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Abstract: Evacuation is an important activity for reducing the number of casualties and amount
of damage in disaster management. Evacuation planning is tackled as a spatial optimization
problem. The decision-making process for evacuation involves high uncertainty, conflicting objectives,
and spatial constraints. This study presents a Multi-Objective Artificial Bee Colony (MOABC)
algorithm, modified to provide a better solution to the evacuation problem. The new approach
combines random swap and random insertion methods for neighborhood search, the two-point
crossover operator, and the Pareto-based method. For evacuation planning, two objective functions
were considered to minimize the total traveling distance from an affected area to shelters and to
minimize the overload capacity of shelters. The developed model was tested on real data from the
city of Kigali, Rwanda. From computational results, the proposed model obtained a minimum fitness
value of 5.80 for capacity function and 8.72 × 108 for distance function, within 161 s of execution
time. Additionally, in this research we compare the proposed algorithm with Non-Dominated
Sorting Genetic Algorithm II and the existing Multi-Objective Artificial Bee Colony algorithm.
The experimental results show that the proposed MOABC outperforms the current methods both in
terms of computational time and better solutions with minimum fitness values. Therefore, developing
MOABC is recommended for applications such as evacuation planning, where a fast-running and
efficient model is needed.

Keywords: evacuation planning; multi-objective artificial bee colony; spatial optimization; swarm
intelligence; geographic information system (GIS)

1. Introduction

The increase in the frequency of natural disasters such as earthquakes, landslides, and floods is
becoming a critical problem globally due to their effects on humans and the environment [1]. The total
deaths from natural disasters recorded worldwide between 2006 and 2016 was 1.2 million, twice that from
the 1990s [2]. Thus, there is an obvious need to efficiently plan evacuation as a strategy, among others,
to handle emergency situations and reduce disaster risks.

Evacuation plans are developed to ensure the safety of affected people by efficiently and quickly
moving them away from dangerous places to safe places in order to reduce the loss of life and
damage. However, evacuation planning is a complex process, involving many stakeholders and
management aspects. In disaster management, evacuation planning is tackled as a Multi-Objective
Optimization Problem (MOOP) with consideration of the spatial component [3–6]. Many studies
presented multi-objective evacuation models [7–9], in which the main goal of the models was to find
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the best alternatives for allocating facilities and the optimal distribution of the affected population
to appropriate safe places (also called “shelters”). These models often involve multiple conflicting
criteria and objectives, such as distance and distribution to shelters; by optimizing one of the criteria
or objectives, the other criteria or objectives are assigned inappropriate values.

Recently, Multi-objective Optimization Methods (MODM) integrated with Geographical
Information Systems (GIS) were introduced to provide better solutions for spatial optimization
problems [10,11]. The most used approaches can be classified into two categories: exact methods and
metaheuristics methods [12–14]. The exact methods, including goal programming, linear programming,
weighting, and constraint methods, are the oldest and traditional methods. These methods transform
an MOOP into a scalar problem and solve it as a single optimization problem [15,16]. For example,
Coutinho-Rodrigues et al. [16] presented a multi-objective approach for an urban location/routing
problem using a mixed-integer linear programming model. Furthermore, Horner et al. [17] and
Kocatepe et al. [18] designed a GIS-based network optimization approach for siting medical special
needs hurricane relief shelters and used the GIS-based spatial p-median optimization technique to
solve the evacuation and sheltering of pets and the human population with special needs in the state
of Florida, United States of America (USA). Although exact methods guarantee finding an optimal
solution, the results are highly dependent on the knowledge of experts who assign weights to the
criteria. Having limited knowledge about the criteria and their effects or being biased toward some
preferences both make the final result unreliable.

Unlike exact methods, metaheuristic algorithms are known to be efficient for solving more complex
problems by providing a set of optimal solutions in a reasonable amount of time [13], without being
influenced by the preferences of experts. Although they do not guarantee finding global optimal
solutions, metaheuristic algorithms iteratively improve the feasible solutions through several heuristic
techniques. A heuristic is an approach based on the rules, strategies, or ad hoc procedures to solve
an optimization problem [19]. Many metaheuristics are inspired by natural processes. For example,
Evolutionary Algorithms (EAs) and Swarm Intelligence algorithms (SIs) solve problems by mimicking
the behavior of natural species or the rules of natural phenomena [20,21]. In the spatial optimization
domain, many studies applied these techniques due to their potential to optimize multiple and conflicting
objectives and provide non-dominated solutions as outputs [13]. These methods include Multi-objective
linear programming [22], Genetic Algorithm (GA) [23–26], Particle Swarm Optimization (PSO) [27],
Ant Colony Optimization (ACO) [28], Tabu Search [29,30], and the Artificial Bee Colony (ABC) [31].
Of these, Multi-Objective ABC is less used and tested in comparison to other techniques, mainly due to its
relatively recent introduction.

