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Abstract: The representations of space and time are fundamental issues in GIScience. In prevalent GIS
and analytical systems, time is modeled as a linear stream of real numbers and space is represented
as flat layers with timestamps. Despite their dominance in GIS and information visualization,
these representations are inefficient for visualizing data with complex temporal and spatial extents
and the variation of data at multiple temporal and spatial scales. This article presents alternative
representations that incorporate the scale dimension into time and space. The article first reviews
a series of work about the triangular model (TM), which is a multi-scale temporal model. Then,
it introduces the pyramid model (PM), which is the extension of the TM for spatial data, and
demonstrates the utility of the PM in visualizing multi-scale spatial patterns of land cover data.
Finally, it discusses the potential of integrating the TM and the PM into a unified framework
for multi-scale spatio-temporal modeling. This article systematically documents the models with
alternative arrangements of space and time and their applications in analyzing different types of
data. Additionally, this article aims to inspire the re-thinking of organizations of space, time, and
scales in the future development of GIS and analytical tools to handle the increasing quantity and
complexity of spatio-temporal data.
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1. Introduction

Representations of space and time are fundamental issues in GIScience. Currently, time- and
geo-tagged data are generated at an unprecedented speed from different platforms, creating ample
opportunities for studying human and environmental dynamics from different perspectives at different
scales. The complexity, heterogeneity, and uncertainty of the data poses challenges for the GIS
community to develop advanced analytical tools to extract useful information and knowledge from
the data. In prevalent geographic information systems (GIS), the environment is conventionally
represented as ‘flat layers’ with a timestamp denoting when the data were collected, created, and/or
published. Some geodatabases can store temporal information of spatial features as attributes in
relational tables to support time-related queries and analyses [1,2]. However, the capacity of temporal
analysis in such geodatabases is rather limited compared to the extensive toolbox for spatial data
analyses in GIS. Additionally, prevalent GIS tend to adopt time instants (time points) as the primitive of
time. Spatial features and remote sensing imageries are stamped with a time instant. However, spatial
phenomena that span a time interval can hardly be visualized or analyzed, not mentioning more
complex temporal information such as uncertain intervals and time series.

Additionally, the “flat layer” representation restricts the operation of spatial analysis tools within
a single spatial scale or resolution. The choice of analytic scale to a large extent determines the insights
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that can be gained. For instance, kernel density, which is commonly used for spatial pattern analysis,
can reveal clusters of spatial features only at a single spatial scale. To discover clusters concealed
at other scales, the distance threshold of the analysis needs to be adjusted using a “trial-and-error”
approach, which is inefficient and often inconsistent in showing the variation of spatial patterns across
scales. In another example, training for image classification is based on pixel-centered single-scale
methodologies, which can neglect patterns related to larger-scale processes. Similar issues exist in
land cover change modeling, where drivers of land cover change can disappear or emerge across
scale ranges [3,4]. Other scholars have recognized that pixel-centered methods may ignore scale and
hierarchy in landscape processes that drive pattern creation [5,6]. The importance of scale has been
epitomized in the well-known modifiable areal unit problem (MAUP) and its temporal equivalent [7].
A common solution for multi-scale analysis is repeating the analysis at a few selected scales, for instance,
in different sizes of aggregation units. However, such discrete sampling in the scale dimension cannot
uncover the continuous variation and hierarchical structures across scales.

One reason for these challenges is that current visualization and analytical tools are designed
following the traditional conceptualizations: Time is linear and space is flat, which are intuitive
due to their long-time acceptance in cartography and graphic designs. However, these traditional
representations are not efficient for analytical tasks that involve large and complex spatio-temporal
data over multiple scales. With the development of computer science and visualization techniques,
alternative representations that re-arrange the dimensions of space and time may help human users
to better observe and understand patterns and relationships that cannot be easily observed in the
traditional models. In GIScience, space-time cubes [8,9] and prisms [10], which replaces the z-axis
(height) by the dimension of time, can be considered as a successful example of re-organizing space
and time for analytical purposes. Other approaches to visualizing spatial and temporal information
can be found in [7,11].

