
 International Journal of

Geo-Information

Article

Mr4Soil: A MapReduce-Based Framework Integrated
with GIS for Soil Erosion Modelling

Zhigang Han 1,2,3,* , Fen Qin 1,2,*, Caihui Cui 1,3, Yannan Liu 4, Lingling Wang 5 and Pinde Fu 6

1 College of Environment and Planning, Henan University, Kaifeng 475004, China; chcui@henu.edu.cn
2 Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of

Education, Kaifeng 475004, China
3 Urban Big Data Institute, Henan University, Kaifeng 475004, China
4 School of Computer and Communication Engineering, Zhengzhou University of Light Industry,

Zhengzhou 450002, China; lyn2018@zzuli.edu.cn
5 Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission of the Ministry of

Water Resources, Zhengzhou 450003, China; wanglingling@hky.yrcc.gov.cn
6 Environmental Systems Research Institute, Inc. Redlands, 380 New York Street,

Redlands, CA 92373-8100, USA; pfu@esri.com
* Correspondence: zghan@henu.edu.cn (Z.H.); qinfen@henu.edu.cn (F.Q.)

Received: 10 January 2019; Accepted: 22 February 2019; Published: 27 February 2019
����������
�������

Abstract: A soil erosion model is used to evaluate the conditions of soil erosion and guide agricultural
production. Recently, high spatial resolution data have been collected in new ways, such as
three-dimensional laser scanning, providing the foundation for refined soil erosion modelling.
However, serial computing cannot fully meet the computational requirements of massive data sets.
Therefore, it is necessary to perform soil erosion modelling under a parallel computing framework.
This paper focuses on a parallel computing framework for soil erosion modelling based on the
Hadoop platform. The framework includes three layers: the methodology, algorithm, and application
layers. In the methodology layer, two types of parallel strategies for data splitting are defined as
row-oriented and sub-basin-oriented methods. The algorithms for six parallel calculation operators
for local, focal and zonal computing tasks are designed in detail. These operators can be called to
calculate the model factors and perform model calculations. We defined the key-value data structure
of GeoCSV format for vector, row-based and cell-based rasters as the inputs for the algorithms.
A geoprocessing toolbox is developed and integrated with the geographic information system (GIS)
platform in the application layer. The performance of the framework is examined by taking the
Gushanchuan basin as an example. The results show that the framework can perform calculations
involving large data sets with high computational efficiency and GIS integration. This approach is
easy to extend and use and provides essential support for applying high-precision data to refine soil
erosion modelling.

Keywords: soil erosion modelling; parallel computing; Hadoop; MapReduce; GIS

1. Introduction

Soil erosion models are a useful tool for predicting the amount of soil erosion, guiding the
allocation of soil and water conservation measures, and optimizing the utilization of water and soil
resources in basins. As soil erosion has become a global environmental problem influenced by both
natural and human factors, soil erosion modelling is a research topic that has drawn widespread
attention around the world. Since the last century, researchers have established various soil erosion
models from the prototype experiments and observations. In the early stages, the empirical statistical
models were developed based on statistical analyses of observational data collected in plot and small

ISPRS Int. J. Geo-Inf. 2019, 8, 103; doi:10.3390/ijgi8030103 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-9993-3382
http://www.mdpi.com/2220-9964/8/3/103?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi8030103
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2019, 8, 103 2 of 21

watersheds with sheet and rill erosion. Examples of empirical models include the universal soil loss
equation (USLE) [1] or its derivatives (e.g., the revised universal soil loss equation, RUSLE) [2] and
Chinese soil loss equation (CSLE) [3,4]. These models have often been applied for on-site soil erosion
estimates without considering the spatial heterogeneity of the soil erosion process [5]. With advances in
geographic information system and remote-sensing technology, models and predictions of soil erosion
have been developed from empirical statistical models. Now, many models are spatially distributed
or physically based models. The spatially distributed models account for watershed heterogeneity,
as reflected by the land use, soil types, topography, and rainfall, measured in the field or estimated
through digital elevation models (DEMs) or remote-sensing images, and estimates of the sediment
yield are generated in various spatial domains [6]. The Water Erosion Prediction Project (WEPP)
model is a well-known and commonly used example; it is a process-based, spatially distributed
parameter, and continuous simulation and erosion prediction model [7]. From a computational
perspective, soil erosion models, especially spatially distributed models, all involve raster data, such
as precipitation, topographic, soil, and vegetation data. Moreover, such models include various
computational subprocesses and are characterized by large data volumes and intensive computational
tasks. These computations, which involve exceptionally detailed high-resolution soil erosion modelling,
are limited by the data storage and computing speed of the corresponding computing platforms.

In recent years, with the rapid development of information technology, massive amounts of
data have been produced in different fields. To analyse and utilize these big data resources, related
parallel computing methods must be used. Conventional methods usually include high-performance
computing platforms (HPCs) and parallel programming models, such as message-passing-interface
(MPI) and open multi-processing (OpenMP), to split the computational tasks and combine the final
computing results [8]. Additionally, with the development of graphics processing hardware, the ability
of graphics processing units (GPUs) has been improved, leading to the development of the computing
unified device architecture (CUDA) and open computing language (OpenCL) parallel computing
framework [9]. In the GIS and Remote Sensing (RS) field, Guan et al. [10] developed the parallel raster
processing library (pRPL) for raster analysis in GIS. Integrated data management class, a Geospatial
Data Abstraction Library (GDAL)-based raster data Input/Output (I/O) mechanism and a static
and dynamic load-balancing mode were added to pRPL 2.0. Miao et al. [11] implemented a parallel
GeoTIFF I/O library (pGTIOL) based on an asynchronized I/O mechanism that displayed better
performance than using GDAL as the I/O interface. Both the pRPL and pGTIOL are MPI-enabled
libraries. Qin et al. [12] designed and implemented a set of parallel raster-based geocomputation
operators (PaRGO) to overcome the poor transferability of parallel programs. The PaRGO is compatible
with three types of parallel computing platforms: GPUs, the MPI, and OpenMP. This approach makes
the details of the parallel programming and the parallel hardware architecture transparent to users.
Zhang et al. [13] introduced a parallel approach to quadtree construction and implemented on general
purpose GPUs. A performance test yielded a significant speedup for the studied tasks. Although these
libraries rely on parallel computing capabilities for raster data processes, they are limited by particular
hardware environments (GPU/multi central processing unit (CPU)) and software frameworks, making
them difficult to scale or expand.

The MapReduce parallel computing model for big data analysis developed by Google performs
the parallel processing of massive amounts of data through cheaper server clusters [14]. This model
has advantages such as few hardware requirements, rapid scaling, and easy modelling [15]. After
the launch of the Hadoop open-source platform, MapReduce has been extensively used in big data
processing and has formed a complete ecosystem [16]. There are several platforms for spatial big data
processing and analysis such as Hadoop-GIS [17], SpatialHadoop [18], ST-Hadoop [19], GeoSpark [20],
MrGeo [21], GIS Tools for Hadoop [22], Geotrellis [23] and others. In specific areas of spatial data
analysis, a series of Hadoop application cases has also emerged. In the climate data analysis area,
Li et al. [24] proposed a spatiotemporal indexing method that can effectively manage and process
large climate datasets using the MapReduce programming model in the Hadoop platform and built

ISPRS Int. J. Geo-Inf. 2019, 8, 103 3 of 21

a high-performance query analytical framework for climate data using the Structured Query Language
(SQL) style query (HiveQL) [25]. Gao et al. [26] harvest crowd-sourced gazetteer entries running on
a spatially enabled Hadoop cluster. Similar research areas include atmospheric analysis [27], large-scale
Light Detection and Ranging (LiDAR) data analysis [28], remote sensing [29], trip recommendation [30],
and others [31,32]. These platforms and cases are suitable for different spatial data and can be applied
in different applications and domains. In this paper, we focus on integrating the Hadoop platform
with GIS for parallel computing involving soil erosion modelling.

With the rapid development of geographic information technology, three-dimensional laser
scanning technology can be applied to obtain high-precision geographic information data such as
DEM data at the basin scale. As the resolution of raster data has increased, the data volume has
exponentially grown, thus demanding a higher requirement for refined large- to medium-scale soil
erosion modelling in basins. The Hadoop parallel computing platform can be used to build a parallel
computing framework for soil erosion modelling and then be tightly integrated or coupled with GIS
for refined soil erosion modelling. In this study, we implemented a parallel computing framework
(Mr4Soil) integrated with the GIS platform. The framework includes three layers: the methodology
layer, algorithms layer, and application layer. We designed two types of parallel computing strategies as
rows-oriented and sub-basin-oriented methods using a spatially distributed model for annual sediment
yield associated with soil erosion. We developed parallel algorithms for soil erosion modelling in
the Hadoop platform based on the MapReduce parallel computing method. A series of experiments
showed that Mr4Soil yielded better performance than other conventional serial programming methods.
Thus, the proposed approach provides a solution for the refined soil erosion modelling on the Hadoop
platform, which is integrated with a GIS platform.

2. Mr4Soil Framework Overview

2.1. Model Description

This study uses the annual sediment yield model for the large- to medium-scale basins developed
by the Yellow River Institute of Hydraulic Research. Adopting Chinese Soil Erosion Equations and
implementing a spatially distributed method, the model is based on the spatial discretization of the
basin and comprehensively considers influences such as precipitation, soil, and topography. Therefore,
the model is suitable for estimating the annual sediment yield of large- to medium-scale basins. The
model formula [33] is as follows:

Ai = R× K× LS× B× E× T × g (1)

where A is the annual soil erosion in raster cell i; R is the rainfall erosivity, which is calculated at
each rain gauge station in the basin by using long-term mean monthly rainfall data; K is the soil
erodibility factor, and E is the soil and water conservation practice factor. The values of K and E
are related to different soil types and the distribution of soil and water conservation engineering
measures in the river basin. Among them, the K factor mainly considers the composition of soil organic
carbon and the particle sizes of different soil types, and E is estimated using statistical data in different
administrative regions in the river basin. LS is a topographic factor that can be calculated using a CSLE
model based on the extracted slopes and slope length parameters. B is a vegetation factor that reflects
the influence of surface vegetation on soil erosion. B can be estimated for different land uses and
vegetation coverages. T is the tillage factor, which reflects the relationship between soil erosion and
farming methods, and it can be determined according to the reduction in soil erosion as a result of
contour ploughing under different slope conditions. Additionally, g is the gully erosion factor, which
reflects the degree of erosion by surface runoff in the river basin, and the annual mean value can be
calculated by considering the slope conditions. The calculation methods for each factor are shown in
Tables 1 and 2.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 4 of 21

Table 1. Soil erosion model factors calculation method.