Many studies on evacuation planning applied metaheuristics and mostly EAs [4,32,33]. For instance,
Garrett et al. [34] used GAs to address the problem of evacuation planning to find optimal door
locations for a building. Saadatseresht et al. [4] proposed multi-objective optimization for evacuation
planning using Non-Dominated Sorting Genetic Algorithm II (NSGA-II). Georgiadou et al. [35] used an
Evolutionary Algorithm to optimize the response to an emergency situation such as a major accident.
For SIs, Hu et al. [36] and Xu et al. [37] applied modified PSO algorithms to find the optimal allocation
of earthquake emergency shelters. A massive pedestrian evacuation problem was solved using a
Multi-Objective ACO [38]. The proposed approach efficiently minimized three objective functions
including total evacuation time, total routes risk degree, and total crowding degree. Saeidian et al. [39]
proposed an approach to solve location allocation of earthquake relief centers using PSO, ACO,
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) models, and GIS.

ABC, proposed by Karaboga [40], is another metaheuristic algorithm that mimics the foraging
behavior of honey bees in nature. The ABC is reported to be an efficient algorithm for solving
optimization problems with a single objective function, and it was applied in many fields [41].
The standard ABC was modified and improved for better performance in solving different
problems [31,42–44], which includes developing and modifying the MOABC to solve multi-objective
problems [43,45]. With this in mind, in this paper, we used and modified MOABC and propose a model
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for evacuation planning. One of the main issues with MOABC that influences evacuation planning
is trapping into local optimum solutions. We addressed the issue by modifying the neighborhood
strategies for local search, as well as testing and adopting selection strategies to choose from among
the variety of existing strategies [12].

Our aim for evacuation planning was to find the optimal distribution of evacuees to safe places.
To solve this problem, two conflicting objective functions to be minimized were defined. The model
was tested and evaluated in Kigali, the capital of Rwanda.

This paper is organized as follows: Section 2 briefly introduces the concept of the Multi-Objective
Optimization Problem, the mathematical model of evacuation problem, and the ABC algorithm.
Section 3 describes the proposed MOABC approach in detail. Section 4 presents a case study and
data preparation. Experimental results are provided and discussed in Section 5. The conclusions and
recommendations are presented in Section 6.

2. Theoretical Background

2.1. Multi-Objective Optimization Problem

The MOOP is defined as the problem of finding a vector for decision variables that satisfies
constraints and optimizes a vector function, whose elements represent the objective functions.
These functions form a mathematical description of performance criteria, which usually conflict
with each other. Hence, the term “optimize” means finding a solution that would provide acceptable
values for all objective functions to the decision-maker [46]. This statement can be formally defined as
minimize or maximize as follows:

F(x) = { f1 (x), f2 (x), fn (x)}, subject to : x ∈ X, (1)

where F(x) is the n-dimension objective function, fk (x) is an objective function (k = 1, 2, . . . , n), X is the
set of feasible alternatives, and x = (x1, x2, . . . , xm) is a vector of decision variable, xi ≥ 0, for i = 1, 2,
. . . , m [12,46].

Based on this definition of MOOP, some definitions concerning basic terminology are adopted in
this research.

Decision variables are controllable parameters whose values can be controlled by decision-makers,
which affect functioning of the system. These independent variables can be denoted as xj, j = {1, 2, . . . , n}.
Then, a decision vector X containing n decision variables can be X = {x1, x2, . . . , xn}T.

A feasible solution is a solution with vector x (set of values of decision variables) that satisfies all
constraints. An optimal solution is one that provides the best trade-off between competing objectives
among all feasible solutions.

The objective function is the actual goal of the problem; it is a cost function if it must be minimized
or a profit function if it must be maximized. The fitness function is a measure of the quality or fitness of
the solution to the objective function.

In MOOPs, the aim is to find good compromises (or trade-offs) among objectives rather than a
single solution as in single objective optimization. The concept of Pareto optimality allows the evaluation
of all trade-offs among optimal combinations of multiple criteria/objectives. A solution x* is called
Pareto optimal if it is not dominated by any other member of solution set.

Given a set of multi-objective solutions, the non-dominated set of entire feasible solutions is called
the Pareto-optimal set. The boundary defined by the set of all points mapped from the Pareto optimal
set is called the Pareto-optimal front.