This article presents a series of alternative representations that incorporate the scale dimension
into time and space. The pioneer work dates back to the midpoint-radius (mr) diagram proposed
by [12] which projects time intervals into points in a 2D space. The MR diagram was mainly used
as a diagrammatic tool for reasoning about time intervals. Later, Van de Weghe et al. [13] and
Qiang, et al. [14] have proposed an analogous representation and applied it for the visualization of
time intervals, uncertain time intervals [15,16], and time series [17]. They named the new representation
of time the triangular model (TM). The TM was also integrated into a geographic information system
(GIS) for spatio-temporal analyses. The utilities of the TM have been demonstrated in analyses of
archeological data, mobility data, and sports data. Despite that the TM has subverted the traditional
linear view of time, it does show better performance in visualizing temporal information than the
linear model, which has been confirmed in an empirical study with about 250 human participants [18].
Later, Van de Weghe et al. [19] proposed a conceptual framework for multi-scale spatio-temporal
analyses, which integrates the TM and the pyramid model (an extension of the TM for spatial data).

The research about the TM and its variants may have a profound influence on the design of
next-generation GIS and analytical systems. So far, research about these models is scattered in a
series of publications in interdisciplinary journals, which may cause difficulties for interested readers to
capture the overall philosophy of these models and find suitable models and tools for specific analytical
tasks. A systematic review of the evolution of the models from time to space and further to space-time
could inspire the re-thinking of the organizations of space, time, and scales in spatio-temporal analyses.
Therefore, the remainder of this article is organized as follows. Section 2 provides a systematic review of
the triangular model (TM) and its variants as well as their applications in real-world data analyses.
Section 3 introduces the concept of pyramid model (PM) and its application in multi-scale spatial
analyses. The utility of the PM is demonstrated in a case study visualizing fragmentation indices of
land cover at multiple spatial scales. Section 4 discusses the conceptualization of a high-dimensional
data model that unifies space, time, and scales for multi-scale spatio-temporal analyses. Finally,
the strengths and limitations of these models are discussed, and future research directions are outlined.
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2. Triangular Model

2.1. Concept

Time intervals are conventionally represented as linear segments in a one-dimensional space
(Figure 1a). A second (vertical) dimension is used to differentiate time intervals and can be arranged
and sorted according to user-specified criteria. The linear model is limited in visualizing a large
number of intervals and prohibits pattern recognition of intervals given the flexible arrangement of
the second dimension. Alternatively, a time interval can be represented as a point in a 2D space
by its starting and ending point (or midpoint and length). In the triangular model, a time interval
(starting at I− and ending at I+) can be mapped to a point at ((I+ + I−)/2), (I+ − I−)/2)) in a 2D
Cartesian coordinate system (Figure 1b). The position of the point in the horizontal axis ((I+ + I−)/2))
indicates the midpoint of the interval, while the vertical position ((I+ − I−)/2)) is proportional to the
length of the interval. Using this approach, all time intervals can be represented as unique points in a
2D coordinate space. Figure 1c demonstrates a TM depiction of the five intervals shown in Figure 1a.
The TM represents linear time intervals in a fixed structure of points, which facilitate the comparison of
temporal locations (x coordinates), durations (y coordinates), and temporal relations (e.g., temporal
overlap). All of these properties are visually evident in Figure 1a for the small sample shown here
but not as easily worked with for increasingly large datasets. By converting temporal relations into
a spatial representation, simple GIS operators (e.g., a point-in-polygon search) can computationally
determine the originally mentioned properties, as well as concurrencies, boundary conditions, and
other temporal properties for any set of intervals. Fundamentally, the TM extends the linear time in a
1D space into a 2D space coordinated by temporal location (mid-point) and temporal scale (duration).
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Figure 1. The transformation from the linear model to the triangular model (TM). (a) Time intervals
in the linear model. (b) Projecting a time interval into a point in the TM. (c) Time intervals in (a)
represented in the TM (adapted from [13]).