Factors Calculation Method Parameters Notes

R R = 0.183FF
1.996, FF = 1

N

N
∑

i=1
(

12
∑

j=1
P2

i,j)/(
12
∑

j=1
pi,j)

Pi,j is the rainfall of i year, j months, N is
the number of years

K
K =

{
0.2 + 0.3 exp

[
0.0256SAN

(
1− SIL

100

)]}
×
(

SIL
CLA+SIL

)0.3
×[

1.0− 0.25C
C+exp(3.72−2.95C)

]
×
[
1.0− 0.7SN1

SN1+exp(−5.51+22.9SN1)

] SAN/SIL/CLA/C are the corresponding
soil types of sand grains, powders, sticky
grains and organic carbon content, SN1 =
1 − SAN/100

LS
S =

10.8sinθ + 0.03, θ < 5◦

16.8sinθ − 0.50, 5◦ ≤ θ < 10◦

21.9sinθ − 0.96, θ ≥ 10◦
θ is the slope of the raster cell

L = (λ/22.1)m; m =

0.2, θ ≤ 1◦

0.3, 1◦ < θ ≤ 3◦

0.4, 3◦ < θ ≤ 5◦

0.5, θ > 5◦
λ is the slope length

B f = NDVI−NDVImin
NDVI−NDVImax

f is vegetation cover ratio, NDVI is
normalized vegetation index, B value is
shown in Table 2

E E =
(

1− αSt
S

)
×
(

1− βSd
S

)
×
(

1− ωNd1+εNd2
A×S

)
S/Sd/S are the area of terraced fields, silt
storage dams and total land, α/ β are the
sand reduction coefficient of terraced
fields and silt storage dams, Nd1/Nd2 and
ω/ε are the number and sand reduction
quota of sand or check dam, A is the
annual erosion modulus

T T =

1.000, θ = 0◦

0.100, 0◦ < θ ≤ 5◦

0.221, 5◦ < θ ≤ 10◦

0.305, 10◦ < θ ≤ 15◦
, T=

0.575, 15◦ < θ ≤ 20◦

0.705, 20◦ < θ ≤ 25◦

1.000, θ ≤ 25◦
θ is the slope of raster cell

g G = 1 + 1.60 sin(θ − 15) θ is the slope of raster cell

Table 2. B factor values for different land-use and vegetation cover ratio.

Landuse Vegetation Coverage (%) B Factor Value

Forest/grass

0~20 0.10 (forest) 0.45 (grass)
20~40 0.08 (forest) 0.24 (grass)
40~60 0.06 (forest) 0.15 (grass)
60~80 0.02 (forest) 0.09 (grass)

80~100 0.004 (forest) 0.043 (grass)

Construction - 0.9

Water - 1

Arable - 0.23

From a computational perspective, this model involves a large amount of raster analysis
computations. According to the range of raster neighbourhoods involved in the analysis, the computing
tasks can be classified into three types: (1) local operations, which use the calculation results of the
current raster cell are independent of other cells and only related to the information about itself or
raster cell at the same position in other layers; (2) focal operations, which use the calculation results
of the current raster cell are related to neighbouring cells within a certain range, in which a typical
neighbourhood is a 3 × 3; and (3) zonal operations, which use the calculation results of a single
cell that affect those of other cells, and the affected range is an irregular zone (e.g., a sub-basin).
The aforementioned tasks affect data splitting strategies for model parallel computing.

2.2. Framework Overview

According to the structure and computational requirements of the soil erosion model, the Mr4Soil
parallel computing framework is designed, as shown in Figure 1. The framework includes three layers

ISPRS Int. J. Geo-Inf. 2019, 8, 103 5 of 21

such as the methodology layer, algorithm layer, and application layer. In the methodology layer,
the data splitting strategies for splitting by row and splitting by sub-basin are designed according to
the three types of operational tasks first. Then we abstract six parallel computing operators in the
algorithm layer. The operators consist of (1) local operation parallel operators, including the spatial
interpolation, vector rasterization, and map algebra operators, which are suitable for the strategy
of non-overlapping splitting by row and are used to calculate R, K, E, B, and soil erosion; (2) focal
operation parallel operators, including the slope analysis and flow direction analysis operators, which
are suitable for the strategy of overlapping splitting by row and are used to calculate T, g, and LS; and
(3) zonal operation parallel operators, mainly involving the slope length extraction operator, which
is suitable for the sub-basin splitting strategy and is used to calculate the slope length of LS. The six
parallel computing operators are implemented using the Hadoop platform MapReduce library. These
operators can be called during soil erosion modelling. From six parallel computing operators, functions
of the model parameters and the model computations are developed and compiled as Java jar file to
execute on the Hadoop platform. The methodology and algorithm layer are in the Hadoop platform.
To integrate the soil modelling parallel functions with GIS platform, tools for cluster connection, data
pre-processing, and model computation are implemented using the ArcPy library, Secure Shell (SSH)
remote access protocol, and Python language. The remote execution of parallel computing functions in
the soil erosion model is achieved in the ArcGIS environment of the local machine.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 22

2.2. Framework Overview

According to the structure and computational requirements of the soil erosion model, the
Mr4Soil parallel computing framework is designed, as shown in Figure 1. The framework includes
three layers such as the methodology layer, algorithm layer, and application layer. In the
methodology layer, the data splitting strategies for splitting by row and splitting by sub-basin are
designed according to the three types of operational tasks first. Then we abstract six parallel
computing operators in the algorithm layer. The operators consist of (1) local operation parallel
operators, including the spatial interpolation, vector rasterization, and map algebra operators, which
are suitable for the strategy of non-overlapping splitting by row and are used to calculate R, K, E, B,
and soil erosion; (2) focal operation parallel operators, including the slope analysis and flow direction
analysis operators, which are suitable for the strategy of overlapping splitting by row and are used
to calculate T, g, and LS; and (3) zonal operation parallel operators, mainly involving the slope length
extraction operator, which is suitable for the sub-basin splitting strategy and is used to calculate the
slope length of LS. The six parallel computing operators are implemented using the Hadoop platform
MapReduce library. These operators can be called during soil erosion modelling. From six parallel
computing operators, functions of the model parameters and the model computations are developed
and compiled as Java jar file to execute on the Hadoop platform. The methodology and algorithm
layer are in the Hadoop platform. To integrate the soil modelling parallel functions with GIS
platform, tools for cluster connection, data pre-processing, and model computation are implemented
using the ArcPy library, Secure Shell (SSH) remote access protocol, and Python language. The remote
execution of parallel computing functions in the soil erosion model is achieved in the ArcGIS
environment of the local machine.

Figure 1. Overview of parallel computing tools for the soil erosion model.

2.3. Data-Splitting Methods

The Hadoop platform uses the MapReduce programming model to perform distributed
computing on big data. This model provides a complete set of programming interfaces for developing
distributed application programs. By splitting the input data, computations are performed for each
subslice by the Mapper process, and the computational results for the subslices are then combined in
a reducing process [34]. Ideally, the processing among various computing nodes after data splitting
should be independent of each other to minimize the cost of communication among nodes. According

Zonal Calculation
TaskM

et
ho

do
lo

gy

La
ye

r

Non-overlaped
Row Based Split

Local Calculation
Task

Focal Calculation
Task

Overlaped Row
Based Split

Sub-basin Based
Split

A
lg

or
ith

m
s L

ay
er

Spatial
Interpolation

Vector
Rasterizing

R
Factor

K
Factor

B
Factor

Slope Flow
Direction

Slope
Length

LS
Factor

Map
Algebra

E
Factor

T
Factor

g
Factor

Soil Erosion Model (A=R×K×LS×B×E×T×g)

A
pp

lic
at

io
n

La
ye

r

Python ArcPy Package Parameko LibrarySSH Protocol

Cluster
Connection

Data
Preprocessing

Model and Factor
Calculation

Lo
ca

l G
IS

 P
la

tfo
rm

Re
m

ot
e

H
ad

oo
p

 C
lu

st
er

Figure 1. Overview of parallel computing tools for the soil erosion model.

2.3. Data-Splitting Methods

The Hadoop platform uses the MapReduce programming model to perform distributed
computing on big data. This model provides a complete set of programming interfaces for developing
distributed application programs. By splitting the input data, computations are performed for each
subslice by the Mapper process, and the computational results for the subslices are then combined in
a reducing process [34]. Ideally, the processing among various computing nodes after data splitting
should be independent of each other to minimize the cost of communication among nodes. According
to this requirement and the calculation task characteristics of the soil erosion model, we designed two
data splitting strategies as follows.

(1) Split by row. In this splitting strategy, according to the number of computational nodes in
parallel clusters, the raster data are split according to the number of rows. The raster data in the

ISPRS Int. J. Geo-Inf. 2019, 8, 103 6 of 21

corresponding row are assigned to the corresponding computing node. The number of raster rows
assigned to each node is calculated using Equation (2).

h =

{
RC/N i f mod(RC, N) = 0

int(RC/N) + 1 i f mod(RC, N) 6= 0
(2)

where h is the number of raster data rows for each subslice, RC is the total number of rows of raster
data, N is the number of computational nodes, and the mod is a residual function. For local operations,
the calculation results for a raster cell are not related to and do not affect the results of other cells.
Therefore, there is no need to consider the data in adjacent cells after the split, meaning that there
is no overlap in splitting (Figure 2). For example, the map algebra operation can be finished with
the non-overlap data splitting method because each raster cell is calculated independently of its
neighbourhood raster. After the raster data input, the raster is divided into non-overlap segmentation
according to the row and assigned to the calculation node in the cluster. Then each node can perform
the corresponding algebraic operations on the allocated data rows at the same time. Figure 2 is an
example of the multiplication of each raster cell.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 6 of 22

to this requirement and the calculation task characteristics of the soil erosion model, we designed two
data splitting strategies as follows.