2.2. Mathematical Model for Evacuation Planning

Assume that, in a region prone to natural hazards such as floods and landslides, B represents the
building blocks of residential or commercial and N represents candidate shelters for emergency rescue.
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Each B contains a certain number of people to be evacuated to N shelters. The task for the planner is
to find the appropriate allocation of people from B to the N with consideration of some conflicting
objective functions. Most of the objectives are minimizing the total capacity constraints violations of
the shelters and minimizing the total evacuation distance to the assigned shelter. These criteria were
considered in previous studies [4,16,32,37]. The following are expressions used in this research for
each objective function [4]:

The function to minimize the total evacuation distance (fdistance) is

f distance =
n

∑
j=1

m

∑
i=1

dij pij. (2)

The function to minimize the total capacity constraints violation values (fcapacity) is

f capacity =
n

∑
j=1

∣∣∣∣∣∑m
i=1 pij

cj
− 1

∣∣∣∣∣, (3)

where m represents the number of decision variables (building blocks), n is the number of safe areas
(shelters), dij is the distance between the ith point of origin and the jth safe area, pij is the population in
the ith point of origin being evacuated to the jth safe area, and cj is the capacity of the jth safe area for
receiving people.

Based on the defined spatial optimization problem in Equations (2) and (3), the safe area and
building blocks are assigned as follows [4]: objective function (fdistance) determines building blocks
with a greater population have priority to be assigned to the nearest safe area. Thus, more people can
reach the safe areas in the shortest possible time. Objective function (fcapacity) determines the total
population assigned to each safe area should be equal to or less than its capacity. The absolute sign
for fcapacity indicates whether the total population of evacuees is more than the total capacity of the
safe areas. The excess should be divided among the safe areas while trying to minimize the overload
capacity for each safe area.

2.3. Introduction to Artificial Bee Colony Algorithm

In the ABC algorithm, a feasible solution of an optimization problem is represented as the food
source with the amount of nectar (fitness). In our case, the optimization model is a minimization of
two objectives. Therefore, the fitness of a feasible set of solutions is evaluated through a trade-off
between the values of two objectives. Figure 1 shows the main steps for the ABC algorithm.

The ABC optimization mechanism involves three essential artificial bees being involved in the
search process for food sources around the hive: scouts, worker, and onlooker bees. They collaborate
with each other to optimize the problem and converge the solutions to the optimal solution. Initially,
the worker bee searches for food around the food source and shares the searched food source
information with the onlooker bees using a waggle dance. The neighborhood strategy computed in
Equation (4) permits a worker bee to migrate from its old position to find a new food source. The best
food source with the highest quality of nectar or fitness is selected by onlooker bees, which have high
probability computed by Equation (5). Onlooker bees perform a local search to find the optimal solution
based on the probability of each food source being selected, computed with Equation (6). Through the
evaluation of fitness, a food source with low-quality fitness is abandoned, and the corresponding
worker bee becomes a scout bee. The scout bee randomly carries out a global search for a new food
source. A scout bee memorizes the information about the new food source and turns into a worker
bee. The search process is repeated until the given criteria is met (maximum number of iterations).
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xid = lbd + rand(0, 1)× (ubd − lbd), (4)

vid = xid + Øid × (xid − xkd), (5)

pi =
f iti

∑sn
i=1 f iti

, (6)
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where i = 1, 2, 3, . . . . n represents an index of a food source with the range N of the size of the
population; d = 1, 2, 3, . . . , D is the dimension index of the problem; ub and lb represent the lower
and upper bounds of the dimension of the problem, respectively; rand (0, 1) is a generated random
distributed value between 0 and 1; Øid is a real number selected randomly from the interval [−1, 1];
K is the index of food sources, which is different from i; Pi is a probability of the ith food source
being selected by an onlooker bee; fiti is the fitness; and SN is the number of food sources. In ABC,
the numbers of worker bees and onlookers are equal to SN (half of the N population): N = 2× SN.

3. Methodology

3.1. Modified ABC Algorithm for Multi-Objective Evacuation Problem

The original ABC algorithm was designed to solve continuous optimization problems with a
single objective function [40]. In order to solve a MOOP and handle the discrete multi-objective
evacuation model defined above, some modifications were made based on ABC. Several studies
extended the original ABC algorithm to address MOOPs [47–49]. Most of these studies concentrated
on the use of Pareto-based approaches to optimize the multi-objective problem; however, fewer studied
the improvement in the local search performance of ABC.

Aiming at the limitations and weaknesses of the traditional ABC to solve MOOPs, we applied
three strategies and adopted a Pareto-based approach to improve the suitability of ABC for an
MOABC-based evacuation problem, as shown in Figure 2. Firstly, a discrete random procedure
was used for solution presentation and initialization. Secondly, random swap (RS) and random
insertion (RI) neighborhood strategies were combined to improve the neighborhood search of worker
and onlooker bees. This combination solved the issue of solutions being trapped in a local optimum
that exists in the ABC algorithm. This is an important improvement in global optimization problems,
such as the shelter allocation problem addressed in this research. Thirdly, the crossover operator
of two points was used to enhance the communication among worker bees; hence, the number of
best solutions to be selected for the next generation increases. Finally, Pareto-based approaches
select non-dominated solutions based on the concepts of Pareto dominance. This approach ranks the
solutions into Pareto-front levels based on their fitness values. For minimization problems, the lower
the front level is, the better the optimal solutions will be. In MOABC, we applied the tournament
selection technique to increase the pressure on the selection of onlooker bees. The benefit of using
tournament selection is avoiding the problems of generating super-fit or super-poor solutions, where
the selection of a better solution at each iteration does not improve the quality of the solutions.

