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Abstract: This study aims to test the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI
data for the potential of monitoring longos forests for four seasons in Igneada, Turkey. Vegetation
indices, including Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)
and Normalized Difference Water Index (NDWI), were generated for the study area in addition
to the five corresponding bands of Sentinel-2 and Landsat-8 OLI Images. Although the spectral
consistency of the data was interpreted by cross-calibration analysis using the Pearson correlation
coefficient, spatial consistency was evaluated by descriptive statistical analysis of investigated
variables. In general, the highest correlation values were achieved for the images that were acquired
in the spring season for almost all investigated variables. In the spring season, among the investigated
variables, the Red band (B4), NDVI and EVI have the largest correlation coefficients of 0.94, 0.92 and
0.91, respectively. Regarding the spatial consistency, the mean and standard deviation values of all
variables were consistent for all seasons except for the mean value of the NDVI for the fall season.
As a result, if there is no atmospheric effect or data retrieval/acquisition error, either Landsat-8
or Sentinel-2 can be used as a combination or to provide the continuity data in longos monitoring
applications. This study contributes to longos forest monitoring science in terms of remote sensing
data analysis.
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1. Introduction

Flooded forests, which are also known as longos, alluvial or floodplain forests, have lands that
are often covered with shallow water [1–5]. These forests are usually covered with freshwater either
permanently or seasonally. Longos is a special ecosystem that is composed of sand that is brought
by different streams running to the end of the rivers. These aquatic forests are as vibrant as the
rainforests and are very rare in terms of their specific attributes. Due to their special ecological,
biological, environmental and economic features, flooded forests are really important in landscape
studies. Apart from their importance, these forests are also extremely fragile and are one of the
most endangered ecosystems in terms of biological diversity, high productivity and high habitat
dynamism [6].
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Earth’s natural resources and their features have been observed in many different ways in order to
obtain data related to detection, description, quantification and monitoring. Satellite remote sensing has
recently become an efficient tool in these observations [7–10] as it is cost-effective, timely and accurate
when used in physically inaccessible areas [7,11,12]. It is evident that remote sensing and Geographic
Information System (GIS) is an essential and inevitable way of controlling and observing the highly
threatened wetland ecosystems, which can be achieved by obtaining quantitative information related
to the spatial distribution of mangrove forests. In the literature, studies have proven that it is possible
to examine the wetlands via remote sensing analysis and vegetation indices using remote sensing
data [13]. Ramsey III and Jensen (1996) explained the relationship between the NDVI and leaf area
index (LAI) for the mangroves in the southwestern part of Florida [14]. Kovacs et al. (2005) and Green
et al. (1996) have also worked on similar aspects in the Turks and Caicos Islands (British West Indies)
and Agua Brava Lagoon (Mexico), respectively [8,10]. Bartholy and Pongracz (2007) used the NDVI
to calculate climate variability and vegetation productivity for the Atlantic–European region and
the Carpathian Basin [15]. The NDVI has also been recently applied to determine mangrove canopy
closure and the changing patterns in the forests’ density and conditions in Sundarbans, including India
and Bangladesh [16,17]. In addition to these aforementioned applications of the NDVI, it can also act
as a proxy for the above-ground biomass, primary productivity and vegetation health [17–20].

