of imagery acquisition, it can be seen that the best
results for photos from the period of dense foliage (May–September, with the exception of data from
1971 with lower radiometric quality) gave the use of granulometric analysis using six granulometric
maps and a radius of 10–15 pixels (variants marked as x-xxxx-3-10 and x-xxxx-3-15). However, in the
case of photos from the spring period (March–April), with a less dense foliage, the highest accuracy
was obtained by using the GLCM method with a radius of 10–15 pixels.

The masks obtained on the basis of the GLCM analysis or granulometric analysis are presented
in Figure 9. The low accuracy of variants based on the GLCM analysis results mainly from very
low user accuracy. This is due to the high texture of agricultural areas (resulting from agrotechnical
activities, including mowing meadows) and the areas on which the trees were cleared. At the same time,
granulometric analysis results in a much smaller error of commission (Figure 9, Table 4). Probably, this
is due to its multi-scale: Areas characterized by high but different textures are marked differently
on different granulometric maps. This increases the mutual distinction of these areas. In addition,
the accuracy of the GLCM-based variants for 1996 clearly decreases as the area of the local texture
analysis increases. For an area with a radius of 10 pixels, the kappa value is 0.597, for a radius of 15
pixels is 0.572, while for an area with a radius of 20 pixels is only 0.305. As can be seen in Table 4,
the decrease in the overall accuracy is mainly caused by a decrease in PA, and thus an increase in
the error of omission. Analysis of the images of individual GLCM indices shows that part of the
tree-covered areas obtains identical values as unripen areas. The area of these types of surfaces
increases with the radius of the analysis area. This can be seen in Figure 9: The boundary of the wooded
area detected on the basis of the selected GLCM indices “moves back” inside the area, along with the
increase of the analysis area. In the case of granulometric analysis, this effect is not so pronounced,
although it also occurs. Here too, the importance of multiscale granulometric analysis can be seen.
Different values in selected granulometric maps indicate the “activation” in response to a texture with
grains of different sizes. In GLCM indicator images, areas with a larger grain texture simply resemble
areas with no clear texture. Hence the observed decrease in accuracy for the classification based on the
GLCM analysis.

Interestingly, in the case of other images from different dates, this effect is not so important.
It seems that this can be explained by the relatively low (in some areas) clearness of the texture in the
1996 picture compared to, for example, the picture from 2009 (compare Figure 3), which in turn may
result from the small scale of the original image from 1996, 1:26 000.

Based on the above, it can be concluded that granulometric analysis is more stable and, in general,
slightly better as a texture descriptor for image classification. There is no extensive literature on
this subject, but existing publications also show greater efficacy of granulometric analysis in this
area [36,71].

The analysis of the influence of the size of a texture analysis area on the accuracy of the classification
indicates a general (though not unequivocal) tendency for the classification quality to decrease along
with the increase of the size of the analysis environment (figures for all variants may be found in the
Supplementary Materials). In most cases, the worst results were obtained for the analysis performed
for a 20-pixel environment. The only exception is the classification of images from 2012; these, however,
differ significantly from the others when it comes to the image of wooded and bushy areas (early spring
photo and lack of leaves on deciduous trees and shrubs). However, when analyzing areas covered
with coniferous trees, a similar tendency can be noticed as described above—a decrease in accuracy
when the area of analysis increases. One can also observe a certain consistency in terms of individual
variants within one source image—the relationships between variants differing only in the size of area
of a texture analysis are similar for different texture analysis methods and for a different number of
granulometric maps used (in the case of the granulometric analysis).
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A comparison of the results of classification variants based on a granulometric analysis (differing in
the number of granulometric maps used) allows to draw unambiguous conclusions. For this type of
texture and with this pixel size (0.5 m), the use of granulometric maps based on a structuring element
with a radius of more than 3 pixels (a size of approximately 3.5 m) does not improve the classification
efficacy, and in most cases on the contrary: The use of granulometric maps showing the presence of
textures with larger grains (larger than 3.5 m) can lead to a decrease in efficacy. This is due to the fact
that this type of information is no longer related to the occurrence of wooded or shrubbed areas.