3.2. Encoding and Initialization of Solutions

In the original ABC, the initial population is generated using Equation (4). In this study,
the integer-encoding method and random procedure were used to create a set of initial solutions. As in
a genetic algorithm, we structured an artificial bee (solution) as a chromosome [50]. An array of two
dimensions was created to store a candidate bee and its fitness. Decision variables are represented
by an index of B building blocks. In order to determine the elements of the array, a random integer
was generated between 1 as the minimum value and N as a maximum value for a candidate shelter.
According to its capacity, one candidate shelter can accommodate multiple B building blocks; thus,
the repeated number in our solution was accepted.

After initialization, solutions were evaluated and ranked on the Pareto front using a non-dominated
sorting approach [51]. The best solutions found were stored in the external archive. Figure 3 shows an
example of a simulated solution generated with a length of 10 building blocks (index B) and a random
integer generated between 1 and 4 as the number of shelters, randomly assigned to each B.
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3.3. Neighborhood Search Strategies

According to the original ABC algorithm, the movement of a worker bee is calculated using a
neighborhood search strategy, presented in Equation (5), to find the new position. To facilitate the
applicability of MOABC to the evacuation model, a combination of two search strategies is proposed:
RS and RI neighborhood operators (Figure 4). The random swap operator changes the index of the
two candidate shelters chosen from the sequence, and random index i must differ from random index j
(i.e., i = 1 and j = 4, i 6= j). A random insertion operator adds a randomly chosen candidate shelter to a
randomly chosen index of the building block and shifts the rest of the sequence; the index i must differ
from j.
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3.4. Crossover Operator

In the original ABC, worker bees perform a local search to find a new food source and update the
existing food source position by applying the greedy selection process. For evacuation-based MOABC,
a bee carries the candidate shelter assigned to each candidate building block. In this case, a bee with
a better solution carries a better combination, and should share this information with other worker
bees. Using only the neighborhood operator risks the worker bee being trapped in a local optimum
area. Therefore, we applied a crossover operator for sharing information. Each worker bee (parent 1)
of population N randomly selects another worker bee (parent 2), and based on the rate probability of
crossover, exchange of information is controlled, as shown in Figure 5. Subsequently, the new solutions
(child 1 and child 2; Figure 5) are evaluated and compared with the old solution. The better solution
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3.5. Selection of Onlooker Bees

Onlooker bees probabilistically choose their food sources depending on information provided
by worker bees [41]. The probability of each food source is calculated based on its amount of fitness.
Thus, the onlooker bee can select a better solution based on its probability, meaning that a food source
with a high amount of fitness has a high chance of being selected. In this case, a neighboring solution
is randomly selected to be mutated.

We propose using tournament selection for MOABC. In this selection process, three food sources
are randomly selected from the population and onlooker bees will fly to the food source that has the
highest fitness. After the selection, each onlooker bee performs a similar neighborhood search as
worker bees and will produce a new food source. The fitness of the old food source and that of the
new one are compared, and the best will be memorized.
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3.6. Exploration of the Scout Bees

The scout bees are worker bees that were not optimized in the given maximum limit. This phase
increases the population diversity and avoids the local minima issue. A scout bee is randomly
generated. If the new food source is better than the existing one, then a new food source is added to an
external archive. In MOABC, a scout bee generates a new solution using a neighborhood operator in
order to avoid the decrease in the search focus in the neighborhood search.

3.7. Pareto Optimization for Evaluation Fitness

The aim of the MOABC algorithm is to find a set of solutions that simultaneously minimize
the two defined objective functions. The assessment of the best and worse solutions is based on the
assigned fitness. In this study, a non-dominated sorting algorithm introduced by Deb et al. [51] was
used to rank the solutions into several levels according to their fitness values.

The algorithm is terminated when a specified number of iterations are met. The algorithm returns
a final set of non-dominated solutions found by three types of artificial bees stored in an external
archive that is updated at every generation. This set of the solution, also called the Pareto optimal set,
represents the best alternatives for allocating people from building blocks to the appropriate candidate
shelters. A trade-off between the objective values of the two optimized objectives enables an analysis
of the results for decision-making.

4. Case Study

The city of Kigali is rapidly growing in both population and urbanization, with 1,318,000
inhabitants on an area of 370 km2 [52]. The city is characterized by steep hills separated by valleys.
Due to its landscape and intense rainfall, many areas of the city are prone to floods and landslides [53].
Both landslides and flood disasters in Kigali caused a total of 64 deaths, 7953 injured people, and 280
houses destroyed between 2005 and 2013 [54]. An evacuation planning process is relatively nonexistent.
Thus, evacuation planning is much needed in Kigali.