NDVI is a commonly used algorithm for detecting forests in a variety of sensors, such as Landsat,
MODIS and SPOT, and its robustness has been tested and demonstrated in many studies [21–23].
Furthermore, Enhanced Vegetation Index (EVI), which reduces noise and uncertainties associated
with highly variable atmospheric aerosols [24], and Normalized Difference Water Index (NDWI) have
also been tested in various studies. For example, Hwang et al. [25] investigated the capability of
different vegetation indices, including EVI, in obtaining the differences in spectral responses between
isohydric and anisohydric trees within a deciduous forest in central Indiana, USA. They stated that
EVI was most successful in detecting the drought signal on both leaf and canopy scales. Cuba et
al. [26] used three vegetation indices, including Normalized Difference Vegetation Index (NDVI),
two-band Enhanced Vegetation Index (EVI2) and the Normalized Difference Water Index (NDWI), in
order to compare measurements of the canopy gap fraction from in situ digital cover photography
in the dry tropical forest of the Southern Yucatán, Mexico. According to their results, it was revealed
that a NDWI time series can accurately define the variability of canopy leaf abundance during the
dry season. Furthermore, this could be an alternative basis for long-term monitoring of seasonal
phenology in a dry tropical forest. In another example, Pastor-Guzman et al. [27] used NDVI, EVI and
Normalized Difference Water Index (NDWI) to examine biophysical variables and track seasonality
of mangrove forests. They pointed out that NDWI is suitable for monitoring mangrove forest water
stress since NDWI has the ability to change in proportion to soil moisture and canopy water stress.
It is clear that forest studies frequently preferred using vegetation indices in the subjects related to
both the time series and phenology of forest ecosystems. Several investigations have already been
performed for Landsat-8 OLI and Sentinel-2 MSI data spectral continuity using vegetation indices in
various research topics. For example, Lessio et al. [28] found that the reflection difference between
spectral bands was lower than 0.1 and the effects of calculated reflection differences on spectral indices
were generally consistent with NDVI and NDWI values obtained from Sentinel-2 and Landsat-8 in
the field of agriculture. Flood [29] stated that Sentinel-2A is compatible with Landsat 7 and 8 for
surface reflections. He also found out that there are small systematic differences ranging between
1% and 9% before deriving an adjustment equation for each corresponding band of both Sentinel 7
and 8. Lefebvre et al. [30] used both the Sentinel-2 and Landsat-8 images to monitor and update the
urban areas in their study. When both data are combined, they reached the conclusion that they are
compatible with both spectral and spatial resolutions and increase thematic accuracy in identifying the
urban areas. Mandanici and Bitelli [31] aimed to point out spectral differences between Landsat-8 OLI
and Sentinel-2 MSI sensors from the perspective of their combined use for both time series analyzes.
Their study showed that the combined use potential of Landsat and Sentinel products provides high
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accuracy when problems related to spatial heterogeneity are avoided. Van der Werff and van der
Meer [32] aimed to compare the mapping alteration minerology results of the Sentinel-2A MSI and
Landsat-8 OLI imagery using band ratios in their study. The results showed that the correlation
between Sentinel-2A MSI and Landsat-8 OLI datasets was approximately 0.8. In fact, they showed
that Sentinel-2A MSI mission can provide data continuity for Landsat-8 OLI in mineralogy studies.
In another study, Zhang et al. [33] characterized the differences of Sentinel-2A MSI and Landsat-8
OLI reflections and normalized difference vegetation index (NDVI). They compared and presented
the spectrally overlapping reflective wavelength MSI and OLI bands and statistical functions to
transform between them, which was achieved through NDVI. The results show that the Sentinel-2
MSI and Landsat-8 OLI sensors have similar features and have the potential to support data for
applications of near-daily time series and global coverage with moderate spatial resolution. On the
other hand, it should be mentioned that one of the main aims of the European Space Agency (ESA)
when designing the Sentinel data was maintaining its consistency with previous Landsat datasets
and Satellite Pour l’Observation de la Terre (SPOT) missions [32,34]. Additionally, another aim is to
provide a full coverage of the land surface globally [35]. Indeed, no previous studies have tried to
assess the continuity and consistency of Sentinel-2A MSI and Landsat-8 OLI in flooded forests.

The potential of Landsat-8 data in monitoring longos forests have previously been
emphasized [6,8,36,37]. However, besides the several declared Sentinel-2 missions, no study has been
conducted to address the use and capacity of Sentinel-2 for Longos forest monitoring. The objective of
this study is to investigate the possibility of using Sentinel data for longos forests as a continuation
of Landsat data. In order to strengthen the comparison, the study was performed with two
pairs of satellite images (Landsat-8 OLI and Sentinel-2A pairs) acquired in four seasons. Therefore,
the consistency of Sentinel-2A MSI and Landsat-8 OLI for longos forest monitoring is investigated
using five similar bands of Landsat-8 and Sentinel-2 datasets and indices, which are NDVI, NDWI and
EVI, using statistical analysis. For the comparative evaluation of the spectral and spatial consistency
of Sentinel-2 and Landsat-8, the correlation coefficients for each pair of variables are obtained, mean
values and standard deviations are calculated and correlations are presented with scatterplots.