Allen [20] defined thirteen topological relations between time intervals (Figure 2a), which were
later extended into the region connection calculus (RCC) that defines spatial relations [21]. In a TM,
temporal relations between time intervals can be transformed into spatial relations between zones.
Given a reference interval I1, all intervals (e.g. I2, I3, and I4) before I1 are located in a triangular
zone in the left corner of the study area (Figure 3). This zone is then defined as the before zone of
I1 which encloses all intervals before I1. Analogously, other temporal relations can be represented
by unique zones in the 2D space in different spatial relations to the reference interval (Figure 2b).
Based on this unique feature of the TM, Qiang et al. [14] developed a set of graphic query tools
that enable users to define temporal queries by creating geometric zones in the 2D space of the TM
(see Figure 4). All interval points that are spatially contained by the zone meet the temporal constraints
(e.g., during, before, and overlaps) described by the zone. Composite queries connected by logical
operators can be represented by the intersection and union of query zones, which is more intuitive
than mathematic equations.
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Figure 2. Representing temporal relations in the TM. (a) Thirteen topological relations between time
intervals. (b) The representation of the temporal relations in the TM. (adapted from [15]).
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Figure 3. Representing temporal relations as spatial relations in the TM. (a) Time intervals (I1–4) in the
linear model. (b) Time intervals (I1–4) in the TM. (c) the before zone of I1.
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Figure 4. Temporal queries in the TM by creating 2D zones. (a) Selecting intervals during I1.
(b) Selecting intervals contained by I1. (c) Selecting intervals containing I1 and in-between (I2, I3) (adapted
from [14]).

2.2. Analysis of Crisp Time Intervals

An analytical tool integrating the TM with a GIS was developed, which is called the GeoTM [14].
The TM was implemented in a GIS for two reasons. First, many geospatial datasets have associated
time intervals and there is no GIS that can analyze interval-based geospatial data. Second, GIS has
robust functionalities in processing and analyzing 2D geometries, which can be directly used to analyze
the 2D representation of time intervals and temporal relations in the TM with minimal re-development.
The GeoTM consists of a map view and a TM view, displaying spatial locations and time intervals
respectively (see Figure 5). The views are dynamically linked so that when time intervals are selected
in the TM view, the corresponding spatial geometries (points, lines, or polygons) in the map view
are simultaneously selected, and vice versa. The graphic query tools introduced in Figure 4 were
implemented in the TM view for users to select intervals. All interval points contained by or on the
boundary of the geometry can be selected based on spatial topology built in GIS.

The utility of the GeoTM has been tested in a case study of analyzing spatio-temporal data
detected by a Bluetooth tracking system [14]. The system consists of a number of Bluetooth sensors
that continuously detect active Bluetooth devices within a range of about 25 meters. The collected
data include the MAC (media access control) address of the detected device, the location where the
device is detected (i.e., the sensor location) and the time interval during which the device is detectable.
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A large quantity of interval-based spatial data was collected in the 2010 Ghent Festivities [14,22].
The GeoTM provides an efficient visualization of the large quantity of time intervals as well as the
associated locations in space. By visual observation of the pattern of the interval points, one can
identify meaningful clusters such as people leaving the events together, people entering the event
together, crowds of moving people and crowds of standing people. Assisted by the graphic query
tools in the TM view and the dynamically-linked map view, users can interactively explore spatial and
temporal distributions of the data. The specific analyses of this dataset can be found in [14].
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2.3. Imperfect Time Interval

2.3.1. Rough Time Interval

Time intervals with exact start and end points (e.g., the intervals illustrated in Sections 2.1 and 2.2)
are called crisp time intervals. In some circumstances, due to incomplete information, the start and
end of an interval are only known within a range. Time intervals of events can be modeled by rough
sets that define the upper and lower approximations of the interval, leading to rough time intervals [23].
Rough time intervals can be used to describe the presence time of geographic features captured by a
time series of remotely sensed images. During World War One (WWI) for example, a large number of
aerial photos were taken by the participating nations for reconnaissance purposes. From a time series of
images, the presence of a military feature can be observed at specific time points (the acquisition time of
the image). However, the feature’s presence between two timestamps is unknown. With these discrete
snapshots, the time interval of a feature’s presence can be described by a rough time interval (Figure 6).
The upper approximation (I) is the longest extent of the interval (feature presence) and the lower
approximation (I) is the shortest extent. R(I−) and R(I+) are ranges in which the starting and ending
point are located respectively.
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Figure 6. Rough time interval of a military feature’s lifetime in a time series of aerial photos.

