A Multilevel Eigenvector Spatial Filtering Model of House Prices: A Case Study of House Sales in Fairfax County, Virginia
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Data and Variables
3.2. Model Specifications
4. Results
4.1. Regression Results
4.2. A House Price Prediction Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Basu, S.; Thibodeau, T.G. Analysis of spatial autocorrelation in house prices. J. Real Estate Financ. Econ. 1998, 17, 61–85. [Google Scholar] [CrossRef]
- Cohen, J.P.; Coughlin, C.C. Spatial hedonic models of airport noise, proximity, and housing prices. J. Reg. Sci. 2008, 48, 859–878. [Google Scholar] [CrossRef]
- Pace, R.K.; Barry, R.; Clapp, J.M.; Rodriquez, M. Spatiotemporal autoregressive models of neighborhood effects. J. Real Estate Financ. Econ. 1998, 17, 15–33. [Google Scholar] [CrossRef]
- Bitter, C.; Mulligan, G.F.; Dall’erba, S. Incorporating spatial variation in housing attribute prices: A comparison of geographically weighted regression and the spatial expansion method. J. Geogr. Syst. 2007, 9, 7–27. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Chica-Olmo, J. Prediction of house location price by a multivariate spatial method: Cokriging. J. Real Estate Res. 2007, 29, 91–114. [Google Scholar]
- Dubin, R.A. Spatial autocorrelation and neighborhood quality. Reg. Sci. Urban Econ. 1992, 22, 433–452. [Google Scholar] [CrossRef]
- Gámez Matínez, M.; Montero Lorenzo, J.M.; García Rubio, N. Kriging methodology for regional economic analysis: Estimating the housing price in Albacete. Int. Adv. Econ. Res. 2000, 6, 438–451. [Google Scholar] [CrossRef]
- Djurdjevic, D.; Eugster, C.; Haase, R. Estimation of hedonic models using a multilevel approach: An application for the Swiss rental market. Swiss J. Econ. Stat. 2008, 144, 679–701. [Google Scholar] [CrossRef]
- Chasco, C.; Le Gallo, J. Hierarchy and spatial autocorrelation effects in hedonic models. Econ.Bull. 2012, 32, 1474–1480. [Google Scholar]
- Orford, S. Modelling spatial structures in local house market dynamics: A multilevel perspective. Urban Stud. 2000, 37, 1643–1671. [Google Scholar] [CrossRef]
- Chaix, B.; Merlo, J.; Chauvin, P. Comparison of a spatial approach with the multilevel approach for investigating place effects on health: The example of healthcare utilisation in France. J. Epidemiol. Community Health 2005, 59, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Can, A. Specification and estimation of hedonic house price models. Reg. Sci. Urban Econ. 1992, 22, 453–474. [Google Scholar] [CrossRef]
- Laurice, J.; Bhattacharya, R. Prediction performance of a hedonic pricing model for house. Apprais. J. 2005, 73, 198. [Google Scholar]
- Limsombunchai, V. House Price Prediction: Hedonic Price Model vs. Artificial Neural Network. In Proceedings of the New Zealand Agricultural and Resource Economics Society Conference, Blenheim, New Zealand, 25–26 June 2004; pp. 25–26. [Google Scholar]
- Liu, X. Spatial and temporal dependence in house price prediction. J. Real Estate Financ. Econ. 2013, 47, 341–369. [Google Scholar] [CrossRef]
- Leishman, C.; Costello, G.; Rowley, S.; Watkins, C. The predictive performance of multilevel models of house sub-markets: A comparative analysis. Urban Stud. 2013, 50, 1201–1220. [Google Scholar] [CrossRef]
- Bourassa, S.C.; Hoesli, M.; Peng, V.C. Do house submarkets really matter? J. House Econ. 2003, 12, 12–28. [Google Scholar] [CrossRef]
- Goodman, A.C.; Thibodeau, T.G. House market segmentation and hedonic prediction accuracy. J. House Econ. 2003, 12, 181–201. [Google Scholar] [CrossRef]