2. Materials and Methods

2.1. Study Area

The study area of this framework is Igneada, which is a province in Kirklareli. This is located in
Turkey’s Thrace region. It is situated on the western side of the Black Sea coast near the Bulgarian
border. The study fields were located 250 km far away from Istanbul in the northwest of Turkey
(Figure 1). It is surrounded by the Erikli Lake on the northern side, Mert Lake on the southern side,
Black Sea on the eastern side and Istiranca (Yildiz) Forests on the western side. The Igneada region
includes an important water basin as well as seasonally flooded forests, quicksand areas, lakes and
sand dunes. Igneada is one of the most important biologically diverse and extraordinarily important
fields in Turkey as it contains 122 important vegetation species and 184 important bird fields. It also has
limited fields of delicate ecosystems, such as sand dunes, flooded forests and wetland [37,38]. With its
highly protected ecosystems and the different habitats, Igneada is both locally and internationally
important. According to the Bern Convention signed by Turkey in 1984, fields with delicate and
endangered habitats can only found in 7 spots in Turkey, which are unique. The fact that Igneada
is a combination of sand dunes and flooded forests also makes it specifically unique in the whole of
Europe. A total of 3155 hectares of Igneada was acknowledged as a National Park in 2007. In that way,
all the different parts of these endangered ecosystems are considered to under the name of one big
National Park. The three flooded forests in this location, which are namely Erikli Lake, Mert Lake
and Saka Lake flooded forests, were defined as the study area for this research [39]. From the point of
view of the regional ecosystem, these lakes, the reeds that surround the lakes, the streams that feed
the lakes, the swamp areas and the Longos forests containing water are very important. Including
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their reed and swamp areas, Erikli Longos covers 803 hectares, Mert Longos 509 hectares and Saka
Longos 537 hectares. These three flooded forests were formed in the third and fourth geological time,
but subsequently disconnected from the sea.
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Figure 1. Location of the study area.

2.2. Materials

In this study, four scenes of Landsat-8 OLI and four scenes Sentinel-2A that corresponded to
the four seasons were used to carry out the analysis. Besides, 1/25000 scaled standard topographic
maps, high-resolution satellite images (IKONOS) and aerial photos were used as reference data to
accurately determine lake boundaries. In further detail, Sentinel-2 images at two levels (Level-1C
(L1C) top of atmosphere (TOA) (20161204, 20170413, 20171020, 20170702) and Landsat-8 Level1 T (L1T)
TOA images (20161204, 20170411, 20170630, 20171020) were acquired free from the ESA and USGS
websites (https://earthexplorer.usgs.gov/), respectively. The properties of Sentinel-2A and Landsat-8
satellite images are tabulated in Table 1. The used bands of both satellites are given in this table. The
selected images belong to the maximum growing season, which also has the minimum cloudiness
in image scenes. The coordinate system of all images was referenced with Worldwide Reference
System (WRS-2) by WGS-84 UTM 35N. At the first step, a cloud quality assessment of the images was
performed in the QGIS environment [40]. After this, DOS1 (Dark Object Subtraction) atmospheric
approach was performed by QGIS software [41] on the Sentinel-2 L1C and Landsat-8 Level 1 products.
The process covers four stages, including Radiance at the Sensor’s Aparture, Top Of Atmosphere
Reflectance, Surface Reflactance and Dark object subtraction 1 (DOS1). Following this, vegetation
indices (VIs), including NDVI, NDWI, and EVI, were generated for the study area by “semi-automatic
classification” plugin in the QGIS environment [41]. Moreover, the ground truth data collected for the
projects FP7-EN-2008-1 (Building Capacity for a Black Sea Catchment Observation and Assessment
System Supporting Sustainable Development with the Grant agreement number: 226740) were used.

https://earthexplorer.usgs.gov/
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Table 1. Corresponding band characteristics of Landsat-8 Operational Land Imager (OLI) and
Sentinel-2A Multispectral Instrument (MSI) sensors.

