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Abstract: The spatial pattern is a kind of typical structural knowledge that reflects the distribution
characteristics of object groups. As an important semantic pattern of road networks, the city center is
significant to urban analysis, cartographic generalization and spatial data matching. Previous studies
mainly focus on the topological centrality calculation of road network graphs, and pay less attention
to the delineation of main centers. Therefore, this study proposes an automatic recognition method
of main center pattern in road networks. We firstly extract the main clusters from road nodes by
improving the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) with fuzzy
set theory. Moreover, the center area is generated with road meshes according to the area ratio with
the covering discs of the main clusters. This proposed algorithm is applied to the road networks of
a monocentric city and polycentric city respectively. The results show that our method is effective
for identifying the main center pattern in the road networks. Furthermore, the contrast experiments
demonstrate our method’s higher accuracy.
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1. Introduction

The spatial pattern is a kind of typical structural knowledge, which reflects the inherent distribution
characteristics and interrelations of geospatial entities. With structural knowledge, people can better
understand and perceive the regional geographical environments [1–4]. The main purpose of spatial
pattern recognition is to mine structural knowledge that conforms to human spatial cognition, which
can effectively improve the availability of spatial data (i.e., data enrichment) [1–3]. Spatial pattern
recognition has attracted more and more attention because of its important theoretical significance
and application value in the fields of spatial data mining, spatial analysis and reasoning, cartographic
generalization, and spatial data matching and updating [1–6].

According to the level of detail, the implicit spatial structural knowledge (i.e., spatial patterns) can
be classified into three categories: local, medium and global [6,7]. Global knowledge is used to depict
the overall characteristics of a region, which could help us to discern different geographic features
easily. Usually, the urban road network is regarded as the skeleton of the city, which contains rich
and multi-level spatial patterns [3,4,8]. Previous research on the spatial pattern recognition of road
networks mainly focus on the grids [3,5,9,10], roundabouts [11–13], and strokes [3,14], seldom solve
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the problems of global and complex patterns such as global rings, global stars, city centers and urban
built-up areas [3,15–18].

The city center is a typical element of the urban spatial structure [19], and the accurate boundary
identification of the city center becomes vital in many applications. In the field of urban analysis, the
city center functions as a nucleus of both economic and social activities within the city. Related studies
have investigated topics such as retail development [20], employment [21], commercial districts [22–24]
and social networks [25–27]. These studies can support policymakers to plan the city properly. In the
domain of cartographic generalization, to preserve the spatial pattern of the map elements, the higher
order graphical phenomenon (e.g., city center in this study) needs to be extracted beforehand [3]. For
instance, the center pattern itself can be used to express the macroscopic city structures [17,24,28], and
provide locating points to represent a city when the map scale decreases continuously. Besides, the
center pattern is also the basis for the identification of other macroscopic distribution patterns, such as
the global rings [15] and radial pattern [16].

As an exemplar of higher order semantics in road networks, the city center is vaguely defined. Most
research focuses on the topological centrality of the network graph [29–31]. Jiang and Claramunt [32]
abstracted the road networks into a dual graph and calculated the topological centrality based on
graph theory to extract central vertex of a graph. However, Heinzle and Anders [3] believed that
a polygon would be a better representation of the center in the detailed dataset and they extracted
the center area using a two-step method. Firstly, the local centers were identified by clustering the
centroids of the road blocks. Then, the combination of density and centrality of the clusters was used
to filter potential center areas. This method is designed for the monocentric city, and it is difficult to
apply in the cities with complex structures.

The expansion of a city causes changes in the urban structure. For example, there might be some
sub-centers formed around the main center, or a new main center might be designed directly. The
main centers are the most active areas and always described as the “heart of the city” [19]. Therefore,
the number of main centers determines the global structure as monocentric or polycentric. Extracting
main centers from the road networks is conducive to understanding the essential characteristic of a
city and mainly helps to: (1) provide the basis for the complex pattern recognition (such as large rings);
(2) find locating points for the graphic simplification; (3) support location query and navigation; (4) aid
decision making in the structural and functional planning of a city.