- Park, Y.M.; Kim, Y. A spatially filtered multilevel model to account for spatial dependency: Application to self-rated health status in South Korea. Int. J. Health Geogr. 2014, 13, 6. [Google Scholar] [CrossRef]
- Reichert, A.K. The impact of interest rates, income, and employment upon regional housing prices. J. Real Estate Financ. Econ. 1990, 3, 373–391. [Google Scholar] [CrossRef]
- Kajuth, F.; Schmidt, T. Seasonality in House Prices, Series 1: Economic Studies, Discussion Paper; Deutsche Bundesbank: Frankfurt, Germany, 2011. [Google Scholar]
- Ngai, L.R.; Tenreyro, S. Hot and cold seasons in the house market. Am. Econ. Rev. 2014, 104, 3991–4026. [Google Scholar] [CrossRef]
- Kuo, C.L. Serial correlation and seasonality in the real estate market. J. Real Estate Financ. Econ. 1996, 12, 139–162. [Google Scholar] [CrossRef]
- Beltratti, A.; Morana, C. International house prices and macroeconomic fluctuations. J. Bank. Financ. 2010, 34, 533–545. [Google Scholar] [CrossRef]
- Nneji, O.; Brooks, C.; Ward, C.W. House price dynamics and their reaction to macroeconomic changes. Econ. Model. 2013, 32, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Goodman, A.C. A comparison of block group and census tract data in a hedonic house price model. Land Econ. 1977, 53, 483–487. [Google Scholar] [CrossRef]
- Griffith, D.A. Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization; Springer: Berlin, Germany, 2003. [Google Scholar]
- Chun, Y.; Griffith, D.A.; Lee, M.; Sinha, P. Eigenvector selection with stepwise regression techniques to construct eigenvector spatial filters. J. Geogr. Syst. 2016, 18, 67–85. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Bin, O. A prediction comparison of house sales prices by parametric versus semi-parametric regressions. J. House Econ. 2004, 13, 68–84. [Google Scholar] [CrossRef]
- Griffith, D.; Chun, Y. Evaluating eigenvector spatial filter corrections for omitted georeferenced variables. Econometrics 2016, 4, 29. [Google Scholar] [CrossRef]
Hierarchies | Variables | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
Level 1: Individual house | Lot size(square feet) | 23,222 | 40,461.8 | 2,262 | 1,073,318 |
Living area (square feet) | 2,344 | 1,186.1 | 640 | 14,165 | |
Number of stories | 1.6 | 0.5 | 1 | 3 | |
Number of full baths | 2.8 | 1.08 | 1 | 12 | |
Number of half baths | 0.7 | 0.58 | 0 | 5 | |
Number of fireplaces | 1.2 | 0.85 | 0 | 9 | |
Number of bedrooms | 4 | 0.84 | 1 | 8 | |
Age of house | 40.6 | 19.53 | 0 | 253 | |
Sales season | --- | --- | --- | --- | |
Distance to school (miles) | 0.03 | 0.02 | <0.001 | 0.12 | |
Distance to mall (miles) | 0.06 | 0.035 | <0.001 | 0.17 | |
Level 2: census block group | Percentage of young population | 28.1% | 0.056 | 6.1% | 84.0% |
Percentage of white population | 70.5% | 0.150 | 23.0% | 99.5% | |
Percentage of Hispanic population | 11.6% | 0.120 | 0.0% | 87.8% | |
Median household income | 154,170 | 42,068 | 23,220 | 248,357 | |
Percentage of immigrants | 6.9% | 0.041 | 0.0% | 25.0% | |
Median population age | 42.6 | 5.7 | 20.1 | 68.5 |
Model Specifications | Functional Forms |
---|---|
Hedonic model | |
Multilevel model | |
Multilevel MESF model |
Variables | Hedonic Model | Multilevel Model | Multilevel MESF Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Coe. | Std. Error | VIF | Coe. | Std. Error | Coe. | Std. Error | ||||
(Intercept) | 11.264 | 0.145 | *** | ---- | 11.511 | 0.342 | *** | 11.451 | 0.160 | *** |
Lot size | 0.759 | 0.072 | *** | 1.301 | 1.188 | 0.074 | *** | 1.190 | 0.067 | *** |