(1) Split by row. In this splitting strategy, according to the number of computational nodes in
parallel clusters, the raster data are split according to the number of rows. The raster data in the
corresponding row are assigned to the corresponding computing node. The number of raster rows
assigned to each node is calculated using Equation (2). ℎ = ൜ 𝑅𝐶 𝑁⁄ 𝑖𝑓 𝑚𝑜𝑑(𝑅𝐶, 𝑁) = 0𝑖𝑛𝑡(𝑅𝐶 𝑁⁄) + 1 𝑖𝑓 𝑚𝑜𝑑(𝑅𝐶, 𝑁) ≠ 0 (2)

where h is the number of raster data rows for each subslice, RC is the total number of rows of raster
data, N is the number of computational nodes, and the mod is a residual function. For local operations,
the calculation results for a raster cell are not related to and do not affect the results of other cells.
Therefore, there is no need to consider the data in adjacent cells after the split, meaning that there is
no overlap in splitting (Figure 2). For example, the map algebra operation can be finished with the
non-overlap data splitting method because each raster cell is calculated independently of its
neighbourhood raster. After the raster data input, the raster is divided into non-overlap segmentation
according to the row and assigned to the calculation node in the cluster. Then each node can perform
the corresponding algebraic operations on the allocated data rows at the same time. Figure 2 is an
example of the multiplication of each raster cell.

Node1

Node2

Node3

Node4
Input Split by row non-

overloped
Calculation(cell value

multiplied by 3)
Output

1 1
1 1 1 1 2
1 1 1 2 2 2 2 2

1 1 2 2 2 2 2
3 3 3 2 2

3 3 3

1 1

1 1 1 1 2
1 1 1 2 2 2 2 2

1 1 2 2 2 2 2
3 3 3 2 2

3 3 3

3 3

3 3 3 3 6
3 3 3 6 6 6 6 6

3 3 6 6 6 6 6
9 9 9 6 6

9 9 9

3 3
3 3 3 3 6
3 3 3 6 6 6 6 6

3 3 6 6 6 6 6
9 9 9 6 6

9 9 9

Figure 2. Data non-overlap splitting by row with 4 calculation nodes.

For neighbourhood operations, the neighbourhood ranges are different among computations.
To ensure that all cells in the corresponding neighbourhood are read at the same computational node,
h must be expanded on the basis of non-overlapping splitting. Assuming that the width of a
neighbourhood is W, the upper and lower boundaries of the neighbourhood are each (𝑊 − 1)/2
rows away from the centre, meaning that there is overlapping splitting. Figure 3 is an example of
summing the range of the 3 × 3 neighbourhood of each raster cell. With an overlap segmentation
strategy, the rows of raster data allocated to each compute node are overlapped, thereby completing
independently at each node. The cell in the 3 × 3 window is calculated, and finally, the results of each
node are combined and output.

Figure 2. Data non-overlap splitting by row with 4 calculation nodes.

For neighbourhood operations, the neighbourhood ranges are different among computations.
To ensure that all cells in the corresponding neighbourhood are read at the same computational
node, h must be expanded on the basis of non-overlapping splitting. Assuming that the width of
a neighbourhood is W, the upper and lower boundaries of the neighbourhood are each (W − 1)/2
rows away from the centre, meaning that there is overlapping splitting. Figure 3 is an example of
summing the range of the 3 × 3 neighbourhood of each raster cell. With an overlap segmentation
strategy, the rows of raster data allocated to each compute node are overlapped, thereby completing
independently at each node. The cell in the 3 × 3 window is calculated, and finally, the results of each
node are combined and output.

(2) Split by sub-basin. In the calculation of some parameters in the soil erosion model (such
as the slope length factor), the calculation results of the corresponding raster cell are related to the
values of other cells within a certain range. In contrast to neighbourhood operations, this range is an
irregular area (such as a sub-basin). The parallel computation of these factors is performed using the
sub-basin splitting strategy. That is, using DEM data in the basin, sub-basins are divided according to
watershed lines; then, the sub-basins are assigned to the corresponding nodes according to their spatial
adjacent relations (Figure 4). When the basin is divided into sub-basins, the sub-basins can be properly
merged or subdivided under the correct flow accumulation in a watershed. To avoid large differences
in the data volume of nodes, which influences the overall computational efficiency, the sub-basin
area assigned to each node should be roughly equal so that the computing load of each node is
balanced. As shown in Figure 4, the watershed is divided into 67 sub-basins. Since the cluster has four
computing nodes, these sub-basins are merged according to the adjacent relationship to obtain four

ISPRS Int. J. Geo-Inf. 2019, 8, 103 7 of 21

polygon ranges. The point in polygon spatial relationship is identified for each raster cell and get the
polygon ID value. Then the cells are assigned to different computing nodes according to corresponding
polygon ID to complete parallel computing tasks. Using the data input class Nlineinputformat and
Keyvalueiputformat class in the Hadoop platform MapReduce library [35], the input raster data could
be partitioned by configuring the raster rows, worker nodes, and the sub-basin boundary parameters.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 22

Node1

Node2

Node3

Node4
Input Split by row

overloped
Calculation(cell value

sumed by 3×3 window) Output

1 1
1 1 1 1 2
1 1 1 2 2 2 2 2

1 1 2 2 2 2 2
3 3 3 2 2

3 3 3

1 1
1 1 1 1 2
1 1 1 2 2 2 2 2

1 1 1 1 2
1 1 1 2 2 2 2 2

1 1 2 2 2 2 2

1 1 1 2 2 2 2 2
1 1 2 2 2 2 2

3 3 3 2 2

1 1 2 2 2 2 2
3 3 3 2 2

3 3 3

5 5
5 8 9 8 8

5 8 11 12 13 14 14 10

8 14 19 20 19 16 10

13 20 23 19 13
15 17 13

5 5
5 8 9 8 8
5 8 11 12 13 14 14 10

8 14 19 20 19 16 10
13 20 23 19 13

15 17 13

Figure 3. Data overlap splitting by row with 4 calculation nodes.

(2) Split by sub-basin. In the calculation of some parameters in the soil erosion model (such as
the slope length factor), the calculation results of the corresponding raster cell are related to the values
of other cells within a certain range. In contrast to neighbourhood operations, this range is an
irregular area (such as a sub-basin). The parallel computation of these factors is performed using the
sub-basin splitting strategy. That is, using DEM data in the basin, sub-basins are divided according
to watershed lines; then, the sub-basins are assigned to the corresponding nodes according to their
spatial adjacent relations (Figure 4). When the basin is divided into sub-basins, the sub-basins can be
properly merged or subdivided under the correct flow accumulation in a watershed. To avoid large
differences in the data volume of nodes, which influences the overall computational efficiency, the
sub-basin area assigned to each node should be roughly equal so that the computing load of each
node is balanced. As shown in Figure 4, the watershed is divided into 67 sub-basins. Since the cluster
has four computing nodes, these sub-basins are merged according to the adjacent relationship to
obtain four polygon ranges. The point in polygon spatial relationship is identified for each raster cell
and get the polygon ID value. Then the cells are assigned to different computing nodes according to
corresponding polygon ID to complete parallel computing tasks. Using the data input class
Nlineinputformat and Keyvalueiputformat class in the Hadoop platform MapReduce library [35], the
input raster data could be partitioned by configuring the raster rows, worker nodes, and the sub-
basin boundary parameters.

Figure 3. Data overlap splitting by row with 4 calculation nodes.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 22

Figure 4. Data splitting by sub-basin with 4 calculation nodes.

3. Parallel Algorithms Design

The parallel algorithms of model consist of 3 levels: (1) the parallel model operators, which are
used to define the basic analysis algorithm; (2) the parallel factor algorithms, which are used to
achieve parallel computing of different model factors; and (3) the parallel model algorithm, which is
used to calculate soil erosion according to Equation (1). The parallel model operators are at the bottom
level. The model factor and model calculations can be completed by calling the corresponding
operators. Based on the data structure definition and data preprocessing, this section focuses on the
algorithm design for parallel model operators.

3.1. Data Structure and Data Preprocessing

The Hadoop platform supports the reading and writing of structured text data and binary data.
To simplify the calculations, the (key, value) pair in text format is applied to define the data structure
involved in parallel model computing. There are two types of input data used in model computations:
vector and raster data. Vector data mainly include rainfall data collected at rain gauge stations (point)
in the basin, soil type data, soil and water conservation measure data (polygon), and sub-basin
boundary data (polygon). The volume of these data is relatively small, and there is no need for
splitting in the calculation. Vector data are converted into a text format supported by the Hadoop

Figure 4. Data splitting by sub-basin with 4 calculation nodes.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 8 of 21

3. Parallel Algorithms Design

The parallel algorithms of model consist of 3 levels: (1) the parallel model operators, which are
used to define the basic analysis algorithm; (2) the parallel factor algorithms, which are used to achieve
parallel computing of different model factors; and (3) the parallel model algorithm, which is used to
calculate soil erosion according to Equation (1). The parallel model operators are at the bottom level.
The model factor and model calculations can be completed by calling the corresponding operators.
Based on the data structure definition and data preprocessing, this section focuses on the algorithm
design for parallel model operators.