We are focused on main center identification in this study. Referring to [3,17,28], there are always
denser roads in a more active region, meaning that city centers are always located in the denser
areas of the road networks. According to [17,24], the spatial distribution of road networks and road
intersections is approximate, so the density of road networks can be measured by the road nodes,
here including road intersections and ending points. Spatial clustering is effective in detecting the
denser areas of the dataset [33] and researchers have adopted Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) in the vague region delineation [26,27,34]. In this study, the
DBSCAN is improved with fuzzy neighborhood to identify main clusters (the densest and extensively
connected clusters) from road nodes. Subsequently, the center areas are delineated based on the
covering discs and road meshes.

Concerning the sections hereinafter, Section 2 gives an overview of related work. In Section 3, we
describe the main center recognition algorithm based on an improved clustering method. Section 4
presents case studies of both a monocentric city and polycentric city. Finally, we conclude this paper
and describe future work in Section 5.

2. Related Works

The recognition of city center areas is critical to urban structure and function analysis, and
has drawn great attention from researchers. Studies such as those of Lynch [35] and Le et al. [36]
argued that the range of the city center is fuzzy, and citizens could sense the city center. Furthermore,
References [37,38] investigate the citizens’ perceptions and thus to derive the approximate range of the
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city center. The results show that these methods are available for cognitive region delineation, but it is
difficult to verify the representativeness of the interviewees.

In contrast, extracting city centers from geographic data is more objective and practicable. Various
models to delineate the city center have been developed using different data sources, mainly including
the (1) index-based method, (2) density-based method, and (3) clustering-based method.

• The index-based method defines the city center by a simple or comprehensive indicator. For
instance, Luscher and Weibel [39] extracted the city center from the topological datasets such as
land cover and points of interest (POIs) with defined knowledge by participant experiments. Zhu
and Sun [23] considered spatial proximity and attribute similarity in the delineation of city center
from commercial land-use data. The index system is constructed according to the data source and
the application, which always leads to different understandings of the “city center.”

• The density-based method mainly adopts a smooth density surface and the isolines to outline the
center area. Hollenstein and Purves [25] explored the city cores through user-generated content
and described the city cores using geo-referenced data with kernel density estimation (KDE). Yu
et al. [22] provided a recognition method of a central business district (CBD) using the statistical
aggregation of the socio-economic point data within network space. Yang et al. [24] proposed
a commercial-intersection KDE, which combines road intersections with KDE to identify CBDs
based on POIs. The density-based method is intuitive and the center areas are smooth, but it is
difficult to determine the best bandwidth in the applications. Besides, there might be scattered
areas due to the slightly higher density values than the threshold.

• The clustering-based method means that the data needs to be clustered first and then the boundary
of the clusters is constructed using the convex hull, chi-shape, Delaunay triangle, Voronoi diagram,
and so on. Yu et al. [40] analyzed the urban landscape pattern with an object-based method, in
which urban objects were clustered by portioning Minimum Spanning Tree and then the clusters
were delineated by the convex hull. Sun et al. [27] sought to combine the DBSCAN algorithm
and Voronoi diagram to identify multiple city centers and delineate their precise boundaries from
location-based social network data. Hu et al. [26] defined urban areas of interest (AOI) as the areas
within a city that attract the attention of people, and a combination of DBSCAN and chi-shape
was employed to identify AOI from the geo-tagged data. Gao et al. [34] used the same method to
define the core regions and concluded that data-synthesis-driven approach has a clear advantage
that it can be repeated for a wide field at flexible spatial scales.

Comparatively, the clustering-based method is concise and not restricted by research units, so it is
commonly used in the vague region extraction. Among the existing spatial clustering algorithms [33],
DBSCAN has received much attention due to its high computational efficiency in large databases,
ability in discovering clusters with arbitrary shape, and no requirements of a pre-set number of
clusters [33,41]. Therefore, the “DBSCAN+outline” method is more common in the third category
of the city center identification methods [26,27,34]. However, further research demonstrates that
DBSCAN will result in scattered and fragmented hot spot patterns, which are unfavorable to main
center extraction. Therefore, in this study, we attempt to improve the DBSCAN method with fuzzy set
theory and extract the main centers from the road networks.