The present study was conducted on an area of 690 ha. The case study area has 1510 blocks with
176,741 inhabitants (Figure 6). The population data were provided by National Institute Statistics of
Rwanda [52].ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 6 of 17 
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4.1. Input Data Preparation

In order to solve the given problem, the algorithm requires three types of data. In this case, GIS
was used for data preparation and analysis of the spatial data. Firstly, the building blocks were used as
the point of origin of the evacuees, along with its coordinates and population count. Secondly, the safe
areas were the points of destination along with its coordinates and its capacity. Finally, the shortest
distance between each building block and safe area was also required. The calculation process using
these data is provided below.

4.1.1. Safe Area Selection and Capacity Computation

Emergency shelters are the most important facilities in the development of evacuation models for
disaster management [55]. Therefore, in this model, the appropriate safe area facilities were determined
to serve as shelters. As identified by the Sphere project [56], the minimum standards of living space
per person must be respected in order to limit the crowd to safe areas.

In tropical and warm climates, 3.5 m2 of covered living space per person is considered adequate,
excluding cooking and hygiene facilities [56]. Safe areas considered as rescue locations in the study
area were determined by setting some criteria based on the international standards of evacuation
planning of flood and landslide hazards. By using GIS tools and functions, we selected some open
spaces, schools, and churches that met the suitability criteria. The criteria included being located
outside of any zone prone to any disaster, being located on low slopes, and having access to resources
including water sanitation, food, electricity, and toilets. Therefore, 10 places were selected, with the
capacity of hosting 134,462 people. The estimation of 3.5 m2/person was used to limit the crowding
density within safe areas. Figure 6 shows the case study area (a) and the 10 shelter areas (b).

4.1.2. Distance Matrix

The shortest distance between each building block and all safe areas was generated using a GIS
network analysis tool in ArcGIS (Esri, Redlands, CA, USA). The Origin–Destination Cost Matrix tool
and road network from Open Street Map (OSM) (OpenStreetMap Foundation, Cambridge, UK) were
used to compute the short path.

5. Results and Discussion

This section provides the experimental results and analysis used to evaluate the performance of the
proposed MOABC algorithm tested on an evacuation model. The library of Distributed Evolutionary
Algorithms (DEAP) in Python (Python Software Foundation, Wilmington, DE, USA) [57] was used to
facilitate the initialization of population and fitness assignment. Numpy and Matplotlib were used to
manipulate arrays, calculate some statistics, and plot the results. GIS was used for data preparation
and result visualization.

5.1. Parameter Setting

In order to obtain better results from the implemented MOABC algorithm, some parameters
needed to be adjusted: population size, limit, and the maximum number of iterations. The maximum
number of iterations was set to 500. In order to determine the population size (N) for the proposed
algorithm for the multi-objective evacuation model, different values of population (20, 40, 60, and 80)
were evaluated. Table 1 shows the selected parameters for MOABC. Through several tests, the best
quality solution was found when the population size was greater than or equal to 20 (N ≥ 20). Large
population size when N ≥ 80 impacted convergence speed and returned a small number of solutions in
the final Pareto front. Figure 7a shows that the Pareto optimal front was best when the population size
was 20. As the population size increased, the computation time increased as well, and the convergence
of solutions slowed. Thus, a population size greater than 80 was not adopted here.
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Table 1. Parameter settings of the Multi-Objective Artificial Bee Colony (MOABC) algorithm in the study.

Parameter Value

Population size 20
Limit N × D × 100

Crossover probability rate 0.5
Tournament size 3

Maximum number of generations 500

N: population size; D: dimension of the problem.
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The maximum number of worker bees to be improved is another sensitive parameter for the
proposed MOABC algorithm. If the limit parameter is set to a small value (i.e., limit = N), a solution is
easily abandoned even if it has the potential to be improved. A low limit also influences the scouts
to generate several random searches, which increases the diversity among the best solutions and the
repetition of new solution generation leads to long computation time for the algorithm. Therefore,
we tested when the limit value was low (limit = N) and high (limit = N × D and N × D × 100).
Figure 7b shows the better Pareto optimal front and the convergence speed when a large number was
obtained by N × D × 100. N represents the size of the population and D represents the dimension of
the problem.

The crossover probability is used to adjust the exploitation of worker bees. A high crossover
probability value affects the structure of the Pareto optimal front, whereas a low value increases the
diversity but produces a better Pareto optimal front. Figure 7c shows that, when the crossover
probability value was 1, several solutions were non-dominated compared to the Pareto front
corresponding to a crossover probability of 0.5, but the structure of the optimal Pareto front was
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destroyed. The results of the tests differed little when the crossover probability value ranged from 0.6
to 0.8. Thus, the value of 0.5 was set as the best for crossover probability for MOABC.