Living area | 0.160 | 0.005 | *** | 4.639 | 0.120 | 0.004 | *** | 0.115 | 0.004 | *** |
Number of stories | −0.012 | 0.007 | 1.876 | −0.003 | 0.006 | 0.000 | 0.006 | |||
Number of full baths | 0.056 | 0.004 | *** | 3.054 | 0.054 | 0.004 | *** | 0.054 | 0.004 | *** |
Number of half baths | 0.006 | 0.006 | 1.669 | 0.032 | 0.005 | *** | 0.036 | 0.005 | *** | |
Number of fireplaces | 0.056 | 0.004 | *** | 1.605 | 0.035 | 0.003 | *** | 0.034 | 0.003 | *** |
Number of bedrooms | 0.015 | 0.004 | *** | 1.712 | 0.018 | 0.004 | *** | 0.019 | 0.003 | *** |
Years old | −0.001 | 0.000 | *** | 2.021 | −0.003 | 0.000 | *** | −0.003 | 0.000 | *** |
Distance to school | −3.401 | 0.152 | *** | 1.357 | −2.113 | 0.326 | *** | −1.605 | 0.236 | *** |
Distance to mall | −0.686 | 0.085 | *** | 1.327 | −0.682 | 0.206 | *** | −0.590 | 0.173 | |
Seasonspring | 0.008 | 0.008 | 1.010 | 0.005 | 0.007 | 0.002 | 0.006 | |||
Seasonsummer | 0.016 | 0.007 | * | 1.010 | 0.022 | 0.006 | *** | 0.021 | 0.006 | *** |
Seasonwinter | −0.016 | 0.008 | * | 1.010 | −0.018 | 0.007 | ** | −0.023 | 0.007 | *** |
BG young pop | 0.171 | 0.058 | ** | 1.618 | 0.068 | 0.132 | 0.048 | 0.061 | ||
BG white pop | 0.165 | 0.022 | *** | 1.639 | 0.204 | 0.056 | *** | 0.047 | 0.026 | |
BG Hispanic pop | −0.118 | 0.030 | *** | 1.843 | −0.124 | 0.069 | −0.197 | 0.033 | ||
BG income | 0.111 | 0.013 | *** | 2.326 | 0.101 | 0.031 | *** | 0.121 | 0.014 | *** |
BG immigrants | −0.350 | 0.063 | *** | 1.044 | −0.334 | 0.159 | * | −0.180 | 0.068 | |
BG median age | 0.005 | 0.001 | *** | 2.393 | 0.004 | 0.002 | * | 0.002 | 0.001 | |
Marginal R2 | 0.683 | 0.632 | 0.757 | |||||||
Conditional R2 | 0.683 | 0.752 | 0.774 | |||||||
RE Moran z-score (p-value) | ---- | 24.93(<0.001) | 1.10 (0.135) | |||||||
ESF Moran z-score (p-value) | ---- | ---- | 33.21 (<0.001) | |||||||
# of selected eigenvectors | ---- | ---- | 82/339 | |||||||
AIC | −403.54 | −2296.86 | −2911.40 | |||||||
Log–likelihood | 222.77 | 1170.43 | 1556.70 | |||||||
Anderson-Darling test (p-value) for RE terms | ---- | 14.8 (<0.0001) | 16.2 (<0.0001) | |||||||
Anderson-Darling test (p-value) for residuals | 178.4 (<0.0001) | 53.3 (<0.0001) | 48.7 (<0.0001) |
ANOVA Test | Test Statistics | Degree of Freedom | p-Value |
---|---|---|---|
Hedonic vs. multilevel Model | 1895.3 | 1 | <0.0001 |
Hedonic vs. multilevel MESF Model | 2625.5 | 83 | <0.0001 |
Multilevel vs. multilevel MESF model | 730.19 | 82 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Chun, Y.; Griffith, D.A. A Multilevel Eigenvector Spatial Filtering Model of House Prices: A Case Study of House Sales in Fairfax County, Virginia. ISPRS Int. J. Geo-Inf. 2019, 8, 508. https://doi.org/10.3390/ijgi8110508
Hu L, Chun Y, Griffith DA. A Multilevel Eigenvector Spatial Filtering Model of House Prices: A Case Study of House Sales in Fairfax County, Virginia. ISPRS International Journal of Geo-Information. 2019; 8(11):508. https://doi.org/10.3390/ijgi8110508
Chicago/Turabian StyleHu, Lan, Yongwan Chun, and Daniel A. Griffith. 2019. "A Multilevel Eigenvector Spatial Filtering Model of House Prices: A Case Study of House Sales in Fairfax County, Virginia" ISPRS International Journal of Geo-Information 8, no. 11: 508. https://doi.org/10.3390/ijgi8110508
APA StyleHu, L., Chun, Y., & Griffith, D. A. (2019). A Multilevel Eigenvector Spatial Filtering Model of House Prices: A Case Study of House Sales in Fairfax County, Virginia. ISPRS International Journal of Geo-Information, 8(11), 508. https://doi.org/10.3390/ijgi8110508