Impact of a Vicinity of Airport on the Prices of Single-Family Houses with the Use of Geospatial Analysis
Abstract
:1. Introduction
2. Theoretical Basic of Conducted Research
- y—is a response variable,
- β—is a vector of coefficients (model parameters),
- X—is a matrix of explanatory variables,
- ε—is a vector of random components of the model.
- X—is a matrix of explanatory variables,
- β—is a vector of coefficients (model parameters),
- ε ~ ~N(0,σ2I) is a vector of model errors,
- Wy—is defined as a spatially lagged response variable and
- ρ—is a spatial autocorrelation coefficient.
3. Data Description
- -
- Prohibition to design the areas in the spatial development plans for the development of single and multi-family houses (Z1), residential and commercial buildings (Z1), buildings for short or long-term stays of children and young people (Z1, Z2), hospitals and social welfare homes (Z1, Z2);
- -
- Prohibition to changes to the function of existing ones—prohibition to changes to the function of existing ones: residential buildings (Z1), buildings for short or long-term stays of children and young people (Z1, Z2), hospitals and social welfare homes (Z1, Z2);
- -
- An obligation to apply anti-noise protection in newly designed and existing residential buildings (in the entire LUA area);
- -
- The necessity to endure noise exceeding acceptable standards (in the whole LUA area).
4. Results and Discussion
- -
- A multiple regression model;
- -
- A spatial autoregressive model (SAR);
- -
- A geographically weighted regression model (GWR).
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LUA | Limited use area |
LUA_OUT | Limited use area (outside) |
GWR | Geographically weighted regression |
SAR | Spatial autoregressive model |
References
- Cooper, R. Airports and economic development: An overview. Transp. Res. Rec. 1990, 125–133. [Google Scholar]
- Green, R.K. Airports and economic development. Real Estate Econ. 2007, 35, 91–112. [Google Scholar] [CrossRef]
- Button, K.; Doh, S.; Yuan, J. The role of small airports in economic development. J. Airpt. Manag. 2010, 4, 125–136. [Google Scholar]
- Warffemius, P.; Van der Hoorn, T.; Klaassen, H. The importance of agglomeration effects for distribution centres around Amsterdam Airport Schiphol. J. Airpt. Manag. 2010, 4, 265–279. [Google Scholar]
- Costa, V.; Almeida, C. Low-Cost Carriers Local Economy and Tourism Development at Four Portuguese Airports. A Model of Cost–Benefit Analysis. J. Spat. Organ. Dyn. 2015, 3, 245–261. [Google Scholar]
- Trojanek, R.; Tanaś, J.; Raslanas, S.; Banaitis, A. The impact of aircraft noise on housing prices in Poznan. Sustainability 2017, 9, 2088. [Google Scholar] [CrossRef]
- Batóg, J.; Foryś, I.; Gaca, R.; Głuszak, M.; Konowalczuk, J. Investigating the Impact of Airport Noise and Land Use Restrictions on House Prices: Evidence from Selected Regional Airports in Poland. Sustainability 2019, 11, 412. [Google Scholar] [CrossRef]
- Sedoarisoa, N.; Desponds, D.; Dalmas, L.; Lavandier, C. Housing prices and the proximity of the Paris–Charles-de-Gaulle (CDG) airport. L’Espace Géograph. 2017, 46, 61–78. [Google Scholar] [CrossRef]
- Kaufman, H.F.; Espey, M.; Englin, J.E. No plane, big gain? airport noise and residential property values in the Reno-Sparks area. Choices 1998, 13. [Google Scholar] [CrossRef]
- Espey, M.; Lopez, H. The impact of airport noise and proximity on residential property values. Growth Chang. 2000, 31, 408–419. [Google Scholar] [CrossRef]