3. Methods

The overview of the proposed main center pattern recognition approach is described in Figure 1,
including two steps. The first step is introduced in Section 3.1, mainly to discover the main clusters
in the road nodes by the density-based clustering with fuzzy neighborhood (DBCFN). We first give
the fundamental concepts and the clustering principle of DBCFN, and then explain how to set the
parameters. The second step is to establish the cluster boundaries (see Section 3.2), including the cover
discs construction of the main clusters and boundary generation based on the road meshes.
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For the main center pattern, we need to extract the densest clusters with more neighbouring 
points (i.e., main clusters). Moreover, the number of main clusters should be determined by the 
number of main centers in a city. Therefore, we will improve the DBSCAN from two aspects: firstly, 
the fuzzy membership is used to replace the binary membership, and then the clustering strategy is 
modified by considering the sharing points and cluster number.  

3.1.1. Basic Concepts of the DBCFN 

Figure 1. Schematic diagram of the main center pattern recognition.

3.1. Main Clusters Extraction

In DBSCAN, clusters are discovered based on the difference in distribution density. Figure 2
depicts the principle and analysis of the DBSCAN. With two global parameters, epsilon (Eps) and
minimum points (MinPts), the points are divided into three categories: core, non-core and noise [41],
as shown in Figure 2a. When determining whether a point belongs to a cluster, the DBSCAN uses
a binary membership. Thus, all points contribute equally to the density calculation for a core point,
regardless of the distance. As shown in Figure 2b, the core point p1 is in a denser region than p2,
but DBSCAN considers the density values of the two cores the same. The inaccurate estimation
of density is unfavorable to extracting the core clusters. Additionally, the DBSCAN algorithm also
overlooks the fact that an object may belong to multiple clusters with various membership degrees,
and consequently, small clusters (where the number of neighboring points in a cluster is smaller than
MinPts) are produced. As shown in Figure 2c, when MinPts = 5, if q is classified to the left cluster
already, then the right cluster with p2 as the core only has four neighboring points, which indicates a
small cluster. The small clusters would lead to a fragmented pattern.
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For the main center pattern, we need to extract the densest clusters with more neighbouring points
(i.e., main clusters). Moreover, the number of main clusters should be determined by the number of
main centers in a city. Therefore, we will improve the DBSCAN from two aspects: firstly, the fuzzy
membership is used to replace the binary membership, and then the clustering strategy is modified by
considering the sharing points and cluster number.

3.1.1. Basic Concepts of the DBCFN

Fuzzy set theory has been applied to addressing various problems on geospatial information
where the results of a binary approach are undesirable [42,43]. According to fuzzy set theory, an object
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can have varying grades of membership in multiple sets [44]. This is similar to spatial clustering in
which a point can belong to multiple clusters with different degrees of membership. The membership
function assigns membership to candidate points with the values in [0,1]. Among the two common
membership functions (i.e., linear type and exponential type), the exponential one can measure the
aggregation features of points better [45]. Therefore, the DBCFN is developed based on the exponential
membership function, and the concepts are as follows:

Definition 1. Fuzzy membership degree. The membership degree refers to the degree that q belongs to p. In
DBSCAN, the membership degree, noted as Mc(p,q), can be formally represented by

Mc(p, q) =
{

1, d(p, q) < Eps
0, otherwise

, (1)

where d(p,q) is the Euclidean distance between p and q. In fuzzy set theory, the fuzzy membership degree Mf is
defined as

M f (p, q) = exp

−(d(p, q)
Eps

)2. (2)

The value of Mf falls in the interval of (0, 1]. Equation (2) shows that the longer the distance, the
smaller the Mf. This characteristic is consistent with the First Law of Geography, which contributes to
cluster identification.

Figure 3 depicts two types of membership. In Figure 3a, two points with different distances (but
less than Eps) from p have the same membership degree, and contribute to the density of p equally.
However, as shown in Figure 3b, the improved fuzzy membership decreases continuously as the
distance increases, so that the two points with different distances contribute differently to the density
of p.
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Definition 2. Fuzzy set cardinality: the sum of the fuzzy membership degrees of all the points {q1, q2, . . . , qt}
within the Eps neighborhood of p, i.e.,

C f (p) =
t∑

i=1

M f (p, qi), (3)

where Cf (p) characterizes the density of the area where p is located, and the higher the Cf (p), the denser the area
is surrounding p.