3.1. Data Structure and Data Preprocessing

The Hadoop platform supports the reading and writing of structured text data and binary data.
To simplify the calculations, the (key, value) pair in text format is applied to define the data structure
involved in parallel model computing. There are two types of input data used in model computations:
vector and raster data. Vector data mainly include rainfall data collected at rain gauge stations (point) in
the basin, soil type data, soil and water conservation measure data (polygon), and sub-basin boundary
data (polygon). The volume of these data is relatively small, and there is no need for splitting in the
calculation. Vector data are converted into a text format supported by the Hadoop platform. In this
study, vector data are converted into GeoCSV format. The geographic entity code is used as the key.
Spatial data, which are stored in well-known text (WKT) format, together with property data are
used as the value and can be directly read by the Hadoop distributed file system (HDFS) API and
used in calculations. The raster data mainly include the basin DEM, land-use data, and normalized
difference vegetation index (NDVI) data. First, these data are converted into two-dimensional text
data. Then, two types of (key, value) pairs are defined: (1) an entire row is used as a (key, value) pair,
where key is the row number and value is the set of the corresponding raster cell values of the row;
and (2) a raster cell is used as a (key, value) pair, where the row number and column number of a raster
cell are defined as the composite key, and the value of the raster cell is defined as the value. The raster
data are preprocessed, and the corresponding (key, value) pairs in text format are generated and used
as input data in different parallel algorithms.

3.2. Parallel Algorithms Based on the Row-Splitting Method

The row-splitting method is suitable for local and neighbourhood operations. By using an entire
row as a (key, value) pair for input data, the calculation process includes 2 steps: (1) in the map step,
the splitting function is defined according to the key of the row of the input raster data, and the raster
data row is assigned to the corresponding computing nodes; (2) in the reduce step, based on the
different analysis algorithms, calculations are performed involving the slices of data rows. The results
of the slices are sorted according to the key, combined and output. In local operation tasks, there is
no need to consider the overlap among slices. The (key, value) pair raster data in text format can be
directly used in calculations. In focal operation tasks, the corresponding raster rows must be duplicated
in the first and last rows of each slice according to the size of the neighborhood windows. Herein, the
spatial interpolation parallel operators based on the inverse distance weighting (IDW) method are
used as an example. The input parameters of the parallel algorithm include: (1) the observation station
data as GeoCSV, which stores the station position and its observation value. The data volume is small
and can be used for each computational node without data splitting. (2) The row key-value pair raster
data in text format (the initial value of a raster cell is set to −1). The key is row number, and the value
is the cell list of the row. Spatial interpolation is the process of calculation each raster cell value based
on the observation station data. The calculation steps are as follows (Figure 5).

(1) Data input. Read the key-value text of the row, and parse the row number and the raster cell
list; read and parse the GeoCSV text to get the station position and value.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 9 of 21

(2) Data splitting. The number of raster rows allocated by each node is calculated according to
formula (2) and cluster size, and then the rows are assigned to the corresponding computational node
by customizing the MapReduce splitter (partitioner) to perform non-overlapping row segmentation
according to the line number.

(3) Data parsing and distance calculation. The coordinates of the raster cell center are calculated
from the cell width and row/column number. The distance from the raster cell and all of the station
are measured to generate a set {(di, vi)}, where di is the distance and vi is the observation value.

(4) Spatial interpolation. According to the IDW interpolation method, the interpolation points
within a certain range of the current raster cell by the distance are selected. The interpolation calculation
is weighted by the distance, and the values of the corresponding raster cells (cij) are updated.

(5) Output. A list is generated based on the interpolation result of each raster cell of the row, and
written to the HDFS along with the row number (Figure 6).

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 22

Figure 5. Parallel algorithm example for spatial interpolation.

Figure 6. R Factor using row splitting based parallel algorithm.

3.3. Parallel Algorithms Based on the Sub-Basin Splitting Method

Among the topographic factors of the model, slope length is a key parameter that affects soil
erosion. The serial computing process of the slope length includes steps such as slope and flow
direction determination, flow accumulation, cut-off detection, cell slope length determination, and
cumulative slope length calculations. Among these steps, the flow accumulation and cumulative

Figure 5. Parallel algorithm example for spatial interpolation.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 22

Figure 5. Parallel algorithm example for spatial interpolation.

Figure 6. R Factor using row splitting based parallel algorithm.

3.3. Parallel Algorithms Based on the Sub-Basin Splitting Method

Among the topographic factors of the model, slope length is a key parameter that affects soil
erosion. The serial computing process of the slope length includes steps such as slope and flow
direction determination, flow accumulation, cut-off detection, cell slope length determination, and
cumulative slope length calculations. Among these steps, the flow accumulation and cumulative

Figure 6. R Factor using row splitting based parallel algorithm.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 10 of 21

3.3. Parallel Algorithms Based on the Sub-Basin Splitting Method

Among the topographic factors of the model, slope length is a key parameter that affects soil
erosion. The serial computing process of the slope length includes steps such as slope and flow
direction determination, flow accumulation, cut-off detection, cell slope length determination, and
cumulative slope length calculations. Among these steps, the flow accumulation and cumulative slope
length calculation steps involve cumulative process and different raster cells according to the flow path.
Parallel computations cannot be directly performed following the row-splitting strategy. The flow
paths include two subsets, namely, the flow paths in each sub-basin and the main gully in the basin.
Flow accumulation can be calculated independently in the sub-basins, whereas flow accumulation
in the main gully of the basin involves fewer raster cells, and thus, no data splitting is needed. Flow
accumulation in the main gully can be completed directly in the reduce phase after the sub-basin
calculations are performed. Based on the analysis above, the sub-basin splitting strategy can be used
to parallelize slope length extraction. The algorithm can be implemented by using the master-slave
parallel computing processes in MapReduce. Slave computing processes mainly refer to subprocesses
in which only some of the data are involved and no global data need to be considered. The computing
results serve as intermediate data that are input into the master computing process. The input data of
the algorithm are the raster-based (key, value) pairs in text format (DEM, slope and flow direction)
and the GeoCSV data of the splitting polygon which store the polygon ID and boundary coordinates.
The main steps are as Figure 7 shown.

(1) Data input. Read the key-value text of the raster, parse the row and column number of the cell
and calculate the cell center coordinates. Read and parse the GeoCSV text to get the splitting polygon
ID and boundary coordinates.

(2) Splitting polygon identification and data splitting. The ray casting method for point-in-polygon
testing is used to determine the splitting polygon in which the cell is located, and get the polygon ID
to customize the partitioner to perform sub-basin splitting. Then the raster cells are sent to different
computational nodes.

(3) Slope length calculation for cells in the sub-basin. For each raster cell assigned to the worker
node, the flow accumulation, cut-off detection, cell slope length, and cumulative slope length are
calculated using the serial calculation method of the slope length; and output the cumulative slope
length of each cell.

(4) Slope length calculation for cells in the main gully. According to the result of the flow
accumulation in (3), the main gully cell is determined. The flow accumulation, cut-off detection, cell
slope length, and cumulative slope length of these cells is computed by the same process as step (3).

(5) Combination and output. The slope length for cells in the sub-basin and the main gully is
merged with the rules as follows: if the cell is in the main gully, the slope length generated by step
(4) are the slope length value of the cell; otherwise is the step (3). The slope length of the complete
watershed is written to HDFS. The LS factor is then calculated according to the corresponding method
in Table 1 (Figure 8).

According to the two parallel algorithms described above, spatial interpolation, vector
rasterization, map algebra, slope gradient, flow direction, and slope length operations are implemented
using the MapReduce programming interface. Based on the model factors and model structure, the
corresponding parallel operators are called to calculate model factors and perform model calculations
in the basin.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 11 of 21

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 22

slope length calculation steps involve cumulative process and different raster cells according to the
flow path. Parallel computations cannot be directly performed following the row-splitting strategy.
The flow paths include two subsets, namely, the flow paths in each sub-basin and the main gully in
the basin. Flow accumulation can be calculated independently in the sub-basins, whereas flow
accumulation in the main gully of the basin involves fewer raster cells, and thus, no data splitting is
needed. Flow accumulation in the main gully can be completed directly in the reduce phase after the
sub-basin calculations are performed. Based on the analysis above, the sub-basin splitting strategy
can be used to parallelize slope length extraction. The algorithm can be implemented by using the
master-slave parallel computing processes in MapReduce. Slave computing processes mainly refer
to subprocesses in which only some of the data are involved and no global data need to be considered.
The computing results serve as intermediate data that are input into the master computing process.
The input data of the algorithm are the raster-based (key, value) pairs in text format (DEM, slope and
flow direction) and the GeoCSV data of the splitting polygon which store the polygon ID and
boundary coordinates. The main steps are as Figure 7 shown.

(1) Data input. Read the key-value text of the raster, parse the row and column number of the
cell and calculate the cell center coordinates. Read and parse the GeoCSV text to get the splitting
polygon ID and boundary coordinates.

(2) Splitting polygon identification and data splitting. The ray casting method for point-in-
polygon testing is used to determine the splitting polygon in which the cell is located, and get the
polygon ID to customize the partitioner to perform sub-basin splitting. Then the raster cells are sent
to different computational nodes.

(3) Slope length calculation for cells in the sub-basin. For each raster cell assigned to the worker
node, the flow accumulation, cut-off detection, cell slope length, and cumulative slope length are
calculated using the serial calculation method of the slope length; and output the cumulative slope
length of each cell.

(4) Slope length calculation for cells in the main gully. According to the result of the flow
accumulation in (3), the main gully cell is determined. The flow accumulation, cut-off detection, cell
slope length, and cumulative slope length of these cells is computed by the same process as step (3).

(5) Combination and output. The slope length for cells in the sub-basin and the main gully is
merged with the rules as follows: if the cell is in the main gully, the slope length generated by step
(4) are the slope length value of the cell; otherwise is the step (3). The slope length of the complete
watershed is written to HDFS. The LS factor is then calculated according to the corresponding
method in Table 1 (Figure 8).

Figure 7. Diagram of parallel algorithm for slope length.

Sl
av

e
Pr

oc
es

s
Flow

Accumulation
Cut-off

Detection
Cell Slope

Length
Accumulating
Slope Length

Sub-basin
Split

Identification
of Sub-basin

Slope Data
Input

Flow Direction
Data Input

Sub-basin
boundary(GeoCSV)

DEM Key-value
Pair of Basin

M
as

te
r

Pr
oc

es
s

Identification
of Main Gully

Slope Length
Extraction of
Main Gully

Accumulating
Slope Length of

Main Gully

Results Merging
of Sub-basin and

Main Gully

M
as

te
r

Pr
oc

es
s

Figure 7. Diagram of parallel algorithm for slope length.
ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 22

Figure 8. LS factor using sub-basin splitting based parallel algorithm.