Landsat-8 OLI Sentinel-2A MSI

Band
Number

Wavelength
Range (µm)

Resolution
(m)

Band
Number

Wavelength
Range (µm)

Resolution
(m)

B1 (Ultra Blue) 1 0.43–0.45 30 1 0.43–0.45 60
B2 Blue 2 0.43–0.51 30 2 0.46–0.52 10

B3 (Green) 3 0.53–0.59 30 3 0.55–0.58 10
B4 (Red) 4 0.64–0.67 30 4 0.64–0.67 10
B5 (NIR) 5 0.85–0.88 30 8 0.78–0.90 10
SWIR1 1 6 1.57–1.65 30 11 1.57–1.65 20

1 SWIR band is only used for the calculation of NDWI.

2.3. Vegetation Indices (VIs)

Three different vegetation indices that are commonly preferred in the literature, including NDVI,
NDWI and EVI, were selected for this research. The specifications of the indices are shown in Table 2.

Table 2. Specifications of the used indices.

Index Abbreviation Formulation Reference

Normalized Difference Vegetation Index NDVI NIR−Red
NIR+Red [42]

Normalized Difference Water Index NDWI NIR−SWIR1
NIR+SWIR1 [43]

Enhanced Vegetation Index EVI
G ∗

NIR−Red
NIR+C1∗Red−C2∗Blue+L

[44]

NDVI was developed by Rouse et al. [42] and uses the red and near-infrared light reflected by
the vegetation. While healthy vegetation absorbs most of the visible light that hits it and reflects a
large portion of the near-infrared light, unhealthy or sparse vegetation reflects more visible light and
less near-infrared light [42]. Calculations of NDVI for a given pixel always result in a number that
ranges from minus one (−1) to plus one (+1). However, the lack of green leaves results in the value
being close to zero. A value of zero indicates no vegetation and a value close to +1 (0.8–0.9) indicates
the highest possible density of green leaves. NDWI was introduced for the first time in 1996 [43].
It reflects the moisture content in plants and soil. The functionality of the formula is explained by the
following considerations. Instead of using the red range, the reflection intensity is determined by the
presence of chlorophyll. Furthermore, a SWIR is used to determine when the high absorption of light
by water occurs. The use of the same near-infrared (NIR) spectrum in the case of NDVI is due to the
fact that water does not absorb this part of the electromagnetic spectrum. Thus, the index is resistant
to atmospheric effects, which is its main difference to NDVI. When observing forests, the NDWI is
characterized by a more stable decrease in values upon reaching critical anthropogenic load, which
can serve as a more sensitive indicator of the ecological state of forests compared to NDVI.

The NDWI product is dimensionless and varies from −1 to +1 depending on the hardwood
content as well as the type of vegetation and cover. The high NDWI values (in blue) correspond to a
high plant water content and coating of high plant fraction. Low NDWI values (in red) correspond to
low vegetation content and cover. During the periods of water stress, the NDWI rate will decrease.
The EVI is another vegetation index, which was developed as an alternative in order to eliminate
some of the limitations of the NDVI. For example, while NDVI has serious shortcomings in areas
with a high biomass, EVI is more sensitive in these areas. Generally, NDVI responds just to the
amount of chlorophyll present while EVI tends to be more sensitive to plant canopy differences,
such as leaf area index (LAI), canopy structure and plant phenology and stress. EVI index reduces the
influence of atmospheric conditions on vegetation index values and it corrects for canopy background
signals [44]. EVI is calculated in a similar way to NDVI. When viewing rainforests and other areas of
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the Earth with large amounts of chlorophyll, the resulting EVI products do not become saturated in
a similar way to NDVI. In the formulation of EVI, G = 2.5 and L = 1 represent the gain and canopy
background, respectively, while C1 = 6 and C2 = 7.5 represent the coefficients used to correct for the
atmospheric conditions.

