A Multilevel Mapping Strategy to Calculate the Information Content of Remotely Sensed Imagery
Abstract
:1. Introduction
2. Related Basic Theory
2.1. Spatial Dependence of Images
2.2. Spatial Structural Characteristics of Images
2.3. Image Entropy
3. A Multilevel Mapping Strategy-Based Information Measurement Scheme
3.1. Multilevel Pixel Neighborhood Model
3.2. A Multilevel Geometrical Mapping Entropy (MGME) Model
3.2.1. A Multilevel-Mapping-Strategy-Based Measurement Scheme
3.2.2. Description of the MGME Model
4. Experiments and Analysis
- A 0.5 m resolution image of a reservoir area located in the Zhengzhou region, obtained from the DigitalGlobe platform in 2018;
- An image of farmland obtained from the UC Merced Land Use Dataset with USGS National Map Urban Area Imagery in 2010 with 0.3 m resolution [60];
- A UAV image of a local area in the district of the lower and middle reaches of the Yellow River in 2015;
- Landsat TM image of a mountainous region provided by NASA.
4.1. Experiment 1
4.2. Experiment 2
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alonso, K.; Datcu, M. Accelerated probabilistic learning concept for mining heterogeneous earth observation images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3356–3371. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote sensing big data computing: Challenges and opportunities. Future Generati. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef]
- Chen, J.; Dowman, I.; Li, S.; Li, Z.; Madden, M.; Mills, J.; Paparoditis, N.; Rottensteiner, F.; Sester, M.; Toth, C. Information from imagery: ISPRS scientific vision and research agenda. ISPRS J. Photogr. Remote Sens. 2016, 115, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very high-resolution remote sensing: Challenges and opportunities [point of view]. Proc. IEEE 2012, 100, 1907–1910. [Google Scholar] [CrossRef]
- Kitchin, R. Big data and human geography: Opportunities, challenges and risks. Dialog. Hum. Geogr. 2013, 3, 262–267. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.; Xie, Z. Unsupervised image segmentation evaluation and refinement using a multiscale approach. ISPRS J. Photogr. Remote Sens. 2011, 66, 473–483. [Google Scholar] [CrossRef]
- Xie, L.; Li, G.; Xiao, M.; Peng, L. Novel classification method for remote sensing images based on information entropy discretization algorithm and vector space model. Comput. Geosci. 2016, 89, 252–259. [Google Scholar] [CrossRef]
- Ma, C.; Wei, X.; Fu, C.; Liu, J.; Wei, L. A Content-Based Remote Sensing Image Change Information Retrieval Model. ISPRS Int. J. Geo-Inform. 2017, 6, 310. [Google Scholar] [CrossRef]
- Erus, G.; Loménie, N. How to involve structural modeling for cartographic object recognition tasks in high-resolution satellite images? Pattern Recognit. Lett. 2010, 31, 1109–1119. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, L.; Li, P. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2007, 4, 260–264. [Google Scholar] [CrossRef]
- Qin, K.; Chen, Y.; Gan, S.; Feng, X.; Ren, W. Review on methods of spatial structural feature modeling of high resolution remote sensing images. J. Image Gr. 2013, 18, 1055–1064. [Google Scholar]
- Chen, Y.; Qin, K.; Gan, S.; Wu, T. Structural feature modeling of high-resolution remote sensing images using directional spatial correlation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1727–1731. [Google Scholar] [CrossRef]
- Quartulli, M.; Olaizola, I.G. A review of EO image information mining. ISPRS J. Photogr. Remote Sens. 2013, 75, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhang, X.; Liu, F.; Jiao, L. Unsupervised deep feature learning for remote sensing image retrieval. Remote Sens. 2018, 10, 1243. [Google Scholar] [CrossRef]
- Daschiel, H.; Datcu, M. Information mining in remote sensing image archives: System evaluation. IEEE Trans. Geosci. Remote Sens. 2005, 43, 188–199. [Google Scholar] [CrossRef]
- Datcu, M.; Seidel, K.; D′Elia, S.; Marchetti, P. Knowledge-driven information mining in remote-sensing image archives. ESA Bull. 2002, 110, 26–33. [Google Scholar]
- Zhou, W.; Newsam, S.; Li, C.; Shao, Z. PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS J. Photogr. Remote Sens. 2018, 145, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Datcu, M.; Daschiel, H.; Pelizzari, A.; Quartulli, M.; Galoppo, A.; Colapicchioni, A.; Pastori, M.; Seidel, K.; Marchetti, P.G.; d′Elia, S. Information mining in remote sensing image archives: System concepts. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2923–2936. [Google Scholar] [CrossRef]