According to the two parallel algorithms described above, spatial interpolation, vector
rasterization, map algebra, slope gradient, flow direction, and slope length operations are
implemented using the MapReduce programming interface. Based on the model factors and model
structure, the corresponding parallel operators are called to calculate model factors and perform
model calculations in the basin.

4. Toolbox Development Integrated with Geographic Information System (GIS)

The Hadoop platform is operated on a Linux parallel computing cluster that consists of multiple
computing nodes. Thus, multiple Linux and Hadoop commands must be executed to complete the
corresponding computing tasks. The process also involves uploading or downloading model data
to/from clusters, which complicates the parallel computing tasks in the model described above. To
improve the usability and ease of operation of parallel computing functions in the model, a
geoprocessing toolbox is compiled from the model parallel computing functions using a Python
script based on the ArcGIS platform. This toolbox allows for the direct calling and the visualization
of the computational results in the ArcGIS platform, thus achieving the integration of the parallel
computing functions of the model with ArcGIS.

As the toolbox runs on the ArcGIS platform of the local machine, the SSH (secure shell) protocol
is used to complete the communication between the local machine and the remote cluster. The SSH
protocol is a method of securing remote login operations from one computer to another. The Linux
platform provides an SSH access protocol for remote login and other operations. On the Windows
platform of the local machine, we use Paramiko, an SSH access library in Python, to interact with the

Figure 8. LS factor using sub-basin splitting based parallel algorithm.

4. Toolbox Development Integrated with Geographic Information System (GIS)

The Hadoop platform is operated on a Linux parallel computing cluster that consists of multiple
computing nodes. Thus, multiple Linux and Hadoop commands must be executed to complete
the corresponding computing tasks. The process also involves uploading or downloading model
data to/from clusters, which complicates the parallel computing tasks in the model described
above. To improve the usability and ease of operation of parallel computing functions in the model,
a geoprocessing toolbox is compiled from the model parallel computing functions using a Python
script based on the ArcGIS platform. This toolbox allows for the direct calling and the visualization

ISPRS Int. J. Geo-Inf. 2019, 8, 103 12 of 21

of the computational results in the ArcGIS platform, thus achieving the integration of the parallel
computing functions of the model with ArcGIS.

As the toolbox runs on the ArcGIS platform of the local machine, the SSH (secure shell) protocol
is used to complete the communication between the local machine and the remote cluster. The SSH
protocol is a method of securing remote login operations from one computer to another. The Linux
platform provides an SSH access protocol for remote login and other operations. On the Windows
platform of the local machine, we use Paramiko, an SSH access library in Python, to interact with
the Linux platform. Paramiko provides two types of objects: SSHClient, which is used to implement
login to remote hosts and perform various command operations, and SFTPClient, which is used to
implement upload and download files. The calculation pipeline of the Mr4Soil is shown in Figure 9.
First, according to the internet protocol (IP) address of the remote host, network port, and other
information, a user can connect to the master node of the Hadoop cluster via the SSHClient and
SFTPClient objects on the local machine and then convert the data in GIS format to GeoCSV format
or a key-value text file through the ArcPy package. Second, the converted data can be uploaded
to the master node by calling the put method of SFTPClient. Next, these files on the master node
are transferred to the HDFS of the Cluster using Hadoop platform file operation command and the
EXEC_COMMAND function of SSHClient. Then, the corresponding MapReduce program is executed
using the Hadoop platform Java Archive (JAR) operation command in the same way to compute the
various factors and perform soil erosion calculations. Finally, the user can download the results to the
local machine and convert them to GIS format and use the ArcGIS platform for browsing and viewing.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 22

Linux platform. Paramiko provides two types of objects: SSHClient, which is used to implement login
to remote hosts and perform various command operations, and SFTPClient, which is used to
implement upload and download files. The calculation pipeline of the Mr4Soil is shown in Figure 9.
First, according to the internet protocol (IP) address of the remote host, network port, and other
information, a user can connect to the master node of the Hadoop cluster via the SSHClient and
SFTPClient objects on the local machine and then convert the data in GIS format to GeoCSV format
or a key-value text file through the ArcPy package. Second, the converted data can be uploaded to
the master node by calling the put method of SFTPClient. Next, these files on the master node are
transferred to the HDFS of the Cluster using Hadoop platform file operation command and the
EXEC_COMMAND function of SSHClient. Then, the corresponding MapReduce program is
executed using the Hadoop platform Java Archive (JAR) operation command in the same way to
compute the various factors and perform soil erosion calculations. Finally, the user can download the
results to the local machine and convert them to GIS format and use the ArcGIS platform for browsing
and viewing.

Figure 9. The calculation pipeline of the framework: connection with master node by SSHClient and
SFTPClient in ○1 and ○2 ; uploading the input data to master node in ○3 and Hadoop HDFS in ○4 ;
the model calculation in ○5 , and the output data download to master node in ○6 and local machine
in ○7 from HDFS.

There are three tools in the application layer of the framework (Figure 10a). (1) The cluster
connection tool. Using the Paramiko module and the SSH protocol to login to the cluster remotely,
files can be uploaded and downloaded through SFTP (SSH file transfer protocol). For a flexible
connection method, the cluster login IP and network service port are set as login parameters.
Parameter passing occurs through the ArcGIS customization tool. Remote login to the clusters in the
Windows environment is then achieved (Figure 10b). (2) The data preprocessing tool. This tool is
mainly used to achieve two-way interoperability between native GIS data and text data for the HDFS
of the cluster. The tool converts GIS vector data to GeoCSV format and GIS raster data to key-value
pair text format using the data access and conversion functions in ArcPy. Then, the data processing
tool uploads the data to HDFS to read in model operations through the SFTPClient object of the
Paramiko library (Figure 10c). (3) The model computing tool. Model computation is a process based
on the calculation function of each model factor and soil erosion. This process compiles these
functions into JAR packages, uploads the packages to the cluster master nodes, and calls the
packages. The model computing tool encapsulates this process. After the user specifies the computing
task, the corresponding JAR package is executed by the SSHClient object, thereby completing the
model computation and writing the results to the HDFS (Figure 10d).

Figure 9. The calculation pipeline of the framework: connection with master node by SSHClient and
SFTPClient in and ; uploading the input data to master node in and Hadoop HDFS in ; the model
calculation in , and the output data download to master node in and local machine in from HDFS.

There are three tools in the application layer of the framework (Figure 10a). (1) The cluster
connection tool. Using the Paramiko module and the SSH protocol to login to the cluster remotely,
files can be uploaded and downloaded through SFTP (SSH file transfer protocol). For a flexible
connection method, the cluster login IP and network service port are set as login parameters. Parameter
passing occurs through the ArcGIS customization tool. Remote login to the clusters in the Windows
environment is then achieved (Figure 10b). (2) The data preprocessing tool. This tool is mainly used to
achieve two-way interoperability between native GIS data and text data for the HDFS of the cluster.
The tool converts GIS vector data to GeoCSV format and GIS raster data to key-value pair text format
using the data access and conversion functions in ArcPy. Then, the data processing tool uploads the
data to HDFS to read in model operations through the SFTPClient object of the Paramiko library
(Figure 10c). (3) The model computing tool. Model computation is a process based on the calculation
function of each model factor and soil erosion. This process compiles these functions into JAR packages,

ISPRS Int. J. Geo-Inf. 2019, 8, 103 13 of 21

uploads the packages to the cluster master nodes, and calls the packages. The model computing tool
encapsulates this process. After the user specifies the computing task, the corresponding JAR package
is executed by the SSHClient object, thereby completing the model computation and writing the results
to the HDFS (Figure 10d).ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 14 of 22

Figure 10. Mr4Soil toolbox and three tools.

5. Experiment and Test

5.1. Data Sources and Experimental Environment Configuration

The Loess Plateau is an area of severe soil erosion in China. This paper selects the Gushanchuan
basin on the Loess Plateau as a typical research area (Figure 11) for Mr4Soil application and testing.
Gushanchuan is a primary tributary on the right bank of the middle reaches of the Yellow River. It
originates in Jungar Qi, Inner Mongolia, and flows through Jungar Qi and Fugu County, Shaanxi
Province, and into the Yellow River in Fugu Town. The length of the main channel is 79.4 km, and
the average slope ratio is 5.4‰. The Gushanchuan basin (E110°32′24″~E111°05′24″,
N39°00′00″~N39°27′36″) is located on the southeast slope of the Ordos Plateau, belonging to the first
portion of the loess hilly and gully region. The total area of the basin is 1272 km2, of which 254 km2 is
in Jungar Qi, and 1018 km2 is in Fugu County. The basin is located in the transition zone between Mu
Us desert and loess hilly and gully region, and the geomorphology is typical of the loess hilly and
gully region. A small portion of the upstream region is covered by a loess sand area, and the gully
density is 2.91 km per sq. km. The soil types in the basin are mainly loessal soils, which account for
approximately 66.67% of all soils, followed by chestnut soil, which account for about 26.74% of all
soils. The watershed is located in the semi-arid continental monsoon climate zone, with an annual
average temperature of 7.3 ℃ and an average annual rainfall of approximately 410 mm. Precipitation
varies significantly each year and is unevenly distributed throughout the year, mostly occurring in
the form of torrential rains. Rainfall during the flood season (June-September) can account for 80% of
the annual rainfall. The main vegetation types in the basin are Stipa bungeana and Artemisia. The type
of soil erosion in the watershed is mainly water erosion, and the average annual erosion rate is 16,800
tons per sq. km, and the annual sediment transport volume is 21.39 million tons.

Figure 10. Mr4Soil toolbox and three tools.

