Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks
Abstract
:1. Introduction
2. Methodology
2.1. Representing Time-Series of Metro Network Passenger Flow Volume by Graphs
2.2. Capturing Spatiotemporal Dependencies Using Graph Convolutional Neural Networks (GCNNs)
2.2.1. Graph Convolution Operation
2.2.2. Using Stereogram Graph Convolution to Capture Irregular Spatiotemporal Dependencies
2.2.3. Using Deep GCNNs to Capture Distant Spatiotemporal Dependencies in a Citywide Metro Network
2.3. Using Spatiotemporal GCNNs for the Prediction of Station-Level Short-Term Passenger Flow Volume in a Citywide Metro Network
2.3.1. Input Datasets
2.3.2. Integrally Capturing Spatiotemporal Dependencies
2.3.3. Feature Fusion
2.3.4. Model Training
3. Experiments
3.1. Experimental Data
3.2. Comparative Experiments
3.2.1. Evaluation Metrics and Baseline Models
3.2.2. Experimental Environment and Settings
3.2.3. Experimental Results and Analysis
- Prediction Results for Passenger Inflow Volume
- 2.
- Prediction Results for Passenger Outflow Volume
3.3. Tuning Parameters
3.3.1. Different Input Lengths of the Recent, Daily, and Weekly Passenger Flow Volume Patterns
3.3.2. The Effect of Different Numbers of Graph Convolution Layers
3.3.3. The Effect of Different Numbers of Kernels
4. Discussion
4.1. Spatial Distribution of Error
4.2. Temporal Distribution of Error
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, Y.; Chen, M.-C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C Emerg. Technol. 2012, 21, 148–162. [Google Scholar] [CrossRef]
- Sun, Y.; Leng, B.; Guan, W. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing 2015, 166, 109–121. [Google Scholar] [CrossRef]
- Chen, Q.; Li, W.; Zhao, J. The use of LS-SVM for short-term passenger flow prediction. Transport 2011, 26, 5–10. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, T.; Li, X. Nonlinear integration of spatial and temporal forecasting by support vector machines. In Proceedings of the Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 24–27 August 2007; pp. 61–66. [Google Scholar]
- Lin, E.; Park, J.D.; Züfle, A. Real-Time Bayesian Micro-Analysis for Metro Traffic Prediction. In Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, Redondo Beach, CA, USA, 7–10 November 2017; p. 12. [Google Scholar]
- Truong, R.; Gkountouna, O.; Pfoser, D.; Züfle, A. Towards a Better Understanding of Public Transportation Traffic: A Case Study of the Washington, DC Metro. Urban. Sci. 2018, 2, 65. [Google Scholar] [CrossRef]
- Dai, X.; Sun, L.; Xu, Y. Short-Term Origin-Destination Based Metro Flow Prediction with Probabilistic Model Selection Approach. J. Adv. Transp. 2018. [Google Scholar] [CrossRef]
- Gong, Y.; Li, Z.; Zhang, J.; Liu, W.; Zheng, Y.; Kirsch, C. Network-wide Crowd Flow Prediction of Sydney Trains via customized Online Non-negative Matrix Factorization. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 1243–1252. [Google Scholar]
- Tsai, T.-H.; Lee, C.-K.; Wei, C.-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 2009, 36, 3728–3736. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, J. Integrated spatio-temporal data mining for forest fire prediction. Trans. Gis 2008, 12, 591–611. [Google Scholar] [CrossRef]
- Wang, J.; Tsapakis, I.; Zhong, C. A space–time delay neural network model for travel time prediction. Eng. Appl. Artif. Intell. 2016, 52, 145–160. [Google Scholar] [CrossRef]
- Biship, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chen, J.; Pei, T.; Shaw, S.-L.; Lu, F.; Li, M.; Cheng, S.; Liu, X.; Zhang, H. Fine-grained prediction of urban population using mobile phone location data. Int. J. Geogr. Inf. Sci. 2018, 32, 1770–1786. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X.; Li, T. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif. Intell. 2018, 259, 147–166. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT press Cambridge: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164. [Google Scholar]
- Yu, H.; Wang, J.; Huang, Z.; Yang, Y.; Xu, W. Video paragraph captioning using hierarchical recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 4584–4593. [Google Scholar]
- Srivastava, N.; Mansimov, E.; Salakhudinov, R. Unsupervised learning of video representations using lstms. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 843–852. [Google Scholar]
- Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends® Signal. Process. 2014, 7, 197–387. [Google Scholar] [CrossRef]
- Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167. [Google Scholar]
- Lee, D.; Kim, K. Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information. Energies 2019, 12, 215. [Google Scholar] [CrossRef]
- Zhang, T.; Song, S.; Li, S.; Ma, L.; Pan, S.; Han, L. Research on Gas Concentration Prediction Models Based on LSTM Multidimensional Time Series. Energies 2019, 12, 161. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Jia, R. DeepPF: A deep learning based architecture for metro passenger flow prediction. Transp. Res. Part C Emerg. Technol. 2019, 101, 18–34. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Wang, Y.; Currim, F.; Ram, S. Deep Learning for Bus Passenger Demand Prediction Using Big Data; Social Science Electronic Publishing: New York, NY, USA, 2017. [Google Scholar]