As introduced in [15,16], a rough time interval can be represented as a rectangle in the
TM (Figure 7a–c). The four vertices of the rectangle are determined by the upper and lower
approximation of the rough time interval. The rectangle confines an area in which the exact interval
point is located. Conventionally, the temporal information of military features captured by the aerial
photos is stored in database tables, which are not easy to analyze. In contrast, the TM provides a visual
representation of a large amount of rough time intervals, from which people can observe the temporal
distribution and clusters of rough time intervals in a 2D space (Figure 8a). The graphic query tools
described in Figure 4 can be applied to rough time intervals with a probability threshold. The overlap
ratio of the query zone and the rectangle of a rough time interval (i.e., R(I)∩A/A) is the probability
that the rough time interval meets the query condition (Figure 7d). The specific analyses of rough time
intervals of military features in WWI are documented in [17].
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Figure 8. (a) Visualizing rough time intervals of the military features in the WWI aerial photos.
The dark areas are clusters of the intervals and I1–4 indicate difference phases (time intervals) of the
war. (b) Selecting features of Cluster 2 (artillery attack from the Allies army) in the GeoTM (modified
from [17]).

2.3.2. Fuzzy Time Interval

Fuzzy set theory can be used to model temporal events with continuous probability. For example,
it is difficult to determine the exact time when the Industrial Revolution started and finished. Though
some historians like to use the invention of the steam engine to mark its beginning, it is unnatural to
define that the event suddenly started when the steam engine was invented. A fuzzy time interval
is modeled by a membership function Ĩ(t) that maps every time point x in the timeline to a number
between 0 and 1, representing the truth of whether t is in the interval. Temporal relations of a fuzzy time
interval are represented as different patterns of continuous fields in the TM, which can be implemented
as a raster in a 2D space. The value at a specific location indicates the probability that a crisp time
interval I is in a certain relation to the fuzzy time interval Ĩ(t). Figure 9 illustrates three different
locations of a crisp time interval (I1) and a fuzzy time interval ( Ĩ2) and the different probabilities of the
relation I1 during Ĩ2. Extending from Figure 9, the relational zones of a fuzzy time interval become
continuous fields of probabilities in a 2D space (Figure 10). The temporal reasoning between fuzzy
time intervals can be modeled by the spatial overlay of the continuous fields. The reasoning of a fuzzy
time interval in the TM was preliminarily discussed in [15,24]. The utility of the TM in analyzing fuzzy
time intervals has not yet been investigated in case studies with real-world datasets.
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Figure 10. Representing temporal relations of a fuzzy time interval Ĩ(t) in TM (adapted from [15]).