5. Experiment and Test

5.1. Data Sources and Experimental Environment Configuration

The Loess Plateau is an area of severe soil erosion in China. This paper selects the Gushanchuan
basin on the Loess Plateau as a typical research area (Figure 11) for Mr4Soil application and
testing. Gushanchuan is a primary tributary on the right bank of the middle reaches of the Yellow
River. It originates in Jungar Qi, Inner Mongolia, and flows through Jungar Qi and Fugu County,
Shaanxi Province, and into the Yellow River in Fugu Town. The length of the main channel is
79.4 km, and the average slope ratio is 5.4‰. The Gushanchuan basin (E110◦32′24′′~E111◦05′24′′,
N39◦00′00′′~N39◦27′36′′) is located on the southeast slope of the Ordos Plateau, belonging to the
first portion of the loess hilly and gully region. The total area of the basin is 1272 km2, of which
254 km2 is in Jungar Qi, and 1018 km2 is in Fugu County. The basin is located in the transition zone
between Mu Us desert and loess hilly and gully region, and the geomorphology is typical of the loess
hilly and gully region. A small portion of the upstream region is covered by a loess sand area, and
the gully density is 2.91 km per sq. km. The soil types in the basin are mainly loessal soils, which
account for approximately 66.67% of all soils, followed by chestnut soil, which account for about
26.74% of all soils. The watershed is located in the semi-arid continental monsoon climate zone, with
an annual average temperature of 7.3 °C and an average annual rainfall of approximately 410 mm.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 14 of 21

Precipitation varies significantly each year and is unevenly distributed throughout the year, mostly
occurring in the form of torrential rains. Rainfall during the flood season (June-September) can account
for 80% of the annual rainfall. The main vegetation types in the basin are Stipa bungeana and Artemisia.
The type of soil erosion in the watershed is mainly water erosion, and the average annual erosion rate
is 16,800 tons per sq. km, and the annual sediment transport volume is 21.39 million tons.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 15 of 22

(a) Location of Fugu county

(b) DEM of Gushanchuan basin

Figure 11. Location and digital elevation model (DEM) of Gushanchuan basin.

We calculated the model factors and performed model calculations for the Gushanchuan basin
using the Mr4Soil framework. To test the computational efficiency, four spatial resolutions of 30 m,

Figure 11. Location and digital elevation model (DEM) of Gushanchuan basin.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 15 of 21

We calculated the model factors and performed model calculations for the Gushanchuan basin
using the Mr4Soil framework. To test the computational efficiency, four spatial resolutions of 30 m,
10 m, 5 m, 2.5 m were selected to calculate the seven model factors and soil erosion quantity. The model
input data involved vector data and raster data. The vector data includes: (1) the soil types in the
basin and the soil and water conservation engineering measures (polygon), which were used to
calculate the K and E factors by the vector to raster operator. (2) The R factor was calculated using
the site-specific basin rainfall data (point) by the spatial interpolation operator. (3) The sub-basin
boundary data (polygon) were used for the sub-basin splitting method when the slope length was
calculated. The vector dataset is small, which were converted directly to GeoCSV format without
splitting. The raster data include the DEM, land-use type and NDVI data for the basin, and these
data are used to calculate LS, B, T, g factors. The data volume of these raster data differs at various
spatial resolutions, and the data should be partitioned by row-based or sub-basin-based methods
before calculations using the parallel algorithms. The amount of raster data at different resolutions is
shown in Table 3.

Table 3. The datasets volume and row/column count for the DEM.

Spatial Resolution Row Count Column Count Data Volume VALUED CELLS

30 m 1692 1666 10.75MB 1,564,189
10 m 5076 4998 96.78MB 14,077,704
5 m 10,152 9996 387.11MB 56,310,815

2.5 m 20,304 19,992 1511.46MB 225,243,260

The Alibaba cloud platform is used to configure the framework runtime environment. The
Hadoop cluster that runs in the Alibaba cloud consists of 5/9/17 hosts, including 1 master node
and 4/8/16 worker nodes. The node hardware is configured as a 4-core CPU, with 32 GB RAM and
a 200 GB solid-state disk hard drive. At each node, the Ubuntu16.04 operating system is installed,
the Java runtime environment is configured, and Hadoop 2.7.2 is adopted. The cluster master node
has a public network IP address and supports remote login access. The cluster network environment
is a Gigabit local area network. The model computing tool runs on the ArcGIS platform of a local
Windows host and interacts with the Hadoop cluster based on the network access protocol. To analyse
the parallel computing performance of the tools, a single workstation with the same configuration is
used for serial computations. Performance analysis is conducted based on the parallel acceleration
ratio, which is defined in Equation (3).

Sp = Ts/Tp (3)

where Sp is the parallel acceleration ratio; Ts is the serial computing time; and Tp is the time required
when parallel computing is performed using p computing nodes, which is measured by the time
between calculation job submitted and finished in the Hadoop platform. Table 4 shows the information
for the experimental environment.

Table 4. The test environment configuration.

Machine Role System Configuration

Master node of cluster Ubuntu16.04; JDK1.6; Hadoop 2.7.2; 64 GB Memory; 200 GB Hard disk
Worker node of cluster Ubuntu16.04; JDK1.6; Hadoop 2.7.2; 32 GB Memory; 200 GB Hard disk

Local machine Windows 7; ArcGIS 10.3; 32 GB Memory; 500 GB Hard disk

5.2. Parallel Acceleration Ratio for Data with Different Spatial Resolutions

We calculated the parallel acceleration ratio for spatial resolutions of 30 m, 10 m, 5 m, and 2.5 m,
as shown in Figure 12. As data resolution increases, the parallel acceleration ratio of the algorithm
significantly increases, and the computational efficiency is improved. The larger the data volume is,

ISPRS Int. J. Geo-Inf. 2019, 8, 103 16 of 21

the more obvious the improvement and the higher the parallel acceleration ratio of the algorithm.
At 30 m and 10 m resolutions, the average acceleration ratios of three clusters are 0.82/0.93/1.01 and
1.78/2.10/2.76, respectively. Additionally, at 5 m and 2.5 m resolutions, the average acceleration ratios
of three clusters are 3.55/4.27/4.89 and 5.23/6.42/7.59, respectively. The maximum acceleration ratio
is 12.52 (K factor) at a 2.5 m resolution. It is worth noting that in the case of the 30 m resolution,
the acceleration ratios of some factors in the parallel algorithm are less than 1.0, mainly due to
the communication requirements during data splitting and combining. A linear regression of the
calculation time using the serial and parallel computing also confirms the strong positive relations
between them. The goodness of fit (R2) of the regression models for the three types of clusters ranges
from 0.78 to 0.87. Therefore, the parallel computing method in the soil erosion modelling with higher
spatial resolution data improves the computational performance of different tasks.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 17 of 22

1.78/2.10/2.76, respectively. Additionally, at 5 m and 2.5 m resolutions, the average acceleration ratios
of three clusters are 3.55/4.27/4.89 and 5.23/6.42/7.59, respectively. The maximum acceleration ratio is
12.52 (K factor) at a 2.5 m resolution. It is worth noting that in the case of the 30 m resolution, the
acceleration ratios of some factors in the parallel algorithm are less than 1.0, mainly due to the
communication requirements during data splitting and combining. A linear regression of the
calculation time using the serial and parallel computing also confirms the strong positive relations
between them. The goodness of fit (R2) of the regression models for the three types of clusters ranges
from 0.78 to 0.87. Therefore, the parallel computing method in the soil erosion modelling with higher
spatial resolution data improves the computational performance of different tasks.

(a) (b)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

R K LS B E T g A

A
cc

ele
ra

tio
n

ra
tio

 o
f p

ar
all

el
co

m
pu

tin
g

4 Nodes 8 Nodes 16 Nodes

(c) (d)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

R K LS B E T g A

A
cc

ele
ra

tio
n

ra
tio

 o
f p

ar
all

el
co

m
pu

tin
g 4 Nodes 8 Nodes 16 Nodes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

R K LS B E T g A

A
cc

ele
ra

tio
n

ra
tio

 o
f p

ar
all

el
co

m
pu

tin
g

4 Nodes 8 Nodes 16 Nodes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

R K LS B E T g A

A
cc

ele
ra

tio
n

ra
tio

 o
f p

ar
all

el
co

m
pu

tin
g

4 Nodes 8 Nodes 16 Nodes

Figure 12. Parallel acceleration ratio for data with different spatial resolution. (a) raster cell width
with 30 m; (b) raster cell width with 10 m; (c) raster cell width with 5 m; (d) raster cell width with 2.5
m.

5.3. Time Consumption Test for Different Calculation Tasks

Based on the different clusters with 4, 8, and 16 work nodes, we measure the time consumption
of calculations for eight tasks in one model with seven factors, as shown in Figure 13. In general, the
calculation times of different clusters vary for each task. At the same spatial resolution, the calculation
time gradually shortens with the expansion of the cluster scale. The calculation time differences
increase as the spatial resolution and data volume increase. Based on three sizes of Hadoop clusters,
the average time required to complete eight computing tasks for 30 m resolution data is 0.70/0.61/0.57
(min), and the average times for the corresponding 10 m, 5 m, and 2.5 m resolution datasets are
1.41/1.23/1.09, 2.08/1.76/1.54, and 3.17/2.64/2.24, respectively. When the cluster size is held constant,
the calculation time difference is relatively small because the volume of data is small. For example,
when the resolution is 30 m, 10 m, and 5 m, the calculation time difference is approximately 0.45~0.72,
and at a 2.5 m resolution, the difference is 0.70~1.08. For the specific calculation task, the LS factor has
the most significant difference in calculation time of different cluster scales, and the average
calculation time of LS at the three scale clusters is 3.49, 2.88 and 2.43 respectively. Notably, the
calculation time for the 2.5 m resolution data decreases the most, and as the number of work nodes
increases from 4 to 8 and 16, the calculation time decreases by 1.50 and 1.34 respectively. In addition,
the average calculation time of model A significantly decreases, and the average calculation time is
2.61, 2.01 and 1.71. The time consumption for the LS factor is relatively higher than model A. These

Figure 12. Parallel acceleration ratio for data with different spatial resolution. (a) raster cell width with
30 m; (b) raster cell width with 10 m; (c) raster cell width with 5 m; (d) raster cell width with 2.5 m.