Using tournament selection for onlooker bees to choose which food source to exploit can control
the competition pressure. The larger tournament size influences the high probability of food source
to be chosen, while the small tournament size influences the food source to be rejected. As Figure 7d
shows, a tournament size of 3 produced the best Pareto optimal front. In order to limit the computing
process time and maintain the convergence of MOABC, the maximum iterations were set to 500.

5.2. Effectiveness of Combining Neighborhood Search Random Swap and Random Insertion and Crossover
Operator for MOABC

Table 2 shows the experimental results obtained from different tested methods A, B, C, and D.
A represents the MOABC algorithm with the combination of RS and RI, while B represents MOABC
using local basic search as introduced in the original ABC algorithm, and C and D represent MOABC
with and without a crossover operator, respectively. The parameter settings given in Section 5.1
were used to run all tests of these algorithms. From this table, the final Pareto front size, capacity
function fitness values, distance function fitness values, and execution time reveal the performance
of the different tested methods. Method A produced a large number of solutions in the final Pareto
front within an acceptable time, whereas Method B produced fewer solutions and increased the
computation time.

Table 2. Comparison of results obtained using different methods. RS—random swap; RI—random insertion.

Method Algorithm Population
Size

Number of
Generations

Final Pareto
Front Size Fcapacity Fdistance Execution

Time (s)

A MOABC with Combination
of RS and RI 20 500 8 3.44 9.29 × 108 199

B MOABC with the basic
local search strategy 20 500 3 3.96 8.61 × 108 274

C MOABC with crossover
operator 20 500 8 3.44 9.29 × 108 199

D MOABC without a
crossover operator 20 500 4 6.02 9.04 × 108 193

The crossover operation calibrates the local optima search and prevents the best solutions from
being trapped in local optima as demonstrated in Figure 8. Figure 8 illustrates the Pareto front size
obtained by the three tested methods (the non-dominated solutions) in each generation. The optimal
solution of Method A varied significantly from one generation to another. This variation of Pareto
front size is influenced by the neighborhood search process that randomly swaps two individuals
and simultaneously inserts two new random values in the length of the solutions. This modification
improves the position of worker and onlooker bees from local to global optimization. A, B, and D
comparisons are demonstrated in Figure 8. Method C produced the same results as Method A. Figure 9
shows the minimization function of two objectives that started to achieve approximately the optimum
value by the 450th generation. Both objective functions distance and capacity were well minimized by
method A.
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5.3. Pareto Optimal Front Analysis

Figure 10 represents the final Pareto front produced by Method A. The Pareto optimality
shows a trade-off between the capacity and distance objective functions. Every point on the Pareto
front corresponds to the minimal value of the two objective functions. Notably, the optimization
values of both capacity and distance functions were standardized in order to plot and analyze them
effectively. Here, we chose the Pareto front of Method A as the best as it produced many alternatives
for decision-making compared to other methods, as shown in Table 2. A Pareto front can orient
decision-making based on the selection of the solution position. For example, in Figure 10, if a solution
from region A is chosen for decision-making, priority is given to the distance, which is similar to the
capacity cost function that is prioritized if a solution from the C region is chosen. The points that are in
region B of the Pareto front (ranging from 0.2 to 0.6) represent the case where the priority is almost
equally given to both the distance and capacity cost functions.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 17 
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Figure 11 compares the allocation among different solutions when the points from A, B, and C
were selected as an optimum alternative (Figure 10). The lines (different colors for each shelter) allocate
the building blocks to the shelters represented by small red triangles. For points from Solution A,
the distance objective is given high priority in comparison to the capacity objective; thus, the pattern of
allocation of building blocks moves toward the nearest shelter. For the optimal point from Solution C,
the capacity objective is prioritized. Although it is not easy to visually find a significant difference in
the three graphs, we noticed some changes while assigning buildings blocks to shelters 1, 3, 4, 5, 6, 8,
and 10, compared with cases A and B. For the points from Solution B, the priority is similar for both
the capacity and distance criteria.
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5.4. Optimization Results Analysis