2.4. Time Series

2.4.1. Visualization

Analogous to the discrete and continuous representations of space, time intervals and time series
can be viewed as the discrete and continuous representations of time respectively. A time series is
formed by a sequence of equal-length time intervals with attributes. The length of the intervals is
the resolution of the time series. Conventional linear models (such as line chart) can only display
time series at a single temporal resolution (e.g., Figure 11a). Alternatively, the continuous triangular
model (CTM) was introduced in [17], which represents all intervals in a time series as points at
different positions in a 2D space (e.g., Figure 11b,c). The value at a point is a function (e.g., average,
sum, standard deviation) of the time series within the interval. Theoretically, all intervals within
a time series can be represented as a continuous field in the TM. For visualization and analytical
purpose, a CTM can be implemented in a 2D raster where each cell represents a specific interval
and is associated with attributes in the interval (Figure 11d). Figure 12 illustrates the TM and linear
representation of the moving speed of a player during a soccer game. Colors of the pixels in the CTM
indicate the player’s average speed at different intervals. Compared with the line chart that displays
the temporal variation at a single scale, the CTM visualizes the values and variations aggregated at
different lengths of intervals. In other words, the CTM provides a multi-scale representation of the time
series. The horizontal dimension indicates the location (mid-point) of an interval in the timeline, while
the vertical dimension indicates the scale (lengths of intervals). In the CTM in Figure 12b, short-term
fluctuations can be observed at the lower levels (e.g., high moving speed in I1, I2, and I3) and long-term
trends can be observed at higher levels (e.g., high speed in I4, low speed in I5). The hierarchical
structure of variations at different scales is presented as well [17,25]. In addition to time series data,
the TM can be used to represent other types of linear data such as traffic queues along a road and
DNA sequences.
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Figure 11. Representing time series in the TM. (a) Time series represented in a line chart and
color-coded linear raster. (b) The TM representation of the base intervals in a time series. (c) The TM
representation of all intervals in a time series. (d) Rasterized TM with grey-coded attributes.
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2.4.2. Map Algebra for CTM

As long as the scale ratio between the horizontal (length) and vertical (midpoint) axes are
fixed, the CTM becomes a coordinate space where each point corresponds to a specific time interval.
As spatial analysis tools can be utilized in such a 2D coordinate space, multiple time series in the
same time frame can be compared using map algebra. Air quality is a long-standing issue in Beijing,
which has drawn public attention. Before the 2008 Olympic Games, the Chinese government took a
series of measures to improve the air quality in Beijing. However, the air quality fluctuates due to
meteorological conditions, weekly work schedule, and pollution caused by heating in the winter
(Figure 13a), which makes it difficult to evaluate the improvement of air quality and the effect of the
measures. Using the CTM, time series of air quality index (AQI) in the two years can be compared by
subtracting their TMs. The result can be reclassified into a binary output, indicating intervals in which
the air quality improved or degraded. The comparison results in Figure 13d are presented at multiple
temporal scales, this can be interpreted as the AQI generally improving in 2008 except for the period
from March to June and short periods in October and December when the AQI declined compared to
2007. Additionally, map algebra operations on CTMs can be combined into a workflow to answer
multi-criteria decision-making questions related to time series, following the principles of cartographic
modeling for spatial data. More detailed applications of the CTM are demonstrated in [17].
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Figure 13. Using map algebra to compare air quality in Beijing in 2007 and 2008. (a) Time series of PM10
AQI in Beijing in 2007 and 2008. (b) The TM of the 2007 AQI. (c) The TM of 2008 AQI. (d) The binary
result of subtracting the 2007 TM from the 2008 TM (TM2008–TM2007).
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3. Pyramid Model

3.1. The Concept

The TM represents linear time in a 2D time-scale space. Following the same modeling principles,
2D spatial data can be extended into a 3D space by adding the dimension of spatial scale, leading to a
pyramid model (PM) with progressive aggregation of spatial units. The concept of the PM is similar to
an image pyramid (e.g., Figure 14 (left)), which represents a raster image on multiple resolutions by
aggregation and resampling. Image pyramids were originally developed in the areas of computer
vision, image processing, and signal processing [26,27], and are widely used to enhance the efficiency of
multi-scale raster rendering in GIS [28–30]. In our approach, the construction of a PM is similar to that
of the TM in the sense of developing a hierarchy; but the PM represents space across scales instead
of time. In the PM, each point in the 3D space represents a specific 2D area in the horizontal space
(Figure 14 (right)). The horizontal position (x, y) of the point indicates the spatial location of the area
(i.e., the geometric centroid), while the vertical position of the point (z) indicates the spatial extent of the
area (i.e., the area). For instance, in the simplest configuration for a raster, pixels at the finest resolution
can be represented as points at the lowest level in the pyramid (Figure 15). Points at the second level
represent the square area of four pixels (2 × 2) in the raster. Points at the nth level represent square
areas of n2 pixels. The position of a point in the 3D space is defined as coordinates of (x, y, z), where (x,
y) represent the centroid of the square area and z indicates the spatial extent of the area. In this case,
z is proportional to the size of the square. Thereby, the raster data can be represented by a uniform
lattice of points in a 3D space (Figure 15)