5.3. Time Consumption Test for Different Calculation Tasks

Based on the different clusters with 4, 8, and 16 work nodes, we measure the time consumption of
calculations for eight tasks in one model with seven factors, as shown in Figure 13. In general,
the calculation times of different clusters vary for each task. At the same spatial resolution,
the calculation time gradually shortens with the expansion of the cluster scale. The calculation
time differences increase as the spatial resolution and data volume increase. Based on three sizes of
Hadoop clusters, the average time required to complete eight computing tasks for 30 m resolution
data is 0.70/0.61/0.57 (min), and the average times for the corresponding 10 m, 5 m, and 2.5 m
resolution datasets are 1.41/1.23/1.09, 2.08/1.76/1.54, and 3.17/2.64/2.24, respectively. When the
cluster size is held constant, the calculation time difference is relatively small because the volume
of data is small. For example, when the resolution is 30 m, 10 m, and 5 m, the calculation time
difference is approximately 0.45~0.72, and at a 2.5 m resolution, the difference is 0.70~1.08. For the
specific calculation task, the LS factor has the most significant difference in calculation time of different
cluster scales, and the average calculation time of LS at the three scale clusters is 3.49, 2.88 and 2.43

ISPRS Int. J. Geo-Inf. 2019, 8, 103 17 of 21

respectively. Notably, the calculation time for the 2.5 m resolution data decreases the most, and as
the number of work nodes increases from 4 to 8 and 16, the calculation time decreases by 1.50 and
1.34 respectively. In addition, the average calculation time of model A significantly decreases, and the
average calculation time is 2.61, 2.01 and 1.71. The time consumption for the LS factor is relatively
higher than model A. These two types of computing tasks all involve a variety of input data, but the LS
factor calculation has more subprocesses (such as cell slope length, flow accumulation, cut-off detection,
and main gully calculation tasks) and master–slave communication. In addition, the calculation time
differences among the other six computational tasks are relatively small. The parallel calculations of
the Hadoop cluster provide a distinct advantage for the soil erosion modelling with large data volume
and high computational complexity.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 18 of 22

two types of computing tasks all involve a variety of input data, but the LS factor calculation has
more subprocesses (such as cell slope length, flow accumulation, cut-off detection, and main gully
calculation tasks) and master–slave communication. In addition, the calculation time differences
among the other six computational tasks are relatively small. The parallel calculations of the Hadoop
cluster provide a distinct advantage for the soil erosion modelling with large data volume and high
computational complexity.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

ing

 (M
in)

30 10 5 2.5

Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

ing

 (M
in)

30 10 5 2.5

Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

ing

 (M
in)

30 10 5 2.5
Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

ing

 (M
in)

30 10 5 2.5

Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

in
g

(M

in
)

30 10 5 2.5

Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

in
g

(M

in
)

30 10 5 2.5

Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

in
g

(M

in
)

30 10 5 2.5

Raster Cell Width (meter)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

in
g

(M

in
)

30 10 5 2.5

Raster Cell Width (meter)

Figure 13. Time-consumption with different calculation tasks. (a) R factor; (b) K factor; (c) LS factor;
(d) B factor; (e) E factor; (f) T factor; (g) g factor; (h) model A. Figure 13. Time-consumption with different calculation tasks. (a) R factor; (b) K factor; (c) LS factor;

(d) B factor; (e) E factor; (f) T factor; (g) g factor; (h) model A.

ISPRS Int. J. Geo-Inf. 2019, 8, 103 18 of 21

We take the slope calculation as an example to examine the calculation time of the GPU, CPU,
and user-defined aggregations (UDA) using the same configuration parameters (Table 4) of the cluster
worker nodes. The NVIDIA Telsa M40 graphic card is used to calculate the slope. The UDA test uses
the PostgreSQL 11 database platform, which supports setting the number of parallel processes and
using the SQL language for UDA parallel computing. The number of working processes for UDA
calculation is set to 16. The UDA function is written in SQL to perform parallel slope calculation.
The calculation time of different scale cluster computing time and PC-based GPU, CPU and UDA is
compared (Figure 14). It can be seen that in the case of a small amount of data, the GPU and CPU are
faster in calculation speed, and the calculation efficiency is better than that of the Hadoop cluster and
UDA; however, as the amount of data is gradually increased, the calculation time of the GPU/CPU
and the UDA is rapidly increased. The cluster computing time increases slowly; in the case of 2.5 m
resolution, the UDA calculation time is the longest, and the CPU is second; and with the expansion of
the cluster size, the computing time of the 16 cluster worker nodes is roughly equivalent to the GPU
computing time. In the case of four resolutions, the UDA method takes the longest calculation time.
Although GPU computing efficiency is better than Hadoop, the cluster does not require expensive
hardware such as GPU and is suitable for soil erosion modelling on cloud computing platforms.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 19 of 22

We take the slope calculation as an example to examine the calculation time of the GPU, CPU,
and user-defined aggregations (UDA) using the same configuration parameters (Table 4) of the
cluster worker nodes. The NVIDIA Telsa M40 graphic card is used to calculate the slope. The UDA
test uses the PostgreSQL 11 database platform, which supports setting the number of parallel
processes and using the SQL language for UDA parallel computing. The number of working
processes for UDA calculation is set to 16. The UDA function is written in SQL to perform parallel
slope calculation. The calculation time of different scale cluster computing time and PC-based GPU,
CPU and UDA is compared (Figure 14). It can be seen that in the case of a small amount of data, the
GPU and CPU are faster in calculation speed, and the calculation efficiency is better than that of the
Hadoop cluster and UDA; however, as the amount of data is gradually increased, the calculation time
of the GPU/CPU and the UDA is rapidly increased. The cluster computing time increases slowly; in
the case of 2.5m resolution, the UDA calculation time is the longest, and the CPU is second; and with
the expansion of the cluster size, the computing time of the 16 cluster worker nodes is roughly
equivalent to the GPU computing time. In the case of four resolutions, the UDA method takes the
longest calculation time. Although GPU computing efficiency is better than Hadoop, the cluster does
not require expensive hardware such as GPU and is suitable for soil erosion modelling on cloud
computing platforms.

Figure 14. Time-consumption for slope calculation with graphics processing unit (GPU), central
processing unit (CPU), unified device architecture (UDA), and different cluster size.

6. Summary and Discussion

With the continuous development of geographic information acquisition technology, the
requirements for soil erosion modelling and calculations have increased due to the broader
availability of high-resolution data. Based on the Hadoop platform, an empirical model of soil erosion
for annual sediment yield is selected to implement the Mr4Soil parallel computing framework. For
three types of computing tasks, including local, focal, and zonal operations, two types of data-
splitting strategies (row-based and sub-basin-based) are designed. Six parallel operators are defined,
including spatial interpolation, vector rasterization, map algebra, slope gradient, flow direction, and
slope length operators. The corresponding parallel algorithm is designed. A geoprocessing toolbox
for model calculations is developed using the Python language based on the ArcGIS platform. The
performance of the framework is analysed by taking the Gushanchuan basin on the Loess Plateau,
China, as an example. With increases in the data resolution and volume, the computational efficiency
of different model factors significantly improves, and a higher parallel acceleration ratio is achieved.
The main contributions of this paper are as follows: (1) two data-splitting methods, row-based and
sub-basin-based methods, and six parallel operators for local, focal and zonal soil erosion modelling
computing tasks are developed; (2) a complete parallel computing framework for soil erosion
modelling based on Hadoop platform is proposed; (3) a geoprocessing toolbox that integrates the
parallel computing for soil erosion modelling with the GIS platform is constructed.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GPU CPU UDA 4 Nodes 8 Nodes 16 Nodes

Ti
m

e-
co

ns
um

in
g

(M

in
) 30 10 5 2.5

Raster Cell Width (meter)

Figure 14. Time-consumption for slope calculation with graphics processing unit (GPU), central
processing unit (CPU), unified device architecture (UDA), and different cluster size.

6. Summary and Discussion

With the continuous development of geographic information acquisition technology, the
requirements for soil erosion modelling and calculations have increased due to the broader availability
of high-resolution data. Based on the Hadoop platform, an empirical model of soil erosion for annual
sediment yield is selected to implement the Mr4Soil parallel computing framework. For three types of
computing tasks, including local, focal, and zonal operations, two types of data-splitting strategies
(row-based and sub-basin-based) are designed. Six parallel operators are defined, including spatial
interpolation, vector rasterization, map algebra, slope gradient, flow direction, and slope length
operators. The corresponding parallel algorithm is designed. A geoprocessing toolbox for model
calculations is developed using the Python language based on the ArcGIS platform. The performance of
the framework is analysed by taking the Gushanchuan basin on the Loess Plateau, China, as an example.
With increases in the data resolution and volume, the computational efficiency of different model factors
significantly improves, and a higher parallel acceleration ratio is achieved. The main contributions of
this paper are as follows: (1) two data-splitting methods, row-based and sub-basin-based methods, and
six parallel operators for local, focal and zonal soil erosion modelling computing tasks are developed;
(2) a complete parallel computing framework for soil erosion modelling based on Hadoop platform is

ISPRS Int. J. Geo-Inf. 2019, 8, 103 19 of 21

proposed; (3) a geoprocessing toolbox that integrates the parallel computing for soil erosion modelling
with the GIS platform is constructed.

After analysing the performance of the implementation of the Mr4Soil, we found that, compared to
parallel computing frameworks such as MPI, GPU, and UDA, the advantages of the proposed Mr4Soil
framework are as follows: first, the Mr4Soil framework does not require specialized hardware, such as
GPUs, and can achieve a high computational efficiency for a large-scale basin with high-resolution data.
Moreover, the framework can be directly implemented on mainstream cloud computing platforms and
has high scalability and usability. Second, the Mr4Soil framework was integrated with a GIS platform
using a geoprocessing toolbox. It is easy to use for GIS users and provides essential support for using
high-precision data to refine soil erosion modelling. Third, the Mr4Soil framework focuses on the
parallel computing of soil erosion modelling, which is fully functional for different computing tasks
and model factors.

For the parallel algorithm and geoprocessing toolbox development of the integration of GIS and
soil erosion modelling parallel computing, this paper only describes a situation in which the GIS
platform on a desktop and spatially distributed model are used. Further studies of the following
two topics should be performed: (1) the creation of a service interface for the soil erosion model with
parallel computing tasks, which could be based on a web service and conveniently applied in practice;
and (2) the development of a physically based soil erosion model with parallel computing based on
the Hadoop platform. These findings could extend parallel modelling studies of soil erosion.