2.4. Methods and Data Analysis

After preprocessing, including atmospheric correction and cloud quality assessment, the visual
interpretation of the overlaying Landsat-8 OLI and Sentinel-2 images indicated that there is at least
one pixel offset with overlying images. This alignment is reduced and eliminated by performing the
geoshift code with “geoshift” function on images before the pixels were overlaid exactly for further
comparison of the two data sets for all investigated variables (B1, B2, B3, B4, B5, NDVI, NDWI and
EVI). To explain, performing geo shifting process completely omits the errors caused by the image
to image misregistration and images’ misalignment with a shift of 15 m to the west (x-direction) and
16 m to the north (y-direction) [45–47]. It is worth mentioning that Sentinel images were resampled
to 30 meters and shifted to overlay the Landsat-8 OLI images, including B1, B2, B3, B4, B5, NDVI,
NDWI and EVI, which are considered to be base images. It should be noted that the image pixels’
misalignment between two datasets were removed and corrected by applying “geoshift” function on
R statistical program [48] by “Landsat” package. After this, the study area was subjected to further
analysis using datasets according to the borders of the lakes (Figure 1). Finally, VIs and all bands’
(B1, B2, B3, B4 and B5) pixel values were calibrated between two datasets by scatterplots. We did
not exclude outlier pixels in our study. However, Madanichi [31] stated that the outlier pixels were
omitted in his study and were not considered in the further statistical analysis. Results were assessed
and interpreted by cross-calibration analysis between two datasets for each VI by computing the
Pearson correlation coefficients. In addition, descriptive statistical analysis was carried out for each
investigated variable (EVI, NDVI, NDWI, B1, B2, B3, B4 and B5) and basic statistics for all pixels
were computed. Frequency histograms were obtained based on the frequency of pixels falling within
various variables (EVI, NDVI, NDWI, B1, B2, B3, B4 and B5) size classes in all intervals. The research
flowchart is presented in Figure 2.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  7 of 15 
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3. Results

In this study, the band and index correlations between Sentinel-2A and Landsat-8 OLI were
evaluated by computing the coefficients of Pearson's correlation. For this purpose, the three different
indices of EVI, NDVI and NDWI were calculated and compared. Regarding the VIs, the dataset from
spring has the highest correlation coefficient values of 0.92, 0.91 and 0.89 for NDVI, EVI and NDWI
when compared to the other seasons, respectively. Likewise, the highest correlation coefficient values
of B1, B2, B3 and B4 bands of Sentinel-2A and Landsat-8 OLI were obtained as 0.90, 0.91, 0.87 and 0.94
respectively, during spring season. As illustrated in Figures 3 and 4, the ranges of the boxplots were
almost similar with a higher correlation coefficient value indicating that the ranges of the boxplots
were more similar.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  8 of 15 
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To investigate spatial variation consistency between Landsat-8 and Sentinel-2A, the standard
deviations and mean values for the entire study area for five corresponding bands (B1, B2, B3, B4
and B5) and VIs were calculated. As shown in Figure 5, standard deviation values for investigated
variables of Landsat-8 and Sentinel-2A images obtained from all seasons except for the winter showed
similar or the same results. Although the standard deviation values that belonged to the winter season
images are relatively similar, they are slightly different compared to other seasons. In general, despite
the acquisition dates of some seasonal data having a difference of a few days, we obtained very close
values for the investigated variables of the Landsat-8 and Sentinel-2A images.

When the mean values are considered, it is seen that all the variables for each season have very
similar values for Landsat-8 and Sentinel-2A pairs except for the mean value of NDWI for the fall
season. According to the statistical evaluations, a higher difference between the sensors was observed
mostly in the index variables. This may be due to the fact that the indices contain more than one band,
which can cause noise.

In the present study, histograms were used as a descriptive statistical method. As shown in
Figure 6, the distributions of pixel values show a great similarity when histograms of bands (B1, B2,
B3, B4, and B5 (NIR)) and VIs were compared between these two sensors. It also illustrates that the
datasets almost have the same spatial distribution.
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4. Discussion

In this paper, we aimed to test precisely the spectral and spatial consistency of Sentinel-2 and
Landsat-8 OLI data and their potential in monitoring longos forests. In the literature, there are several
studies examining different cases, such as agricultural fields [28], geology mapping [32] and combined
land uses [29,31,33]. However, there has not been any study focusing on the longos forest. Only a few
longos studies have used VIs [36] but none examined the spectral and spatial consistency of Landsat-8
and Sentinel-2A data. After images’ preprocessing, we reduced the images’ misregistration errors by
adding a geo shifting code to the images. However, a number of conducted research have co-registered
images for further analysis [31] and the importance of the misregistration of sensor images have been
emphasized in Earth's surface monitoring studies [49].