Figure 12 shows the evolution process and optimal allocation of the point in Solution B produced
by Method A (Figure 10) through six different generations. Initially, a set of solutions representing
the size of the building blocks of the study area is randomly generated and randomly assigned to
each candidate shelter (Figure 3). The gray lines indicate the building blocks assigned to a shelter.
In Figure 12, the wheels on the right side of each graph represent the number of building blocks
assigned to each shelter. As this figure shows, from the first generation to the 150th generation,
the solutions are uniformly distributed. However, changes were observed from the 250th generation
until the 500th. By comparing the capacities and the area of the 10 candidate shelters, the fourth
shelter is the largest and the ninth is the smallest. The seventh shelter is located far away from many
building blocks. Therefore, the best optimal solution should assign the building blocks by avoiding
overloading of shelters (i.e., the smallest), but should also satisfy the criterion of minimum distance.
The wheel at the 500th generation shows that the algorithm minimized the number of building blocks
at shelters 7, 8, and 9, while Shelter 4 was capable of accommodating a large number of evacuees from
298 building blocks.
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Figure 12. Improvement of optimum solutions through generations. The gray lines on the left side of
each graph represent the allocation of shelters. The numbers of building blocks assigned to shelters
are presented on the right side of each graph (pie chart). (a) Optimal allocation and minimum fitness
value obtained from one generation; (b) optimal allocation and minimum fitness values of the 50th
generation; (c) optimal allocation and minimum fitness values of the 150th generation; (d) optimal
allocation and minimum fitness values of the 250th generation; (e) optimal allocation and minimum
fitness values of the 350th generation, and (f) optimal allocation and minimum fitness values of the
500th generation.

5.5. Comparison with Other Algorithms

To evaluate the performance of the proposed MOABC algorithm, our algorithm was compared to
standard MOABC as well as NSGA-II [51], which is a very popular algorithm for solving multi-objective
optimization problems. All algorithms were implemented on the same data and run 500 times.
To compare these algorithms, the Pareto-optimal fronts, fitness function values, convergence rate,
and execution time were used.

Figure 13 shows the Pareto-optimal fronts generated by the standard MOABC (without
improvement in the neighborhood strategies and selection process), NSGA-II, and the modified
MOABC. The results show that the proposed MOABC produces good optimal results when using
the proposed neighborhood strategies. NSGA-II generates a uniform distribution of solutions and a
smooth Pareto front; the solutions are superior compared to the proposed MOABC Pareto front.

Figure 14 shows the convergence rates of the three algorithms. NSGA-II and the modified
MOABC have better convergence rates in comparison to the standard MOABC. The convergence of
the proposed MOABC is smoother than that of NSGA-II; however, NSGA-II converges faster. Looking
at Table 3 and comparing the minimum fitness values of the objective functions and the execution time,
the proposed MOABC produces the minimum values and is the fastest algorithm.
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Table 3. The comparison results of three algorithms.

Algorithm Minimum Fitness Value
of Fcapacity

Minimum Fitness Value
of Fdistance Execution Time (s)

Standard MOABC 49.0 1.18 × 109 163
NSGA-II 38.9 1.08 × 109 1971

Proposed MOABC 5.8 8.72 × 108 161

5.6. Sensitivity Analyses

5.6.1. Impact of Parameters

In the proposed MOABC method, the population size and the number of generations are two
important parameters that influence the quality of fitness and the final Pareto front. Here, we analyzed
MOABC’s sensitivity to these two parameters. An analysis of the impact of population size was
provided in Section 5.1 and Figure 7, where we tested several parameters including colony size
in order to find a setting that produces better results. We noticed that increasing the size of the
population or decreasing the number of generations affects the number of optimal solutions in the
Pareto front. Additionally, the population size and dimension of the problem influence the speed of
the model computation.

A generation of the algorithm translates a population into a new structure of solutions (decisions).
Thus, selecting the appropriate number of generations helps find an optimal solution within a
reasonable amount of time. This parameter is a stopping condition of the algorithm. A large
maximum number of generations causes long computational time, whereas too low a number prevents
improvement of solutions to reach optimal solutions. To investigate this impact, the algorithm was
run with 1000 generations. Figure 15 shows the Pareto front set with different numbers of generations.
The fitness value was normalized between 0 and 1. We found that, at the beginning of the algorithm
(up to 100 generation), the functions were not well minimized. The obtained fitness values of the
two functions were better from the 300th to 1000th generations. However, when optimizing a spatial
problem, it is also important to consider the dimension (size of decision variables) of the problem,
the size of the Pareto front (number of solutions), and computation time for each generation. Therefore,
we conclude that setting the generation parameter to between 500 and 700 can provide good results.
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5.6.2. Repeatability Analysis

In metaheuristic algorithms, the randomization of the search process affects the results of the
algorithm with every new run. To evaluate the stability and repeatability of the algorithm, we ran it
five times with the same selected parameters provided in Table 1.

The results presented in Table 4 show the number of solutions in the final Pareto front,
the minimum fitness value of capacity and distance function, and the variance value obtained from five
runs. The results show that minimum fitness values were different in the five runs. This is due to the
diversity, which is an indicator used to evaluate the uniformity of distribution of the solutions in terms
of dispersion and extension. The adopted neighborhood search mechanism, together with a crossover
operator, permits the MOABC algorithm to randomly generate new solutions at each iteration and
converge them toward the global optimal solutions.

Table 4. Results of repeatability test of the proposed MOABC algorithm.