Analyzing the course of the border of wooded and bushy areas for particular dates and variants
of texture analysis, the impact of the date of image acquisition is clearly visible. The problem is the
shadow, which in the pictures acquired in early spring (2012) is the longest and increased significantly
the detected surface of wooded areas (Figure 10). On the other hand, the shadow increases the texture
of the image of deciduous trees—leafless at this time of the year. Due to this effect, they were correctly
classified. In other dates, this effect is weaker—the borders were best reproduced in the photographs
from August (2015) and May (1996 and 2003), i.e., the period when the sun is highest above the horizon,
and the shadows are short.
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The analysis of the results also shows that regardless of the archival data and the texture analysis
method used, individual trees and shrubs are difficult to detect—only larger trees and shrubs are
possible to detect with these methods.

The importance of impact of the scale/GSD of aerial photographs on the effectiveness of determining
the range of trees and shrubs has not been observed. The most important were the impact of the time
period and radiometric quality of the source materials. Some of the errors in the case of photos from
1971, including film damage (scratches were seen in the images), resulted from the poor quality of
these sources.

Summing up, in general, the highest accuracy in determining the range of trees and shrubs for
photos recorded in the summer was obtained using granulometric analysis with six granulometric
maps and a analysis radius of 10–15 pixels. For photos from the spring period, the GLCM method
gave better results, also with a 10–15 pixel radius of analysis.

When assessing the tested methods from the point of view of their possible application, it should
be noted that they are easy to implement and automate the classification process (also in open-source
software). Importantly, compared to the dense image matching (DIM) technique (one of the most
effective methods of analyzing aerial photographs in the context of research), they enable the
determination of the range of trees and shrubs based on images obtained during the period when the
trees and shrubs are not fully covered by leafs (early spring). DIM, although a method characterized
by high accuracy in determining object boundaries and the ability to analyze in three dimensions,
does not allow the determination of the range of trees and shrubs in the leafless period [20]. During this
time, it is only possible to analyze the range of coniferous trees and shrubs, which may be of interest,
e.g., in the context of conducting research on the impact of climate change on the range of occurrence
of individual species of trees and shrubs [72].

7. Conclusions

The aim of the research was to assess the applicability of texture analysis for the analysis of
the dynamics of succession of trees and shrubs. The research was carried out using aerial imagery
(characterized by various technical parameters) acquired in six different years (1971, 1996, 2003, 2009,
2012, and 2015) in various phenological periods.

A total number of 330 classification variants, which differ in source data (date of image, spectral
resolution) and texture data (method and parameters of texture analysis) were tested. The analysis of
the obtained results showed great effectiveness in determining the wooded and shrubbed areas using
texture analysis.

In the majority of cases tested, the results obtained indicate a similar efficacy of both methods of
texture analysis (in the analyzed range), except for one case (1996), in which the efficacy of granulometric
analysis was significantly better than the efficacy of GLCM analysis, due to the high texture in areas
of arable land and meadows and to the relatively small scale of the photos. The advantage of the
granulometric analysis resulted mainly from multi-scality, thanks to which the wooded/shrubbed areas
were distinguished better from agricultural areas with a relatively high texture. Therefore, it appears
from all the analyzed examples that granulometric analysis is much more stable in terms of the analyzed
application. This confirms the results of previous studies which compared, among others, these two
above-mentioned methods [36,71].

The accuracy of determining the wooded and shrubbed areas is also influenced by the date of
image acquisition—in the case of early spring images, the observed long shadows, typical for this
period, caused a significant extension of the area of tree/shrub masks. However, the role of the shadows
was also positive, because thanks to them, the texture of the areas with deciduous trees, which were
leafless at this time of year, was strengthened. It is therefore possible to designate tree and shrubbed
areas based on images from leafless periods using texture analysis, which is much more difficult when
using dense image matching methods [20].
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In addition, in summer time, wooded and shrubbed areas may be overestimated due to the
presence of herbaceous plants, which can also be characterized by high textures.