The cross-calibration analysis results showed that the highest correlation coefficient values of
B1, B2, B3 and B4 bands of Sentinel-2A and Landsat-8 OLI were obtained as 0.90, 0.91, 0.87 and 0.94
respectively, during spring season. In the meantime, the NDVI, EVI and NDWI results of spring
datasets had the higher correlation coefficients of 0.92, 0.91 and 0.89, respectively, compared to the
bands (B1, B2, B3, B4 and B5). Apart from the slightly lower values obtained in summer datasets,
the achieved results are consistent with previously conducted studies as the highest correlation
coefficient achieved for NDVI was more than 0.98 in previous investigations [29,31]. Despite the
three-day difference between the acquisition date of Landsat-8 and Sentinel-2A data for summer,
the correlation was very high (0.89) and was also very close to the other seasons’ NDVI results
(Figure 4).

While there are numerous studies that have used images acquired on the same day, that have
spectral consistency and a correlation coefficient of more than 0.98, there are also numerous studies
that have compared the results for different acquisition dates in different applications [28,29,31,32,34].
These studies show that a closer image acquisition date results in a higher correlation. We observed
that the three-day difference in the acquisition date causes no significant difference in the correlation
coefficients as indicated in this study. On the other hand, as presented in the study of Li et al. [34],
a longer time difference, such as 17 days, results in a drastic decrease in the correlation values.

Moreover, the discrepancy of the pixels should be taken into account according to the research
subject and depending on its accuracy. After comparing the results of statistical descriptive analysis
for the four pair datasets, we determined that the mean and the standard deviation values were almost
similar for all investigated variables (Figure 5). However, this aspect has been evaluated in a few
studies. For example, Lessio et. al. [28] obtained consistent spatial information between Sentinel-2
and Landsat-8. This main outcome shows that these two data sets can be used interchangeably.
For example, in phenology monitoring and time series studies when the study area is recorded as
being too cloudy on Landsat-8, we can instead use Sentinel-2A images. Moreover, monitoring and
calculating the spatial variation of all variables illustrated that the datasets have almost the same
spatial and spectral variation (Figure 6). Based on these findings, we estimate that between Landsat-8
and Sentinel-2 data sets, NDVI showed the highest continuity and consistency with highest correlation
values, followed by EVI (Figure 4). Regarding the bands, red (B4) and NIR (B5) have the highest
correlation values for all the seasons in flooded forests.

The results demonstrate that the bands and VIs derived from Sentinel-2A and Landsat-8 OLI are
likely to maintain consistency and continuity in flooded forest monitoring studies. Based on the spatial
and spectral characteristics proposed for Sentinel-2 and its similarity to Landsat series, there is great
potential for Sentinel-2 in monitoring longos forests. Finding corresponding cloudless images for the
same acquisition date is the biggest limitation of Landsat-8 OLI and Sentinel-2A images when used as
the continuity data. It is worth mentioning that the current study confirmed that we achieved one of
the ESA mission objects when designing the Sentinel-2 as we maintained spectral consistency with
previous Landsat data [32]. Indeed, with the achieved outcomes, the revisiting time of 16 days should
be reduced to 5 days between two sensors for monitoring and continuing investigations, especially in
the cases of flooded forestry monitoring.
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5. Conclusions