Definition 3. Fuzzy core point. The point p is referred to as a fuzzy core point if Cf (p) > ε1. ε1 is the threshold
for deciding whether a point is a fuzzy core point. In DBSCAN, the critical condition for point p to be a fuzzy core
point is that MinPts points that are located at a distance of Eps from p exist. Thus, Cf (p) is equal to MinPts/e
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according to Equation (3), where e is the base of the natural logarithm (as shown in the following expression).
Here, ε1 is defined as

ε1 = λ×
MinPts

e
, (4)

where λ is an adjustment factor (λ = [1, 2, 3 . . . ]). The larger λ is, the higher the density around the core point,
and the higher the probability for the cluster to become the main center.

Definition 4. Directly density-reachable. If point p is a core and point q satisfies the condition of Mf (p,q) >
ε2, then point q is directly density-reachable from point p. In DBSCAN, the critical condition of being directly
density-reachable is that the distance between p and q is Eps. Therefore, Mf (p,q) = 1/e according to Equation (2).
Thus, parameter ε2 is set to 1/e.

In addition, the definitions of density-reachable and density-connected are the same as the
definitions that apply to the DBSCAN algorithm.

3.1.2. Principle of the DBCFN

The DBCFN is designed to extract the densest and largest set of density-connected points. In this
algorithm, two visited flag arrays, namely an outer-array and an inner-array are defined to avoid small
clusters. The outer-layer array records whether the core point has been visited, while the inner-layer
array records whether the non-core point has been visited. The inner-array will reset each time the
cluster is completed. The purpose of separately recording a visited flag is to ensure that all non-core
points will be visited during each clustering process. In some situations, a point may belong to several
clusters. We argue that these clusters should be merged because the shared points show spatial
relations among these clusters. By this way, we can derive the largest connected area, which contributes
to identification of the main clusters.

Let M be the number of main centers and m be the number of clusters. The clustering process is
described as follows:

1. Input the parameter MinPts and Eps, and calculate Mf and Cf of the points;
2. Calculate parameter ε1 with a certain λ, and search for the core points;
3. Search for the largest set of density-connected points with parameter ε2 from a core point;
4. Repeat Step 3 until all core points have been visited, and allocate the points that have not been

classified into any cluster as noise;
5. Merge the clusters that share common points and record m; and
6. If m is greater than M, then turn to Step 2 with the parameter λ + 1; else, break.

The main clusters are determined by the clustering results in which m is closest to M during the
above procedure.

3.1.3. Parameters Setting

In DBCFN, the parameters of MinPts and Eps, the same as in DBSCAN, need to be set in advance.
For the points without any special geographical sense, researchers always choose the k-dist method to
set these two parameters [33,41]. Specifically, MinPts is set by the formula of MinPts = k ≈ ln(N), where
N is the number of road nodes; then, the distance from each other point is calculated, and the k-nearest
distances of all points are chosen to be plotted at equal intervals ascending in order; the distance value
at the sharp change in slope is Eps. This method supports a heuristic way to set these two parameters.
However, Eps by this method is an approximate value, and the sharp change point is hard to determine
when the slope changes all the way smoothly.

Essentially, the clusters are the areas that are denser than the mean level of the dataset. To set
the Eps automatically and objectively, we propose an average method of proximity distances. In
computational geometry, the Voronoi diagram is used to divide a plane according to the nearest
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neighbor principle. Additionally, the other way around, we can determine the proximity of two points
by their Voronoi neighbor [46]. In the Voronoi diagram, if the Voronoi areas of two nodes are disjoint,
the adjacent coefficient is 0; otherwise the adjacent coefficient is 1. Then the Eps is defined as

Eps =
1
n
×

N∑
i=1

N∑
j=1

di j × vni j, (5)

where dij and vnij are the distance and adjacent coefficient between pi and pj respectively; n is the
number of the adjacent coefficient that is equal to 1. Considering the points in Figure 4 as an example,
Eps = (d1+d2+ . . . +d25)/25.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 19 
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3.1.4. Comparison Analysis

In order to illustrate the advantages of DBCFN in detecting the main clusters, we took the
simulated roads as an example to conduct a comparison experiment. The DBSCAN method was
performed using the strategy in Section 3.1.2, and the condition for core points is that there are at least
λ ×MinPts points in its Eps neighborhood. By this way, we can compare these two methods more
sufficiently. Figure 5 shows the dataset and clustering results. In human perception, there are two
main centers, A and B, as shown in Figure 5a.