Author Contributions: Z.G. designed and developed the Mr4Soil and wrote this paper. F.Q. and L.W. are the
supporters of this project and supervised this paper. C.C. and Y.L. assisted in the system development. P.F.
provided key technical guidance for the system development.

Funding: This research was funded by National Key Research Priorities Program of China, grant number
2016YFC0402402; National Natural Science Foundation of China, grant number 41871316 and 41601116; Science
and Technology Foundation of Henan Province, grant number 172102110402; and the Henan University Science
Foundation for Young Talents.

Acknowledgments: Special thanks go to the editor and anonymous reviewers of this paper for their
constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; United
States Department of Agriculture: Hyattsville, MD, USA, 1978; pp. 1–58.

2. Kenneth, G.R.; George, R.F.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion By Water: A
Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department
of Agriculture: Washington, DC, USA, 1997; pp. 19–38.

3. Liu, B.; Zhang, K.; Xie, Y. An empirical soil loss equation. In Proceedings of the 12th International Soil
Conservation Conference, Beijing, China, 26–31 May 2002; pp. 21–25.

4. Liu, B.; Bi, X.; Fu, S. Soil Erosion Equation in Beijing; Science Press: Beijing, China, 2010; pp. 36–66.
5. Joris, V.; Jean, P.; Gert, V.; Anton, V.R.; Gerard, G. Spatially distributed modelling of soil erosion and sediment

yield at regional scales in Spain. Glob. Planet. Chang. 2008, 60, 393–415.
6. Ramsankaran, R.; Umesh, C.K.; Sanjay, K.G.; Andreas, M.; Krishnan, M. Physically-based distributed soil

erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrol. Sci. J. 2013, 58,
872–891. [CrossRef]

7. Dennis, C.F.; John, E.G.; Thomas, G.F. Water Erosion Prediction Project (WEPP): Development history, model
capabilities, and future enhancements. Trans. ASABE 2007, 50, 1603–1612.

8. Jin, H.; Dennis, J.; Piyush, M.; Rupak, B.; Huang, L.; Barbara, C. High performance computing using MPI
and OpenMP on multi-core parallel systems. Parallel Comput. 2011, 37, 562–575. [CrossRef]

9. Craig, A.L.; Samuel, D.G.; Antonio, P.; Chein-I, C.; Bormin, H. Recent developments in high performance
computing for remote sensing: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 508–527.

http://dx.doi.org/10.1080/02626667.2013.781606
http://dx.doi.org/10.1016/j.parco.2011.02.002

ISPRS Int. J. Geo-Inf. 2019, 8, 103 20 of 21

10. Guan, Q.; Zeng, W.; Gong, J.; Yun, S. pRPL 2.0: Improving the parallel raster processing library. Trans. GIS
2014, 18, 25–52. [CrossRef]

11. Miao, J.; Guan, Q.; Hu, S. pRPL+ pGTIOL: The marriage of a parallel processing library and a parallel I/O
library for big raster data. Environ. Model. Softw. 2017, 96, 347–360. [CrossRef]

12. Qin, C.; Zhan, L.; Zhu, A.; Zhou, C. A strategy for raster-based geocomputation under different parallel
computing platforms. Int. J. Geogr. Inf. Sci. 2014, 28, 2127–2144. [CrossRef]

13. Zhang, J.; You, S. High-performance quadtree constructions on large-scale geospatial rasters using GPGPU
parallel primitives. Int. J. Geogr. Inf. Sci. 2013, 27, 2207–2226. [CrossRef]

14. Jeffrey, D.; Sanjay, G. MapReduce: A flexible data processing tool. Commun. ACM 2010, 53, 72–77.
15. Deepak, V. Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools; Apress: New

York, NY, USA, 2016; pp. 1–32.
16. Sam, R.A. Expert Hadoop Administration: Managing, Tuning, and Securing Spark, YARN, and HDFS;

Addison-Wesley Professional: New York, NY, USA, 2016; pp. 4–18.
17. Ablimit, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Joel, S. Hadoop GIS: A high performance spatial

data warehousing system over mapreduce. Proc. VLDB Endow. 2013, 6, 1009–1020.
18. Ahmed, E.; Mohamed, F.M. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the

IEEE 31st International Conference on Data Engineering (ICDE), Seoul, Korea, 13–17 April 2015; pp. 1–12.
19. Louai, A.; Mohamed, F.M.; Mashaal, M. ST-HADOOP: A mapreduce framework for spatio-temporal data.

GeoInformatica 2018, 22, 785–813.
20. Yu, J.; Zhang, Z.; Mohamed, S. Spatial data management in apache spark: The GeoSpark perspective and

beyond. GeoInformatica 2018. [CrossRef]
21. Brian, L. Geoprocessing in the Cloud. Available online: http://gsaw.org/wp-content/uploads/2014/10/

2010s11d_levy.pdf (accessed on 20 August 2018).
22. Jason, L. GIS Tools for Hadoop: Big Data Spatial Analytics for the Hadoop Framework. Available online:

http://esri.github.io/gis-tools-for-hadoop (accessed on 20 August 2018).
23. Ameet, K.; Rob, E. Geotrellis: Adding Geospatial Capabilities to Spark. Available online: https://databricks.

com/session/geotrellis-adding-geospatial-capabilities-to-spark (accessed on 20 August 2018).
24. Li, Z.; Hu, F.; John, L.S.; Daniel, Q.D.; Tsengdar, L.; Michael, K.B.; Yang, C. A spatiotemporal indexing

approach for efficient processing of big array-based climate data with MapReduce. Int. J. Geogr. Inf. Sci.
2017, 31, 17–35. [CrossRef]

25. Li, Z.; Huang, Q.; Gregory, J.C.; Hu, F. A high performance query analytical framework for supporting
data-intensive climate studies. Comput. Environ. Urban. Syst. 2017, 62, 210–221. [CrossRef]

26. Gao, S.; Li, L.; Li, W.; Janowicz, K.; Zhang, Y. Constructing gazetteers from volunteered big geo-data based
on Hadoop. Comput. Environ. Urban. Syst. 2017, 61, 172–186. [CrossRef]

27. Li, W.; Shao, H.; Wang, S.; Zhou, X.; Wu, S. A2CI: A cloud-based, service-oriented geospatial
cyberinfrastructure to support atmospheric research. In Cloud Computing in Ocean and Atmospheric Sciences;
Tiffany, C.V., Nazila, M., Yang, C., Yuan, M., Eds.; Elsevier: London, UK, 2016; pp. 137–161.

28. Li, Z.; Michael, E.H.; Li, W. A general-purpose framework for parallel processing of large-scale LiDAR data.
Int. J. Digit. Earth 2018, 11, 26–47. [CrossRef]

29. Muhammad, U.R.; Anand, P.; Awais, A.; Chen, B.; Huang, B.; Ji, W. Real-time big data analytical architecture
for remote sensing application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4610–4621.

30. Sara, M.; Damiano, C.; Alberto, B. Adaptive Trip Recommendation System: Balancing Travelers among POIs
with MapReduce. In Proceedings of the IEEE International Congress on Big Data, San Francisco, CA, USA,
2–7 July 2018; pp. 1–5.

31. Deepak, P.; Surya, N.; Rajiv, R.; Chen, J. A secure big data stream analytics framework for disaster
management on the cloud. In Proceedings of the 18th IEEE International Conference on High Performance
Computing and Communications, Sydney, Australia, 12–14 December 2016; pp. 1218–1225.

32. Addair, T.G.; Douglas, A.D.; Walter, W.R.; Stan, D.R. Large-scale seismic signal analysis with Hadoop.
Comput. Geosci. 2014, 66, 145–154. [CrossRef]

33. Yellow River Institute of Hydraulic Research. The Empirical Model of Annual Erosion and Sediment Production
in Mesoscale Basins in Loess Plateau; Yellow River Institute of Hydraulic Research: Zhengzhou, China, 2013;
pp. 26–56.

http://dx.doi.org/10.1111/tgis.12109
http://dx.doi.org/10.1016/j.envsoft.2017.06.031
http://dx.doi.org/10.1080/13658816.2014.911300
http://dx.doi.org/10.1080/13658816.2013.828840
http://dx.doi.org/10.1007/s10707-018-0330-9
http://gsaw.org/wp-content/uploads/2014/10/2010s11d_levy.pdf
http://gsaw.org/wp-content/uploads/2014/10/2010s11d_levy.pdf
http://esri.github.io/gis-tools-for-hadoop
https://databricks.com/session/geotrellis-adding-geospatial-capabilities-to-spark
https://databricks.com/session/geotrellis-adding-geospatial-capabilities-to-spark
http://dx.doi.org/10.1080/13658816.2015.1131830
http://dx.doi.org/10.1016/j.compenvurbsys.2016.12.003
http://dx.doi.org/10.1016/j.compenvurbsys.2014.02.004
http://dx.doi.org/10.1080/17538947.2016.1269842
http://dx.doi.org/10.1016/j.cageo.2014.01.014

ISPRS Int. J. Geo-Inf. 2019, 8, 103 21 of 21

34. Tom, W. Hadoop: The Definitive Guide, 4th ed.; O’Reilly Media: Sebastopol, CA, USA, 2015; pp. 19–41.
35. Mahmoud, P. Data Algorithms: Recipes for Scaling Up with Hadoop and Spark; O’Reilly Media: Sebastopol, CA,

USA, 2015; pp. 39–58.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mr4Soil Framework Overview
	Model Description
	Framework Overview
	Data-Splitting Methods

	Parallel Algorithms Design
	Data Structure and Data Preprocessing
	Parallel Algorithms Based on the Row-Splitting Method
	Parallel Algorithms Based on the Sub-Basin Splitting Method

	Toolbox Development Integrated with Geographic Information System (GIS)
	Experiment and Test
	Data Sources and Experimental Environment Configuration
	Parallel Acceleration Ratio for Data with Different Spatial Resolutions
	Time Consumption Test for Different Calculation Tasks

	Summary and Discussion
	References