The present study focused on identifying the spectral similarity between Landsat-8 OLI and
Sentinel-2A sensors for longos forests with a base material of water, which meets the water
requirements from the bottom water, especially in the summer months. In this framework,
cross-calibration and descriptive statistical analysis was conducted for each variable (EVI, NDVI,
NDWI, B1, B2, B3, B4, B5) in the study area during four different seasons. In addition, frequency
histograms of investigated variables were obtained based on the frequency of pixels in all intervals.
The results illustrate a good correlation between extracted VIs from Landsat-8 OLI and Sentinel-2A
in almost all seasonal datasets. Thus, if there is no atmospheric effect or data retrieval/acquisition
error, either Landsat-8 OLI or Sentinel-2A can be used as a combination or to provide the continuity
data in longos monitoring applications. The correlation coefficient is usually high in the areas that are
subject to spatial homogeneity, such as longos areas. Thus, Landsat-8 OLI and Sentinel-2A sensors can
be used in combination for time series analysis and phenological monitoring. The main point of this
combination is to allow for time series analysis in forest monitoring studies. This study contributes to
longos forest monitoring science in terms of remote sensing data analysis.
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5. Kavgacı, A.; Čarni, A.; Tecimen, H.; Özalp, G. Diversity of Floodplain Forests in the Igneada Region (NW
Thrace—Turkey). Hacquetia 2011, 10, 73–93. [CrossRef]

6. Hughes, F.; Richards, K.; Girel, J.; Moss, T.; Muller, E.; Nilsson, C.; Rood, S. The Flooded Forest: Guidance
for Policy Makers and River Managers in Europe on the Restoration of Floodplain Forests; FLOBAR2 (Floodplain
Biodiversity and Restoration): Cambridge, UK, 2003.

7. Green, E.P.; Clark, D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove
mapping. Int. J. Remote Sens. 1998, 19, 935–956. [CrossRef]

8. Kovacs, J.M.; Wang, J.; Flores-Verdugo, F. Mapping mangrove leaf area index at the species level using
IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuarine. Coast. Shelf Sci. 2005,
62, 377–384. [CrossRef]

9. Chauhan, H.B.; Dwivedi, R.M. Inter sensor comparison between RESOURCESAT LISS III, LISS IV and
AWiFS with reference to coastal landuse/landcover studies. Int. J. Appl. Earth Obs. Geoinformation 2008,
10, 181–185. [CrossRef]

10. Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and
management of tropical coastal resources. Coast. Manag. 1996, 24, 1–40. [CrossRef]

11. Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical
coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [CrossRef]

12. Everitt, J.H.; Yang, C.; Sriharan, S.; Judd, F.W. Using High Resolution Satellite Imagery to Map Black
Mangrove on the Texas Gulf Coast. J. Coast. Res. 2008, 24, 1582–1586. [CrossRef]

http://dx.doi.org/10.1007/BF02861701
http://dx.doi.org/10.2478/v10028-011-0003-9
http://dx.doi.org/10.1080/014311698215801
http://dx.doi.org/10.1016/j.ecss.2004.09.027
http://dx.doi.org/10.1016/j.jag.2007.10.007
http://dx.doi.org/10.1080/08920759609362279
http://dx.doi.org/10.1006/jema.1998.0255
http://dx.doi.org/10.2112/07-0987.1


ISPRS Int. J. Geo-Inf. 2019, 8, 56 12 of 13

13. Ozesmi, L.S.; Bauer, M. Satellite Remote Sensing of Wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [CrossRef]
14. Ramsey, E., III; Jensen, J.R. Remote Sensing of Mangrove Wetlands: Relating Canopy Spectra to Site-Specific

Data. Photogramm. Eng. Remote Sens. 1996, 62, 939–948.
15. Bartholy, J.; Pongracz, R. Extremes of ground based and satellite measurements in the vegetation period for

the Carpathian Basin. Phys. Chem. Earth 2005, 30, 81–89. [CrossRef]
16. Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and

dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 2008, 35, 519–528. [CrossRef]
17. Satyanarayana, B.; Mohamad, K.A.; Idris, I.F.; Husain, M.L.; Dahdouh-Guebas, F. Assessment of mangrove

vegetation based on remote sensing and ground-truth measurements at Tumpat, Kelantan Delta, East Coast
of Peninsular Malaysia. Int. J. Remote Sens. 2011, 32, 1635–1650. [CrossRef]

18. Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference
vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [CrossRef]

19. Seto, K.C.; Fragkias, M. Mangrove conversion and aquaculture development in Vietnam: A remote
sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob. Environ. Chang. 2007,
17, 486–500. [CrossRef]

20. Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground biomass assessment in Colombia: A remote
sensing approach. For. Ecol. Manag. 2009, 257, 1237–1246. [CrossRef]