- Tsai, D.-Y.; Lee, Y.; Matsuyama, E. Information entropy measure for evaluation of image quality. J. Digit. Imaging 2008, 21, 338–347. [Google Scholar] [CrossRef]
- Hu, L.; He, Z.; Liu, J.; Zheng, C. Method for measuring the information content of terrain from digital elevation models. Entropy 2015, 17, 7021–7051. [Google Scholar] [CrossRef]
- Malila, W.A. Comparison of the information contents of Landsat TM and MSS data. Photogr. Eng. Remote Sens. 1985, 51, 1449–1457. [Google Scholar]
- Sun, J.; Zhang, X.; Cui, J.; Zhou, L. Image retrieval based on color distribution entropy. Pattern Recognit. Lett. 2006, 27, 1122–1126. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Gao, P. Entropy-based cartographic communication models: Evolution from special to general cartographic information theory. Acta. Geod. Cartogr. Sin. 2016, 45, 757–767. [Google Scholar]
- Chen, T.M.; Staelin, D.H.; Arps, R.B. Infornation content analysis of landsat image data for compression. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 499–501. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Y. Measurement of information and uncertainty of remote sensing and GIS data. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 569–572. [Google Scholar]
- Zhang, Y.; Zhang, J. Measure of information content of remotely sensed images accounting for spatial correlation. Acta Geod. Cartogr. Sin. 2015, 44, 1117–1124. [Google Scholar]
- Blacknell, D.; Oliver, C. Information content of coherent images. J. Phys. D Appl. Phys. 1993, 26, 1364. [Google Scholar] [CrossRef]
- Moore, R.K. Tradeoff between picture element dimensions and noncoherent averaging in side-looking airborne radar. IEEE Trans. Aerosp. Electron. Syst. 1979, AES-15, 697–708. [Google Scholar] [CrossRef]
- Narayanan, R.M.; Desetty, M.; Reichenbach, S. Effect of spatial resolution on information content characterization in remote sensing imagery based on classification accuracy. Int. J. Remote Sens. 2002, 23, 537–553. [Google Scholar] [CrossRef]
- Román-Roldán, R.; Quesada-Molina, J.; Martínez-Aroza, J. Multiresolution-information analysis for images. Signal Process. 1991, 24, 77–91. [Google Scholar] [CrossRef]
- Price, J.C. Comparison of the information content of data from the landsat-4 thematic mapper and the multispectral scanner. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 272–281. [Google Scholar] [CrossRef]
- Verde, N.; Mallinis, G.; Tsakiri-Strati, M.; Georgiadis, C.; Patias, P. Assessment of radiometric resolution impact on remote sensing data classification accuracy. Remote Sens. 2018, 10, 1267. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, H.; Li, Z. A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landsc. Ecol. 2017, 32, 1133–1146. [Google Scholar] [CrossRef]
- Cushman, S.A. Calculating the configurational entropy of a landscape mosaic. Landsc. Ecol. 2016, 31, 481–489. [Google Scholar] [CrossRef]
- Cushman, S. Calculation of configurational entropy in complex landscapes. Entropy 2018, 20, 298. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, H.; Li, Z. An efficient analytical method for computing the Boltzmann entropy of a landscape gradient. Trans. GIS 2018, 22, 1046–1063. [Google Scholar] [CrossRef]
- Razlighi, Q.R.; Rahman, M.T.; Kehtarnavaz, N. Fast computation methods for estimation of image spatial entropy. J. Real-Time Image Process. 2011, 6, 137–142. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogr. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Henebry, G.M. Detecting change in grasslands using measures of spatial dependence with Landsat TM data. Remote Sens. Environ. 1993, 46, 223–234. [Google Scholar] [CrossRef]
- Wulder, M.; Boots, B. Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. Int. J. Remote Sens. 1998, 19, 2223–2231. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194. [Google Scholar] [CrossRef] [PubMed]
- Pelizzari, A.; Descargues, V.; Datcu, M.P. Visual information mining in remote sensing image archives. In Image and Signal Processing for Remote Sensing VII; International Society for Optics and Photonics; SPIE: Philadelphia, PA, USA, 2002; pp. 241–251. [Google Scholar]
- Cheng, H.D.; Sun, Y. A hierarchical approach to color image segmentation using homogeneity. IEEE Trans. Image Process. 2000, 9, 2071–2082. [Google Scholar] [PubMed]
- Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per—pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 733–745. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Li, Z.; Huang, P. Quantitative measures for spatial information of maps. Int. J. Geogr. Inf. Sci. 2002, 16, 699–709. [Google Scholar] [CrossRef]