- Mark, J.; Goldberg, M.A. Multiple regression analysis and mass assessment: A review of the issues. Apprais. J. 1998, 56, 89. [Google Scholar]
- Bowen, W.M.; Mikelbank, B.A.; Prestegaard, D.M. Theoretical and empirical considerations regarding space in hedonic housing price model applications. Growth Chang. 2001, 32, 466–490. [Google Scholar] [CrossRef]
- Bourassa, S.C.; Cantoni, E.; Hoesli, M. Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods. J. Real Estate Res. 2010, 32, 139–160. [Google Scholar]
- LeSage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Anselin, L. Spatial Dependence and Spatial Structural Instability in Applied Regression Analysis. J. Reg. Sci. 2006, 30, 185–207. [Google Scholar] [CrossRef]
- Longford, N. Random Coefficient Models; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Andersson, H.; Jonsson, L.; Ögren, M. Property prices and exposure to multiple noise sources: Hedonic Regression with road and railway noise. Environ. Resour. Econ. 2010, 45, 73–89. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Conway, D.; Li, Q.C.; Wolch, J.; Kahle, C.; Jerrett, M. A Spatial Autocorrelation Approach for Examining the Effects of Urban Greenspace on Residential Property Values. J. Real Estate Fin. Econ. 2010, 41, 150–169. [Google Scholar] [CrossRef]
- Arbia, G. Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence; Springer: Berlin, Germany, 2006. [Google Scholar]
- Besner, C. A spatial autoregressive specification with a comparable sales weighting scheme. J. Real Estate Res. 2002, 24, 193–211. [Google Scholar]
- Charlton, M.; Fotheringam, S. Geographically Weighted Regression; White Paper; National University of Ireland Maynooth: Maynooth, Ireland, 2009. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Manganelli, B.; Pontrandolfi, P.; Azzato, A.; Murgante, B. Using geographically weighted regression for housing market segmentation. Int. J. Bus Intell. Data Min. 2014, 9, 161–177. [Google Scholar] [CrossRef]
- Yang, S.; Hu, S.; Li, W.; Zhang, C.; Torres, J.A. Spatiotemporal Effects of Main Impact Factors on Residential Land Price in Major Cities of China. Sustainability 2017, 9, 2050. [Google Scholar] [CrossRef]
- Lu, B.; Charlton, M.; Fotheringhama, A.S. Geographically weighted regression using a non-Euclidean distance metric with a study on London house price data. Proc. Environ. Sci. 2011, 7, 92–97. [Google Scholar] [CrossRef]
- Wu, H.; Jiao, H.; Yu, Y.; Li, Z.; Peng, Z.; Liu, L.; Zeng, Z. Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data. Sustainability 2018, 10, 1676. [Google Scholar] [CrossRef]
- Dziauddin, M.F.; Powe, N.; Alvanides, S. Estimating the Effects of Light Rail Transit (LRT) System on Residential Property Values Using Geographically Weighted Regression (GWR). Appl. Spat. Anal. Policy 2015, 8, 1–25. [Google Scholar] [CrossRef]
- Wu, B.; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices. Int. J. Geogr. Inf. Sci. 2014, 28, 1186–1204. [Google Scholar] [CrossRef]
- McCord, M.; Davis, P.T.; Haran, M.; McGreal, S.; McIlhatton, D. Spatial variation as a determinant of house price: Incorporating a geographically weighted regression approach within the Belfast housing market. J. Financ. Manag. Prop. Constr. 2012, 17, 49–72. [Google Scholar] [CrossRef]
- Cellmer, R.; Bełej, M.; Źrobek, S.; Kovač, M.Š. Urban land value maps–a methodological approach. Geod. Vestn. 2014, 58, 535–551. [Google Scholar] [CrossRef]