21. Yang, G.; Shen, H.; Zhang, L.; He, Z.; Li, X. A moving weighted harmonic analysis method for reconstructing
high-quality SPOT VEGETATION NDVI time-series data. IEEE Trans. Geosci. Remote Sens. 2015,
53, 6008–6021. [CrossRef]

22. Anees, A.; Aryal, J. A Statistical Framework for Near-Real Time Detection of Beetle Infestation in Pine Forests
Using MODIS Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1717–1721. [CrossRef]

23. Anees, A.; Aryal, J. Near-real time detection of beetle infestation in pine forests using MODIS data. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3713–3723. [CrossRef]

24. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a
blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [CrossRef]

25. Hwang, T.; Gholizadeh, H.; Sims, D.A.; Novick, K.A.; Brzostek, E.R.; Phillips, R.P.; Roman, D.T.;
Robeson, S.M.; Rahman, A.F. Capturing species-level drought responses in a temperate deciduous forest
using ratios of photochemical reflectance indices between sunlit and shaded canopies. Remote Sens. Environ.
2017, 199, 350–359. [CrossRef]

26. Cuba, N.; Rogan, J.; Lawrence, D.; Williams, C. Cross-scale correlation between in situ measurements of
canopy gap fraction and Landsat-derived vegetation indices with implications for monitoring the seasonal
phenology in tropical forests using MODIS data. Remote Sens. 2018, 10, 979. [CrossRef]

27. Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its
environmental drivers. Remote Sens. Environ. 2018, 205, 71–84. [CrossRef]

28. Lessio, A.; Fissore, V.; Borgogno Mondino, E. Preliminary Tests and Results Concerning Integration of
Sentinel-2 and Landsat-8 OLI for Crop Monitoring. J. Imaging 2017, 3, 9.

29. Flood, N. Comparing Sentinel-2A and Landsat 7 and 8 Using Surface Reflectance over Australia. Remote Sens.
2017, 9, 659. [CrossRef]

30. Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to
the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606.
[CrossRef]

31. Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use.
Remote Sens. 2016, 8, 1014. [CrossRef]

32. Van der Werff, H.; van der Meer, F. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sens.
2015, 7, 12635–12653. [CrossRef]

33. Zhang, H.; Roy, D.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of
Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI
differences. Remote Sens. Environ. 2018, 215, 482–494. [CrossRef]

34. Li, Z.; Xu, D.; Guo, X. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future
Perspectives. Sensors 2014, 14, 21117–21139. [CrossRef] [PubMed]

35. Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.; Syrris, V.; Soille, P. Assessment of the Added-Value of
Sentinel-2 for Detecting Built-up Areas. Remote Sens. 2016, 8, 299. [CrossRef]

http://dx.doi.org/10.1023/A:1020908432489
http://dx.doi.org/10.1016/j.pce.2004.08.012
http://dx.doi.org/10.1111/j.1365-2699.2007.01806.x
http://dx.doi.org/10.1080/01431160903586781
http://dx.doi.org/10.1016/j.rse.2006.01.003
http://dx.doi.org/10.1016/j.gloenvcha.2007.03.001
http://dx.doi.org/10.1016/j.foreco.2008.11.016
http://dx.doi.org/10.1109/TGRS.2015.2431315
http://dx.doi.org/10.1109/LGRS.2014.2306712
http://dx.doi.org/10.1109/JSTARS.2014.2330830
http://dx.doi.org/10.1016/j.rse.2008.06.006
http://dx.doi.org/10.1016/j.rse.2017.07.033
http://dx.doi.org/10.3390/rs10070979
http://dx.doi.org/10.1016/j.rse.2017.11.009
http://dx.doi.org/10.3390/rs9070659
http://dx.doi.org/10.3390/rs8070606
http://dx.doi.org/10.3390/rs8121014
http://dx.doi.org/10.3390/rs71012635
http://dx.doi.org/10.1016/j.rse.2018.04.031
http://dx.doi.org/10.3390/s141121117
http://www.ncbi.nlm.nih.gov/pubmed/25386759
http://dx.doi.org/10.3390/rs8040299


ISPRS Int. J. Geo-Inf. 2019, 8, 56 13 of 13
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