For computing and visualization purposes, the PM can be implemented as a 3D raster, where each
voxel is associated with a function f (x, y, z) of the area it represents. The function can be focal statistics
(e.g., ratio, mean, standard deviation) or local spatial indices (e.g., spatial autocorrelation, density,
fragmentation indices). Other than raster data, the configuration of the PM can also be modified to
represent irregular tessellations and vector features. For instance, the PM representation of Voronoi
polygons could be an irregular point lattice where the point positions are defined by the geometric
centroid (x, y) and size of polygons (z). Additionally, the kernel density of points calculated using
different search bandwidths can be represented in the PM where z indicates the bandwidth. This study
will demonstrate the utility of the PM for representing raster data. The PM representations of other
types of spatial data types will be reported in future studies.
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3.2. Multi-Scale Spatial Analysis

The utility of the PM is demonstrated in analyzing wetland fragmentation in coastal Louisiana.
Published evidence shows that fragmented wetland habitats may accelerate wetland erosion and
wetland loss (e.g., [31]). Environmental disruptions can drive animal and plant populations in
fragmented small habitats to extinction [32]. As one of the most vulnerable coasts in the United
States, coastal Louisiana has lost coastal area equivalent to a football field every 100 minutes from 1932
to 2016 [33]. In addition to natural processes such as land subsidence and sea level rise, land loss in
this region is largely due to human activities, such as the construction of oil and gas pipelines and
transportation canals, which accelerated the fragmentation of coastal wetland in this area [34,35].

Calculating local indices of fragmentation may help to identify areas that are most fragmented.
In this study, we choose to use fractal dimensions to characterize the level of fragmentation in the
land cover data. Fractal dimensions calculated in different sizes of moving windows may lead to
different results. In other words, the identification of most fragmented areas is dependent on the
size of the area being asked. Similar issues also exist in other indices of spatial pattern such as density,
spatial autocorrelation, and terrain roughness indices. In this study, a binary land cover raster with
576 × 576 cells at a 3 m resolution was clipped from the wetland in the Mississippi Delta (Figure 16a).
Traditionally, the local fractal dimension would be calculated at one or a few pre-selected scales
(e.g., Figure 16c,d), leading to different spatial patterns. However, these discrete calculation results
cannot fully uncover the variation of fractal dimensions at different scales.
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Figure 16. Calculating local fractal dimensions of a land cover raster. (a) A binary land cover raster in
the wetland in the Mississippi Delta. (b) Local fractal dimension of the land cover data in a 11× 11 cells
moving window. (c) Local fractal dimension in a 21 × 21 cells moving window. (d) Local fractal
dimension in a 31 × 31 cells moving window.
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Alternatively, using the land cover raster as the base, local fractal dimensions of different sized
focal windows can be stacked into a 3D PM (Figure 17), in which the lower layers represent fractal
dimensions calculated in smaller moving windows, and the higher layers represent fractal dimensions
in larger moving windows. In such a way, fractal dimensions calculated in all different sizes of moving
windows are organized in a hierarchical structure in the PM. The vertical dimension (z) in the PM
indicates the scale of analysis. The internal variation of the PM can be explored using 3D visualization
techniques. For instance, 3D isosurfaces can display voxels with the same value as contour lines
for 2D data. As fractal dimensions calculated in different sizes of moving windows have different
value ranges, the absolute values of fractal dimensions were rescaled to [0, 1] at each level, in which
0 indicates the minimum fractal dimension and 1 indicates the maximum. Figure 18 displays the
isosurface of voxels with a fractal dimension of 0.99. These voxels represent the most fragmented
areas calculated at all different scales, which are located at different places. Compared to the discrete
images shown in Figure 16, the PM presents an overview of the continuous change of a spatial index
(i.e., fractal dimension) at different places and scales.
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4. A Multi-Scale Analytical Framework