- Chen, P.; Shi, W. Measuring the spatial relationship information of multi-layered vector data. ISPRS Int. J. Geo-Inf. 2018, 7, 88. [Google Scholar] [CrossRef]
- Uchida, S.; Tsai, D.Y. Evaluation of radiographic images by entropy: Application to development process. Jpn. J. Appl. Phys. 1978, 17, 2029. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P.; Xiao, Y. A Modeling and measurement approach for the uncertainty of features extracted from remote sensing images. Remote Sens. 2019, 11, 1841. [Google Scholar] [CrossRef]
- Datcu, M.; Seidel, K.; Walessa, M. Spatial information retrieval from remote-sensing images. I. Information theoretical perspective. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1431–1445. [Google Scholar] [CrossRef]
- Quweider, M. Spatial entropy-based cost function for gray and color Image segmentation with dynamic optimal partitioning. Int. J Comput. Sci. Netw. Secur. 2012, 12, 64. [Google Scholar]
- Akçay, H.G.; Aksoy, S. Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2097–2111. [Google Scholar] [CrossRef]
- Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef]
- Elmqvist, N.; Dragicevic, P.; Fekete, J.D. Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Comput. Gr. 2008, 14, 1539–1148. [Google Scholar] [CrossRef]
- Sedlmair, M.; Munzner, T.; Tory, M. Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. V. Comput. Gr. 2013, 19, 2634–2643. [Google Scholar] [CrossRef]
- Touchette, P.E.; MacDonald, R.F.; Langer, S.N. A scatter plot for identifying stimulus control of problem behavior. J. Appl. Behave. Anal. 1985, 18, 343–351. [Google Scholar] [CrossRef]
- Bovolo, F. A multilevel parcel-based approach to change detection in very high resolution multitemporal images. IEEE Geosci. Remote Sens. Lett. 2008, 6, 33–37. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Geographic image retrieval using local invariant features. IEEE Trans. Geosci. Remote Sens. 2013, 51, 818–832. [Google Scholar] [CrossRef]
- Franklin, S.; Wulder, M.; Lavigne, M. Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis. Comput. Geosci. 1996, 22, 665–673. [Google Scholar] [CrossRef]
- Li, D.; Wang, S.; Li, D. Spatial Data Mining Theories and Application; Springer: Beijing, China, 2015. [Google Scholar]
Experimental Images | Traditional Method | Multilevel Geometrical Mapping Entropy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r = 1 | r = 2 | r = 3 | r = 4 | r = 5 | r = 6 | ||||||
(a) Reservoir Area | 7.193 | 0.514 | 0.626 | 0.681 | 0.713 | 0.732 | 0.745 | 0.669 | 0.678 | 4.011 | 0.079 |
(b) Farmland | 6.432 | 0.436 | 0.450 | 0.456 | 0.450 | 0.445 | 0.440 | 0.446 | 0.460 | 2.667 | 0.007 |
(c) Water Area | 4.425 | 0.195 | 0.218 | 0.231 | 0.239 | 0.245 | 0.253 | 0.230 | 0.232 | 1.381 | 0.019 |
(d) Mountain Area | 7.827 | 0.832 | 0.882 | 0.899 | 0.911 | 0.915 | 0.917 | 0.893 | 0.894 | 5.356 | 0.030 |
Experimental Images | Traditional Method | Multilevel Geometrical Mapping Entropy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r = 1 | r = 2 | r = 3 | r = 4 | r = 5 | r = 6 | ||||||
(a) Local Area 1 | 3.097 | 0.030 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.032 | 0.190 | 0.001 |
(b) Local Area 2 | 4.425 | 0.195 | 0.218 | 0.231 | 0.239 | 0.245 | 0.253 | 0.230 | 0.232 | 1.381 | 0.019 |
(c) Local Area 3 | 5.595 | 0.354 | 0.403 | 0.421 | 0.427 | 0.430 | 0.429 | 0.411 | 0.412 | 2.464 | 0.027 |
(a) Local Area 1 | 5.550 | 0.342 | 0.442 | 0.458 | 0.480 | 0.490 | 0.496 | 0.448 | 0.454 | 2.688 | 0.053 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Zhou, X.; Zhang, J. A Multilevel Mapping Strategy to Calculate the Information Content of Remotely Sensed Imagery. ISPRS Int. J. Geo-Inf. 2019, 8, 464. https://doi.org/10.3390/ijgi8100464
Fang S, Zhou X, Zhang J. A Multilevel Mapping Strategy to Calculate the Information Content of Remotely Sensed Imagery. ISPRS International Journal of Geo-Information. 2019; 8(10):464. https://doi.org/10.3390/ijgi8100464
Chicago/Turabian StyleFang, Shimin, Xiaoguang Zhou, and Jing Zhang. 2019. "A Multilevel Mapping Strategy to Calculate the Information Content of Remotely Sensed Imagery" ISPRS International Journal of Geo-Information 8, no. 10: 464. https://doi.org/10.3390/ijgi8100464
APA StyleFang, S., Zhou, X., & Zhang, J. (2019). A Multilevel Mapping Strategy to Calculate the Information Content of Remotely Sensed Imagery. ISPRS International Journal of Geo-Information, 8(10), 464. https://doi.org/10.3390/ijgi8100464