Run Population
Size

Number of
Generations

Final Pareto
Front Size

Fitness Value
of Fcapacity

Fitness Value
of Fdistance

Variance
(Fcapacity)

Variance
(Fdistance)

1 20 500 4 4.73 8.84 × 108 0.056 0.080
2 20 500 6 5.85 8.89 × 108 0.051 0.086
3 20 500 4 5.62 8.83 × 108 0.058 0.080
4 20 500 8 5.1 8.87 × 108 0.057 0.082
5 20 500 4 6.29 8.91 × 108 0.053 0.082

The results shown in Figure 16a compare the repeatability of the algorithm and the size of the
final Pareto front against numbers of generations used to present the global optimization process of
the algorithm (Figure 16a). In the results of the five runs, there are similarities and differences between
the sizes of the global solutions found based on the numbers of generations. In the comparison of
the five runs, the algorithm found similar numbers of global solutions at generations 0–50, 100–200,
300–350, 400, and 500.
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To more accurately test the repeatability of the algorithm, the variances of the best fitness values
for both the capacity and distance function for five runs were calculated. For ease of comparison,
we normalized the best fitness values obtained through 500 generations as presented in Figure 16b,
and the variance between 0 and 1 was computed. The algorithm is more stable if the variance value is



ISPRS Int. J. Geo-Inf. 2019, 8, 110 20 of 23

closer to zero. From the investigation of the results, we found that the variance for capacity function
ranged between 0.051 and 0.057, and it ranged between 0.080 and 0.086 for distance function (Table 4).
From these results, it was concluded that the average of repeatability of the proposed MOABC is about
93%. The convergence rates of the algorithm for five different runs were also investigated. Figure 16b
shows that the fitness variations of the five runs are almost similar, with minimal differences between
the runs. The algorithm converges smoothly toward the global optimum. It starts to attain the best
fitness value at 300 generations for both capacity and distance optimization functions. This shows the
stability and repeatability of the MOABC algorithm for the considered problem.

5.7. Potential Use of the Proposed MOABC

Multi-objective optimization approaches support decision-making mostly in planning and
management. They provide a set of optimal solutions from which decision-makers can choose one
solution as the best according to their preferences. A trade-off between two objective functions allows
decision-makers to evaluate the contribution of each objective function to final decision-making.

The proposed approach can be applied in two fields. From a scientific point of view, this approach
can open the doors for future studies, where several points can be addressed, such as developing
a hybrid algorithm that uses the proposed neighborhood strategies and the crossover operator to
enhance the performance of the standard algorithms such as PSO, ACO, GA, and simulated annealing
(SA). It can also be extended by emphasizing the number of solutions in the final Pareto front by
applying other methodologies. From an application perspective, the proposed approach can be used
for disaster management planning to solve evacuation problems. It can optimize other evacuation
models with different objective functions from those used in this paper. Different institutions can
use the proposed approach to enhance existing decision support systems in disaster management.
Considering that the run time of the algorithm is short, the proposed approach can be integrated into
a web-based disaster management system to generate a map that shows how the evacuees would
be optimally assigned to proper shelters. The proposed approach would dynamically run in the
web system and the computational cost would be very low since, as we demonstrated, the proposed
MOABC executes quickly, even on large dataset.

6. Conclusions

In this paper, we presented a modified ABC algorithm to address evacuation planning by
minimizing the total capacity constraints violations in shelters and the total evacuation distance
to the assigned shelter.

We proposed a Multi-Objective Artificial Bee Colony (MOABC) based on the modified original
ABC. The four important strategies, including worker bees for improving the neighborhood search
of ABC and simultaneously optimizing two conflicting objectives, were: (1) the discrete random
generation of the initial population; (2) combining random swap (RS) and random insertion (RI)
neighborhood strategies; (3) a crossover operator for exchanging information between worker
bees; and (4) the Pareto-based approach (non-dominant sorting method) for evaluation and fitness
assignment of the MOABC. The proposed algorithm was compared to NSGA-II and standard MOABC.
The experimental results showed that the proposed MOABC algorithm can perform better and is
suitable for multi-objective evacuation problems in urban areas. In the future, instead of using a
Pareto-based ABC approach, the ε-dominance multi-objective-based ABC can be studied to seek better
optimal solutions for evacuation optimization problem applications. Future work could also focus on
the improvement of encoding and representation of solutions for spatial optimization problems.

MOABC for an evacuation model was applied to the selected study area of Kigali, which was
chosen due to the high frequency occurrences of flood and landslide hazards. The area is large,
highly populated, and has some improperly located settlements. The characteristics of urban areas
can increase the complexity of the model. Some of the candidate shelters used in this study cannot
accommodate all evacuees from the nearest building blocks, so some may walk a long distance to be
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evacuated and reach safe areas. For future research, there is a need to conceptualize the model based
on the characteristics of the area, including topography and behavior of evacuees, and to include other
factors such as traffic, risks along evacuation paths, and socioeconomic conditions.
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