From Figure 5c–j, we can see that the numbers of clusters by these two methods present a
decreasing trend with the increase of λ. In DBSCAN, the numbers of clusters are 4, 3, 3, and 1; in
Figure 5g, the red cluster breaks into two clusters; Figure 5i shows that the yellow cluster and blue
clusters disappeared at the same time, which does not agree with the expected results. In DBCFN, the
numbers of clusters are 4, 4, 3, and 2; when λ = 4, two main clusters are obtained as shown in Figure 5j,
which conform to human perception. Compared with DBSCAN, our method performs better in the
main center identification.
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3.2. Main Center Area Delineation

As the main clusters have been identified from the road nodes, one more step is necessary to
delineate the areas (polygons) based on those clusters. This process is also called the crisp boundary
formation, which makes sense for many applications such as cartographic visualization, query
processing, and urban planning [39]. Among the standard algorithms of boundary construction, the
convex hull [40], chi-shape [26] and Delaunay Triangulation [23] are the typical boundaries that are
formed by the points in the original dataset, without considering the influence range of the outer
points of the cluster. However, the region generated by covering discs (CD) [47], Voronoi diagram [27],
and region growing algorithm [39] contains the influence area of the outer points and Galton called it
extended footprints [47].

In this study, we chose the CD method to construct the boundary of the clusters, because the
covering discs not only contain all the points with an equal influence radius, but also reflect the cluster
shape smoothly. The boundary of the cluster is constructed by the following two steps: (1) create
buffers for the points except for the noise with a radius of Eps; and (2) merge the buffers of the points
that belong to one cluster. According to the principle of DBCFN, the maximum distance from the
core points to the outer points is Eps. Thus, there will be no holes within the cluster boundary by this
method. Figure 6 shows an example of the main center delineation.
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From Figure 6a, we can see that the shape of CD is similar to the outline of the clusters. However,
in the spatial pattern recognition of the road networks, the buffer area has no explicit administrative
meaning. Besides, if the clusters are near the district border, the buffer area might extend beyond the
study area. Thus, we use the road mesh (minimum polygons enclosed by road lines) to represent the
center area. For a certain CD zone, the mesh can be divided into two categories, including central mesh
and outer mesh. A mesh’s type is determined by the indicator of area ratio (AR), which is defined as

ARi j =
SOi j

SMi
, (6)

where SOij is the overlapped area of the i-th mesh and j-th cluster buffer; SMi is the area of the i-th road
mesh. The range of AR is [0,1]. The higher AR means that it is more likely for a mesh to become a part
of the center. In this study, if a mesh has an AR larger than 0.5, it would be defined as the central mesh
for the j-th cluster. All the central meshes that belong to the j-th cluster are merged into one polygon.

The main center areas are represented by the red polygons in Figure 6b. They are composed of the
actual blocks that have explicit geographical significance, which is especially important in the spatial
query and cartographic representation.

The key technologies in the proposed main center recognition method contain Voronoi graph
construction, DBCFN and CD generation. Therefore, the time complexity of this method is determined
by these three aspects. The computation required to construct the Voronoi graph is O(Nˆ2), where
N is the number of road nodes. The DBCFN method has an approximate time complexity of O(Nˆ2).
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Generating the CD can be accomplished in time complexity of O(NlogN). Therefore, the complexity of
the proposed method is O(Nˆ2). The time complexity analysis of this method points out that the main
clusters extraction contributes greatly to the computational cost.

4. Experiments and Analysis

The proposed methods were applied to delineate the main city centers based on the road networks
of Xi’an and Shenzhen. These two cities are located in northwest and southeast respectively in China.
Among them, Xi’an is studied as the case of the monocentric city (single-center city), and Shenzhen is
researched as the case of the polycentric city (multi-center city). Since the algorithm steps are the same,
the experiment of the monocentric city will be presented as the main example.

4.1. Case of the Monocentric City

Xi’an is a traditional city with a long history, functioned as the capital of Shanxi Province. It is
a typical single-center city with visible grids in the center area. Figure 7 shows the study area and
road networks in Xi’an. There are 2053 road segments and 1245 road nodes, so the MinPts is equal
to ln(1245) ≈ 7. Then, the Voronoi diagram was constructed to derive the adjacency list of the nodes.
Next, the Eps was calculated according to the Equation (5), and the result is 2459.6 m.
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Figure 7. The study area and road networks in Xi’an.