The TM is a multi-scale model of temporal data. The PM is a multi-scale model of spatial data.
The combination of the TM and the PM will lead to a multi-scale framework for spatial and temporal
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data, which is referred to as the continuous spatio-temporal model (CSTM) in [20]. In the CSTM,
an atomic element (x) consists of four dimensions including spatial location (s), spatial scale (s′),
temporal location (t), and temporal scale (t′). An example of a CSTM element is “the average
precipitation across Honolulu County on October 30th, 2017 is 3.2 inches” in which s is Honolulu, s′

is county, t is 30 October 2017, t′ is day. Different types of analyses can be represented as functions
that use any of the four dimensions as variables. For instance, f (s) represents spatial analysis that
investigates variations at different spatial locations. f (t) concerns change over time. f (s′) and f (t′)
represent cross-scale comparisons, for instance comparing the daily precipitation in Honolulu with
state or national averages or with the monthly or yearly average. f (s, t) leads to spatio-temporal
analysis such as a space-time cube. f (t, t′) represents multi-scale temporal analysis in the TM, while
f (s, s′) is a multi-scale spatial analysis in the PM. Theoretically, 15 types of analyses are possible by

varying one or more of the four dimensions (i.e.,

(
4
1

)
+

(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 15). However,

current analytic tools are limited to analyses in less than two dimensions. For instance, GIS mainly
deals with f (s) analyses. Some GIS have limited temporal functionalities to deal with f (s, t). Future
research should focus on the development of novel systems that can flexibly integrate the four analysis
dimensions to fully explore the complexity of spatio-temporal data.

Due to the high-dimensionality, the CSTM cannot be completely displayed in a simple
visualization like the TM and the PM. Figure 19 provides a conceptual illustration of the
representation of spatio-temporal data in the CSTM. Analyses in the CSTM will be supported by
interactive manipulation and dynamic linkages of multiple visualizations. The data can be flexibly
analyzed and aggregated in one or multiple dimensions. For instance, a user can visually observe
the spatial pattern of data in the PM; by clicking on a voxel or selecting a set of voxels in the PM,
the temporal variation of the voxels will be displayed in a TM. The same analysis can be conducted
in a reverse way from the TM, displaying the PMs of pixels in a TM. Other forms of visualization
(e.g., maps and statistical graphs) will aid the analysis. In addition to visual analytics, advances in
machine learning techniques provide opportunities to model and recognize patterns and relationships
of data organized in the high-dimensional model. A typical problem extended from the spatial analysis
is whether clusters and hot spots can be discovered in the CSTM. Taking the rainfall scenario as an
example, each element in the CSTM is associated with a quantity of rainfall (e.g., mean, standard
deviation, range) for a specific area and specific time interval (i.e., f (s, s′, t, t′)). Elements that are
significantly departed from the baseline condition (i.e., the average condition during a base period) can
be deemed as anomalies. These anomalies exist at different positions in the dimensions of s, s′, t, and
t′. By analyzing the interrelations and hierarchical structure of these anomalies in the CSTM, we can
better understand the complexity of the change in climate and identify events that occurred at local
and short-time scales that could signalize large-scale and long-term climate change. The analytical
tools and applications based on the CSTM will be described in future publications.
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5. Discussion