- Ren, Y.; Cheng, T.; Zhang, Y. Deep spatio-temporal residual neural networks for road-network-based data modeling. Int. J. Geogr. Inf. Sci. 2019, 1–19. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. In Proceedings of the Thirty-First AAAI Conference on Artificial IntelligenceI, San Francisco, CA, USA, 4–9 February 2017; pp. 1655–1661. [Google Scholar]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. In Convolutional neural networks on graphs with fast localized spectral filtering. In Proceedings of the Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013, arXiv:1312.6203. [Google Scholar]
- Lin, L.; He, Z.; Peeta, S. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transp. Res. Part C Emerg. Technol. 2018, 97, 258–276. [Google Scholar] [CrossRef] [Green Version]
- Bing, Y.; Yin, H.; Zhu, Z. Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting. arXiv 2017, arXiv:1709.04875. [Google Scholar]
- Ma, Z.; Xing, J.; Mesbah, M.; Ferreira, L. Predicting short-term bus passenger demand using a pattern hybrid approach. Transp. Res. Part C Emerg. Technol. 2014, 39, 148–163. [Google Scholar] [CrossRef]
- Mathieu, M.; Couprie, C.; LeCun, Y. Deep multi-scale video prediction beyond mean square error. arXiv 2015, arXiv:1511.05440. [Google Scholar]
- Jain, V.; Murray, J.F.; Roth, F.; Turaga, S.; Zhigulin, V.; Briggman, K.L.; Helmstaedter, M.N.; Denk, W.; Seung, H.S. Supervised learning of image restoration with convolutional networks. In Proceedings of the IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Shanghai Metro Roadmap. Available online: http://sh.bendibao.com/ditie/linemap.shtml (accessed on 27 May 2019).
- Chollet, F. Keras: Deep Learning Library for Theano and Tensorflow. 2015. Available online: https://keras.io/ (accessed on 16 January 2019).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Komer, B.; Bergstra, J.; Eliasmith, C. Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn. In Proceedings of the 13th Python in Science Conference (SciPy 2014), Austin, TX, USA, 6–12 July 2014. [Google Scholar]
- Ke, J.; Zheng, H.; Yang, H.; Chen, X.M. Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. Transp. Res. Part C Emerg. Technol. 2017, 85, 591–608. [Google Scholar] [CrossRef]
- These stations of the Shanghai Metro, I Was Crying and Being Squeezed Down. Available online: http://news.fdc.com.cn/mrrd/977358.shtml (accessed on 16 January 2019).
No. | Name | Description |
---|---|---|
1 | MLR | Multivariable linear regression (MLR) model. |
2 | LSVR | A version of support vector machine (SVM) for regression, called support vector regression (SVR). Here we used linear SVR (LSVR). |
3 | Bayesian | Bayesian regression model. |
4 | PCA-kNN | A mixture of principal component analysis (PCA) and k-nearest neighbor (kNN) regression [6]. PCA is used to select the principal components which are input into kNN for prediction. |
5 | NMF-kNN | A mixture of non-negative matrix factorization (NMF) and kNN regression which is similar to PCA-kNN above. |
6 | LSTM | Long short-term memory (LSTM). Here, the LSTM model has multiple LSTM layers and one fully-connected layer. |
7 | M-CNN | A convolutional neural network (CNN)-based model proposed by Ma et al. [29] which transforms the metro-network-based passenger flow volume into a two-dimensional image whose horizontal axis represents time and whose vertical axis represents the metro station. Prediction is made by performing convolutions on the image. |
No. | Model | RMSE | MAPE | Time (s) |
---|---|---|---|---|
1 | STGCNNmetro | 32.50 | 24.35% | 1910.13 |
2 | Bayesian | 33.15 | 27.71% | 16,415.01 |
3 | LSVR | 33.81 | 28.65% | 21,050.68 |
4 | PCA-kNN | 40.55 | 24.21% | 7.09 |
5 | M-CNN | 41.96 | 24.75% | 303.02 |
6 | NMF-kNN | 42.94 | 25.16% | 41.96 |
7 | LSTM | 45.40 | 30.69% | 3410.59 |
8 | MLR | 49.41 | 34.12% | 1190.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Wang, S.; Ren, Y.; Wang, C.; Gao, P.; Chen, G. Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2019, 8, 243. https://doi.org/10.3390/ijgi8060243
Han Y, Wang S, Ren Y, Wang C, Gao P, Chen G. Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks. ISPRS International Journal of Geo-Information. 2019; 8(6):243. https://doi.org/10.3390/ijgi8060243
Chicago/Turabian StyleHan, Yong, Shukang Wang, Yibin Ren, Cheng Wang, Peng Gao, and Ge Chen. 2019. "Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks" ISPRS International Journal of Geo-Information 8, no. 6: 243. https://doi.org/10.3390/ijgi8060243
APA StyleHan, Y., Wang, S., Ren, Y., Wang, C., Gao, P., & Chen, G. (2019). Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks. ISPRS International Journal of Geo-Information, 8(6), 243. https://doi.org/10.3390/ijgi8060243