Figure 8 depicts the recognized results of Xi’an. In a case of monocentric city, the parameter M
(number of main centers) is set to one. Thus, the main clusters were identified by DBCFN, represented
by red points in Figure 8a. The number of the clusters is exactly equal to 1 when λ = 4. Based on
the results of the main clusters, the covering discs were created with Eps, as the blue area shown in
Figure 8b. Moreover, we used the overlay analysis to calculate the spatial relationship between the
road mesh and the covering discs. Finally, we obtained the main center areas comprised of the merged
road meshes, as shown in Figure 8b.
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The recognized center is a contiguous area with the road segments as the boundary, which is
explicable in geographical context. Figure 9 shows a detailed analysis of the recognized center. We can
see that, the recognized center is located in several joint districts, mainly including Weiyang District,
Lianhu District, Beilin District and Yanta District. There are many important facilities in this recognized
area, such as the municipal government, railway stations (Xi’an, Xi’anbei, and Xi’anxi), universities
(Xidian, Northwest, and Xi’an Jiao Tong) and historical sites (Xi’an Circumvallation, and Great Wild
Goose Pagoda). It can be concluded that the recognized main center takes on the role of the political,
economic, traffic, and cultural center of Xi’an.



ISPRS Int. J. Geo-Inf. 2019, 8, 238 12 of 20

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 19 

 

 
(b) 

Figure 8. (a) Main cluster of the road nodes in Xi’an; (b) main center pattern in Xi’an. 

The recognized center is a contiguous area with the road segments as the boundary, which is 
explicable in geographical context. Figure 9 shows a detailed analysis of the recognized center. We 
can see that, the recognized center is located in several joint districts, mainly including Weiyang 
District, Lianhu District, Beilin District and Yanta District. There are many important facilities in 
this recognized area, such as the municipal government, railway stations (Xi’an, Xi’anbei, and 
Xi’anxi), universities (Xidian, Northwest, and Xi’an Jiao Tong) and historical sites (Xi’an 
Circumvallation, and Great Wild Goose Pagoda). It can be concluded that the recognized main 
center takes on the role of the political, economic, traffic, and cultural center of Xi’an.  

 

Figure 9. Analysis of the recognized center pattern in Xi’an. 

4.2. Case of the Polycentric City  

Shenzhen is a new immigrant city that has been developed in recent years due to the 
government’s supportive policies. There are 10 districts in Shenzhen, and three of them are 
functioned as the centers of the city, namely Futian, Luohu, and Nanshan. Therefore, the number of 

Figure 9. Analysis of the recognized center pattern in Xi’an.

4.2. Case of the Polycentric City

Shenzhen is a new immigrant city that has been developed in recent years due to the government’s
supportive policies. There are 10 districts in Shenzhen, and three of them are functioned as the centers
of the city, namely Futian, Luohu, and Nanshan. Therefore, the number of the main centers is set to
three. Figure 10 shows the study area and road networks in Shenzhen, which exhibits a free distribution
pattern with sub-grids.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 19 

 

the main centers is set to three. Figure 10 shows the study area and road networks in Shenzhen, 
which exhibits a free distribution pattern with sub-grids.  

 

Figure 10. The study area and road networks in Shenzhen. 

There are 2607 road segments and 1566 road nodes in Shenzhen’s test data. The calculated 
values of MinPts and Eps are 7 and 1286.8 m, respectively. By using the proposed method, we 
extract three main clusters when λ = 6. Moreover, three polygons are delineated as main centers. 
Figure 11 shows the recognized results. From Figure 11b, we can see that a small part of the left 
covering discs is beyond the land area, and the right covering discs is across two cities (Shenzhen 
and Hong Kong). These phenomena are unreasonable in the geographical cognition of the city 
center. However, by using the road meshes, these deficiencies are remedied and we obtain a more 
explicit center area.  

 
(a) 

Figure 10. The study area and road networks in Shenzhen.