In most GIS and analytical systems, time is viewed as linear streams and space is represented as
flat layers. However, we argue that these traditional representations are essentially based on human’s
conceptualization of time and space, which do not necessarily describe the real ‘shapes’ of time and
space. The intuitiveness of these representations stems from the historical dominance of traditional map
design and other graphic representations that have been widely adopted in all aspects of humans’ lives.
A typical example is that many people have trouble finding their home countries in an upside-down
world map where north is pointing down, as maps with an up-north orientation are dominant.
The visual representations of space and time have been pre-defined even in the early education of
children. In other words, the intuitiveness of the traditional representations may be due to the
long-time training rather than the cognitive efficiency of the representations. An empirical study
with about 250 participants showed that the TM is more efficient than the traditional linear model for
visual queries of time intervals after a 20-minute learning session about the TM and the advantage of
the TM expands as the number of intervals increases [19]. This study reflects that it is not difficult
for humans to accept another representation of time and use it to solve problems after cognitive
processes. Additionally, the merits of the TM and the PM were recognized by domain experts of the
analyses demonstrated in this article after short explanations. With the development of computers
and visualization techniques, it is time to explore the potential of alternative representations of space
and time. Beyond the descriptions of the models and analytical tools, this article aims to inspire more
profound thinking about new organizations of space, time, and scales in GIS and analytical systems.
In the future, more empirical studies should be conducted to assess the usability of the TM and the PM
in not only analytical tasks but also educational activities.

The TM for time and the PM for space follow the same modeling principle; they both add
scale as an additional dimension to time and space respectively. This organization overcomes the
limitations of the traditional linear time and flat space model that can only represent one partitioning
granularity of time and space. In the TM and the PM, different sizes of temporal and spatial units are
systematically organized in a coordinate space so that variations in different temporal and spatial scales
can be observed in a single visualization space. Such a multi-scale representation provides additional
information for people to visually detect patterns in different scales and the cross-scale structure
among the patterns. The next step will be developing machine learning methods to automate the
detection and classification of multi-scale patterns and relationships. Hypothetically, the variations and
structures along the scale dimension would provide additional information for computer algorithms
to recognize patterns and relationships embedded in the dataset. An interesting test is comparing the
accuracies for time series classification of models trained in the linear model and the CTM respectively.
A similar test can be conducted to compare the performance of models trained in 2D spatial data and
3D pyramids respectively. Positive test results would suggest better performance of the multi-scale
data models (CTM, PM, and CSTM) in spatial and temporal modeling. In the analysis of land
fragmentation in Section 3.2, neural networks can be used to model the relation between land loss
ratios and fragmentation indices calculated in local windows of different sizes. The training of the
model will not only take into account variations over space but also variations extending to higher and
lower scales. The goodness-of-fit of the model at multiple scales can be organized in a PM, informing
where and at which scale land fragmentation can best predict wetland loss. Other than the improved
modeling performance, the modeling result organized in a multi-scale structure is also important for
understanding the factors of wetland loss and planning for coastal restoration at different spatial scales.

In addition to separate representations of time and space in the TM and the PM, the conceptual
model of the CSTM can be implemented as a high-dimensional data model where variations of data
in space, time, and scales can be analyzed in a unified framework. One potential application of the
CSTM is climate anomaly detection. Conventionally, climate anomalies are analyzed in a pre-defined
temporal resolution (e.g., daily, monthly, yearly window) and spatial resolution (e.g., the average
value in spatial regions). Anomalies aggregated in other spatial and temporal scales are often masked
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out. When climate data is organized in the CSTM, climate anomalies at different places, times, and
spatial and temporal resolutions can be detected simultaneously and the interrelations among the
multi-scale anomalies can be analyzed. Assisted by visualization tools and machine learning methods,
the CSTM could help to understand the complexity of the climate and capture signals of long-term and
large-scale climate change from short-term and local anomalies. As the scale issue universally exists in
spatio-temporal modeling and analysis, the CSTM can be widely applied to understand multi-scale
spatio-temporal characteristics of different natural and social phenomena.

6. Conclusions

This article elaborated alternative representations of time and space. First, it provided a
systematic review of the triangular model (TM) and its applications in analyzing different types
of temporal data. Second, it presented the pyramid model, which is an extension of the TM for
spatial data, and its application in multi-scale visualization of spatial patterns. Third, it discussed
the potential of a high-dimensional data model that unifies space, time, and scales to support more
complex spatio-temporal analyses and modeling. In addition to the descriptions of the models and
applications, the study aims to provoke re-thinking about the representation and organization of space,
time, and scales in GIS and inspire the development of novel analytical tools to handle the increasing
quantity and complexity of spatio-temporal data in the era of big data.
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