Statistics | LUA (PLN/m2) | LUA_OUT (PLN/m2) |
---|---|---|
Average | 4356.95 | 6438.54 |
Median | 3917.19 | 5340.91 |
Standard deviation | 1820.18 | 3589.27 |
Number of observations | 78 | 210 |
Min | 1704.55 | 1923.08 |
Max | 9717.95 | 19107.39 |
25% quantile | 3000 | 3611.11 |
75% quantile | 5225.53 | 8252.43 |
Symbol | Description |
---|---|
Ln_Price | logarithm of unit housing price in PLN/m2. |
STU | the state of repair and functional condition of a single-family house: to be demolished −1, (minus) intermediate −2, intermediate −3, (plus) intermediate −4, favourable −5. |
SZ | the state of development: poor −1, average −2, favourable −3. |
DB | additional buildings: none −1, present −2. |
OT | surroundings: deteriorated −1, average −2, favourable −3. |
LUA | Warsaw Chopin Airport’s LUA: location outside the LUA −0, location within the LUA −1. |
OP | distance from the airstrip, in metres |
FZ | building type: rowhouse −1, semi-detached house, end-of-terrace house −2, detached building −3. |
PD | plot area; quantitative continuous cadastral area. |
PU | floor space of a single-family house: quantitative continuous area calculated as the product of the gross covered area and the number of storeys but with account taken of the irregularity of solids. |
LS | location quality; 4 − grade assessment. |
Variable | Estimate | Standard Error | t value | Pr(>|t|) | |
---|---|---|---|---|---|
(Intercept) | 9.1741 | 0.1729 | 53.061 | < 2 × 10−16 | *** |
SZ | −0.2114 | 0.0493 | 4.290 | 2.12 × 10−5 | *** |
DB | −0.2079 | 0.0511 | −4.067 | 6.18 × 10−5 | *** |
FZ | −0.1324 | 0.0496 | −2.671 | 0.00801 | * |
PU | −0.0013 | 0.0004 | −3.481 | 0.00058 | *** |
PD | 0.0004 | 0.0001 | 2.911 | 0.00389 | ** |
OP | −0.0513 | 0.0101 | −5.083 | 6.79 × 10−7 | *** |
LUA | −0.3727 | 0.0617 | −6.042 | 4.82 × 10−9 | *** |
Variable | Estimate | Standard Error | t value | Pr(>|t|) | |
---|---|---|---|---|---|
(Intercept) | 0.2874 | 0.1686 | 1.7045 | 0.0882 | . |
STU | 0.0281 | 0.0343 | 0.8207 | 0.4118 | |
SZ | 0.1534 | 0.0443 | 3.4621 | 0.0005 | *** |
DB | −0.1352 | 0.0390 | −3.4646 | 0.0005 | *** |
FZ | −0.0746 | 0.0375 | −1.9879 | 0.0468 | * |
PU | −0.0016 | 2.92 × 10−4 | −5.3932 | 6.92 × 10−8 | *** |
PD | 3.00 × 10−4 | 9.43 × 10−5 | 3.1777 | 0.0015 | ** |
LUA | −0.1529 | 0.0469 | −3.2610 | 0.0011 | ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cellmer, R.; Bełej, M.; Konowalczuk, J. Impact of a Vicinity of Airport on the Prices of Single-Family Houses with the Use of Geospatial Analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 471. https://doi.org/10.3390/ijgi8110471
Cellmer R, Bełej M, Konowalczuk J. Impact of a Vicinity of Airport on the Prices of Single-Family Houses with the Use of Geospatial Analysis. ISPRS International Journal of Geo-Information. 2019; 8(11):471. https://doi.org/10.3390/ijgi8110471
Chicago/Turabian StyleCellmer, Radosław, Mirosław Bełej, and Jan Konowalczuk. 2019. "Impact of a Vicinity of Airport on the Prices of Single-Family Houses with the Use of Geospatial Analysis" ISPRS International Journal of Geo-Information 8, no. 11: 471. https://doi.org/10.3390/ijgi8110471
APA StyleCellmer, R., Bełej, M., & Konowalczuk, J. (2019). Impact of a Vicinity of Airport on the Prices of Single-Family Houses with the Use of Geospatial Analysis. ISPRS International Journal of Geo-Information, 8(11), 471. https://doi.org/10.3390/ijgi8110471