There are 2607 road segments and 1566 road nodes in Shenzhen’s test data. The calculated values
of MinPts and Eps are 7 and 1286.8 m, respectively. By using the proposed method, we extract three
main clusters when λ = 6. Moreover, three polygons are delineated as main centers. Figure 11 shows
the recognized results. From Figure 11b, we can see that a small part of the left covering discs is beyond
the land area, and the right covering discs is across two cities (Shenzhen and Hong Kong). These
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phenomena are unreasonable in the geographical cognition of the city center. However, by using the
road meshes, these deficiencies are remedied and we obtain a more explicit center area.
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Figure 12 shows the analysis of the recognized center areas in Shenzhen. In the left center, there
are the Shenzhen University, Venture building and Software building, suggesting that this area focuses
on science and technology. The middle center mainly undertakes the political and economic function
according to the facilities such as municipal government and the convention and exhibition center. As
for the right area, it is a trade center and cultural entertainment center because of the commercial malls,
parks and recreational facilities. The recognized results are corresponding to the Nanshan District,
Futian District, and Luohu District from west to east, respectively. Besides, the right center has been
extended west into Futian District, demonstrating the achievements of constructing the united center
of “Futian-Luohu.”
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4.3. Comparison

Montello et al. (2014) and Gao et al. (2017) hold the view that the boundaries of the cognitive
regions (such as city centers, city settlement areas or other regions of interest) are typically substantially
vague [34,48]. Consequently, there are spatial uncertainties in the city center extracted from the spatial
data. To further illustrate the advantages of the proposed algorithm for main center pattern, contrast
experiments of the “Kernel density + Contour” method [22] were performed with the experimental
data. The key to the application of this method lies in the setting of the bandwidth h which is mainly
dependent on the aggregation degree of the spatial distribution. According to Section 3.1.3, the
bandwidth can be set to Eps, the same as in DBCFN.

In Xi’an, a continuous kernel density surface was calculated with h = 2459.6 m. The mean and
standard deviation were calculated as 0.158 and 0.288 respectively. Thus, the contours were generated
with the threshold 0.734. Figure 13 shows the results of KDE and center areas in Xi’an.

In Shenzhen, a continuous kernel density surface was calculated with h = 1286.8 m. Then, the
contours were generated with the threshold 2.038 (mean 0.402 and standard deviation 0.818). Figure 14
shows the results of KDE and center areas in Shenzhen.
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Figure 13. (a) Results of kernel density estimation of road nodes in Xi’an; (b) center areas by the
contrast method in Xi’an.

Some characteristics of the identified results by contrast method and our method are summarized
in Table 1. For the main center identification, the contrast method has a poor performance: (1) there
are so many trivial areas (as shown in box A in Figures 13b and 14b) caused by the local high density,
actually there are no centers. This deficiency is especially obvious in Shenzhen because so many
“0” pixels outside of the study area are counted for the average of the kernel density, as shown in
Figure 14a. Therefore, the computed mean and standard deviation is much lower than that of the
real study area, leading to more polygons delineated as the center areas. (2) There would be holes in
the center area, as shown in box B in Figure 14b. This is due to the locally lower values of the kernel
density estimation. The holes in a center polygon not only go against human cognitive habits for fuzzy
areas, but also increase the difficulty of the spatial computation and analysis. (3) The center area by the
contrast method might be beyond the administrative boundary city (as shown in box C in Figure 14b),
which is hard to explain in some applications. Comparatively, the proposed method can delineate the
center areas that conform to the city structure.



ISPRS Int. J. Geo-Inf. 2019, 8, 238 16 of 20ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 15 of 19 

 

 
(a) 

 
(b) 

Figure 14. (a) Results of kernel density estimation of road nodes in Shenzhen; (b) center areas by the 
contrast method in Shenzhen. 

Some characteristics of the identified results by contrast method and our method are 
summarized in Table 1. For the main center identification, the contrast method has a poor 
performance: (1) there are so many trivial areas (as shown in box A in Figures 13b,14b) caused by 
the local high density, actually there are no centers. This deficiency is especially obvious in 
Shenzhen because so many “0” pixels outside of the study area are counted for the average of the 
kernel density, as shown in Figure 14a. Therefore, the computed mean and standard deviation is 
much lower than that of the real study area, leading to more polygons delineated as the center areas. 
(2) There would be holes in the center area, as shown in box B in Figure 14b. This is due to the 
locally lower values of the kernel density estimation. The holes in a center polygon not only go 
against human cognitive habits for fuzzy areas, but also increase the difficulty of the spatial 
computation and analysis. (3) The center area by the contrast method might be beyond the 
administrative boundary city (as shown in box C in Figure 14b), which is hard to explain in some 
applications. Comparatively, the proposed method can delineate the center areas that conform to 
the city structure.  