The operation of closing by reconstruction proved to be an effective method of filling gaps in
wooded areas. However, in the case of large scattering of trees and shrubs, it leads to overestimation of
the range of such areas. Therefore, it is necessary to consider the legitimacy of its use in areas where
the succession of trees and shrubs can be thus characterized.

Summing up the conducted analyses, it can be concluded that texture analysis is an effective
method for determining the range of wooded and shrubbed areas, in particular those with considerable
density of trees and shrubs. The granulometric analysis showed generally greater suitability for this
purpose than GLCM. In the case of detection of individual trees and shrubs, the effectiveness of such
analyses is smaller—large trees and shrubs are generally correctly detected, while small-sized objects
are not. This means that these methods can be an effective tool for monitoring only the later stages of
succession of trees and shrubs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/8/10/450/s1:
Figure S1: Comparison of tree and shrub masks for 1971 obtained using P image, granulometric analysis
variants, with a reference mask imposed; Figure S2: Comparison of tree and shrub masks for 1996 obtained using
P image, granulometric analysis variants, with a reference mask imposed; Figure S3: Comparison of tree and
shrub masks for 1996 obtained using RGB image, granulometric analysis variants, with a reference mask imposed;
Figure S4: Comparison of tree and shrub masks for 2003 obtained using P image, granulometric analysis variants,
with a reference mask imposed; Figure S5: Comparison of tree and shrub masks for 2009 obtained using P image,
granulometric analysis variants, with a reference mask imposed; Figure S6: Comparison of tree and shrub masks
for 2009 obtained using RGB image, granulometric analysis variants, with a reference mask imposed; Figure S7:
Comparison of tree and shrub masks for 2012 obtained using P image, granulometric analysis variants, with a
reference mask imposed; Figure S8: Comparison of tree and shrub masks for 2012 obtained using RGB image,
granulometric analysis variants, with a reference mask imposed; Figure S9: Comparison of tree and shrub masks
for 2015 obtained using P image, granulometric analysis variants, with a reference mask imposed; Figure S10:
Comparison of tree and shrub masks for 2015 obtained using RGB image, granulometric analysis variants, with a
reference mask imposed; Figure S11: Comparison of tree and shrub masks for 2015 obtained using CIR image,
granulometric analysis variants, with a reference mask imposed; Figure S12: Comparison of tree and shrub masks
for 1971, 1996, and 2003, GLCM variants, with a reference mask imposed; Figure S13: Comparison of tree and
shrub masks for 2009 and 2012, GLCM variants, with a reference mask imposed; Figure S14: Comparison of tree
and shrub masks for 2015, GLCM variants, with a reference mask imposed.

Author Contributions: The aim of the study and the methodology of research: P.K. and K.O.-S.; texture analysis
and classification: P.K. and K.L.; reference data preparation: A.P. and K.O.-S.; accuracy assessment: K.O.-S.; results
analysis, preparation of tables and charts, synthesis of the study data: K.O.-S. and P.K.; writing—original draft
preparation: P.K. and K.O.-S.; writing—review and editing: K.O.-S. and P.K.; visualization preparation: K.O.-S.;
WP5 leading and supervision: K.O.-S.

Funding: This study was co-financed by the Polish National Centre for Research and Development (NCBiR), project
No. DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000
habitats, using remote sensing methods (HabitARS). The Consortium Leader is MGGP Aero. The project partners
include: University of Lodz, University of Warsaw, Warsaw University of Life Sciences, Institute of Technology
and Life Sciences, University of Silesia in Katowice, and Warsaw University of Technology. An article processing
charge was financed from the statutory subsidy of the Faculty of Geodesy and Cartography, Warsaw University
of Technology.

Acknowledgments: We would like to express our sincere gratitude to Bożena Michna and Agnieszka Jakubowska
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