Table 1. Characteristics of the recognized results by two methods in two cities. 

Figure 14. (a) Results of kernel density estimation of road nodes in Shenzhen; (b) center areas by the
contrast method in Shenzhen.

Table 1. Characteristics of the recognized results by two methods in two cities.

City Method Number of
Polygons Number of Holes Boundary Extent

Xi’an
Contrast method 18 0 Within the city
Proposed method 1 0 Within the city

Shenzhen
Contrast method 45 2 Beyond the city
Proposed method 3 0 Within the city

In order to compare these methods objectively, a quantitative evaluation was performed based on
the dataset of Xi’an. According to [39,49], we adopted the planning center area, which is defined by
the Overall Urban Planning for Xi’an (2008–2020), as a reference. Figure 15 shows the overlay analysis
between the recognized centers and reference center. Three evaluation indicators were employed in
this study: the recall (R, the ratio of the area of overlapped center to the area of the reference center),
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precision (P, the ratio of the area of overlapped center to the area of recognized center) and F1-score
(harmonic mean of R and P).
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The evaluation results of these two methods are presented in Table 2. Previous research shows that
the computed F1-score is in the range of 0.45~0.86 when taking the planning center as a reference [39].
Therefore, the recognized results by two methods are both effective. Further comparisons demonstrate
that contrast method has the lower R (0.399) and lower P (0.885), and so the F1-score is also lower
(0.619). As for the proposed method, the R and P reach 0.698 and 0.947 respectively, so the F1-score is
high (0.804).

Table 2. Comparison of the indices of the center recognition results.

Algorithm R P F1-score

Contrast method 0.399 0.885 0.550
Proposed method 0.698 0.947 0.804

In general, the F1-score of this method is 46.2% higher than that of the contrast method.
Therefore, the center area recognized by the proposed method is significantly better than that
by the contrast method. Fundamentally, this is because fuzzy membership can better represent the
density characteristics of spatial points and is more applicable to the extraction of main center patterns.

Above analysis shows that the center patterns can be extracted efficiently with the premise that
city center always locates on the denser areas of road networks. This is because the road networks,
as one of the most important elements in urban space, can embody the essential structure of the
city: the more active the region, the greater the road density and the more likely it is to become the
center [3,17,28]. That is to say, the center pattern of the road networks are always closely related to
the center patterns of the city. From this aspect, as long as there is a center pattern (monocentric or
polycentric) in the study area, it can be recognized by our method. However, the differences between
the recognized center and the planning/investigated center are inevitable due to the uncertainties in
human cognition.

5. Conclusions

The city center is a typical semantic pattern of road networks, which plays a vital role in the city
structure. To extract the main center patterns from road networks, we developed a two-step method.
This method has several advantages in that: (1) fuzzy set theory is used to improve the DBSCAN, thus
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to distinguish the main clusters from the minor clusters with the increasing demand for a core point.
(2) The “area of influence” is considered for all the points of the main cluster by using the CD method,
and then the center area is refined based on the road mesh that has clear geographical sense. (3) The
parameters can be determined by the dataset automatically, which can reduce uncertainties of the
vague region delineation.

We apply this algorithm to road data of single-center pattern (Xi’an road networks) and multi-center
pattern (Shenzhen road networks) to test its performance. The experimental results reveal that the
proposed algorithm is capable of extracting main center areas that conform to spatial cognition: (1) the
recognized centers reflect prominent aggregation pattern of the dataset; (2) the recognized centers are
continuous areas without any holes; and (3) the overlapped degree with the planning center is much
higher than that of the contrast method.

Further research will focus on three aspects. (1) Identify complex patterns such as large rings
(i.e., global ring pattern in the road networks). According to the literature [3], the large rings always
surround the city center. Therefore, the next step is extracting the circular roads, and then filtering
the rings based on the spatial relationship with the main centers. (2) Extend the proposed method to
the spatial pattern recognition of building groups. Urban buildings are primary spaces for people’s
activities, and the spatial distribution of the urban buildings thus reflects the city structure [7]. The
proposed method can be improved to delineate the geometrical centers from building groups. (3)
Explore the relevance of cognition for spatial patterns. The recognized results can be further verified
by investigating people’s perception of city centers. Additionally, this can be performed by the specific
“drawing task” [48] or eye movement experiments [50].
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