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Abstract: Flight conflict detection is fundamental to flight dispatch, trajectory planning, and flight
safety control. An ever-increasing aircraft population and higher speeds, particularly the emergence of
hypersonic/supersonic aircrafts, are challenging the timeliness and accuracy of flight conflict detection.
Traditional trajectory conflict detection algorithms rely on traversing multivariate equations of every
two trajectories, in order to yield the conflict result and involve extensive computation and high
algorithmic complexity; these algorithms are often unable to provide the flight conflict solutions
required quickly enough. In this paper, we present a novel, low-altitude flight conflict detection
algorithm, based on the multi-level grid spatiotemporal index, that transforms the traditional
trajectory-traversing multivariate conflict computation into a grid conflict state query of distributed
grid databases. Essentially, this is a method of exchanging “storage space” for “computational time”.
First, we build the spatiotemporal subdivision and encoding model based on the airspace. The model
describes the geometries of the trajectories, low-altitude obstacles, or dangerous fields and identifies
the grid with grid codes. Next, we design a database table structure of the grid and create a grid
database. Finally, we establish a multilevel grid spatiotemporal index, design a query optimization
scheme, and examine the flight conflict detection results from the grid database. Experimental
verification confirms that the computation efficiency of our algorithm is one order of magnitude
higher than those of traditional methods. Our algorithm can perform real-time (dynamic/static)
conflict detection on both individual aircraft and aircraft flying in formation with more efficient
trajectory planning and airspace utilization.

Keywords: multilevel grid spatiotemporal index; aircraft tracking; conflict detection

1. Introduction

Between 2006 and 2017, China recorded an average annual aircraft movement increase of
approximately 9.7% [1]. The aviation safety of manned/unmanned, civil/military, and hypersonic/

ultrasonic aircrafts is constrained by complicated environmental factors, such as low-altitude terrain,
obstacles, and extreme weather conditions [2,3]. In low-traffic-density civil flights, the flight conflict
results can be calculated in advance according to flight plans, whereas in high-traffic-density or non-civil
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airspace applications, the speed and accuracy of flight conflict detection are challenging concerns.
In fact, flight conflict detection is already a widely researched topic in the field of aviation safety.

As the research in the field deepens, authors are shifting their focuses from the direct polynomial
trajectory intersection of two aircrafts to the partitioning of flight regions from three-dimensional
spaces to four-dimensional spaces, and from aircraft to spatiotemporal domains [4–7]. Traditional
flight conflict detection methods include deterministic methods and probabilistic methods.

Deterministic methods use computational geometry to produce the conflict results and determine
whether potential flight conflicts exist within the encounter geometry of two aircraft (air vehicles).
For example, Fulton [8–10] used an unstructured grid method for flow field computation to detect
conflicts. This method detects existing or potential conflicts among a number of airplanes at one time and,
by ignoring unnecessary distance detection, reduces the amount of computation. The management of the
entire airspace, however, is restricted, as this method assumes the trajectory to be a Delaunay-based plane
triangle. Another example is the axis-aligned bounding box (AABB) algorithm, which approximates
the original spatial entity level-by-level by constructing a tree hierarchy. AABB intersection testing
requires a maximum of six comparative operations [11], which is time-consuming. By quickly and
accurately identifying flight conflicts between two trajectory points that are less than a safe distance
apart, many high-dimensional spatial index structures and approximate query algorithms are proposed.
One of them is the k-d tree. The Bkd-tree maintains its high space utilization and excellent query and
update performance regardless of the number of updates performed on it [12]. However, the method
needs to be carried out by calculating the distance between the root node and the track point, which is
a time-consuming process.

Probabilistic conflict detection [13–15] calculates the conflict probabilities between air vehicles
by a support vector machine, genetic algorithm, or some other approach. These methods involve
complicated probability computations, and their thresholds are selected subjectively. Excessively
high thresholds may lead to missed detections, while excessively low thresholds could give rise to
extensive mis-detection.

In brief, traditional flight conflict detection is based on assumptions, such as a limited flight angle,
constant speed, and no exposure to environmental impacts [16,17], but errors caused by uncertainties
in navigation or positioning, pilot operations and spatiotemporal environmental variations on the
underlying surface, can directly affect the conflict detection accuracy. Deterministic methods use
coordinates to solve and determine whether conflicts exist between aircrafts; traversing multivariate
approaches involves a high algorithmic complexity and extensive computation; and probabilistic
methods calculate flight probabilities using a complicated process. None of these methods provide the
flight conflict detection speed required for an efficient dispatch.

In view of these problems, a new, low-altitude flight conflict detection algorithm, based on a
multi-level grid spatiotemporal index, is proposed that transforms traditional trajectory-by-trajectory
multivariate equation conflict solutions into a real-time conflict state query of distributed databases.
As shown in Figure 1, the traditional flight conflict detection method is performed by calculating the
intersection between two trajectories at a time, while in the new approach, two planes or the plane and
the obstacle appear in the same grid at the same time during a grid conflict state.
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Figure 1. Schematic diagram of different methods.

2. Materials and Methods

In this paper, a low-altitude flight conflict detection algorithm, based on a multi-level grid
spatiotemporal index is proposed, that transforms trajectory conflict detection from multivariate
solutions into an efficient conflict state query of distributed grid databases. The distributed grid
databases are established by discretizing trajectories, low-altitude obstacles or low-altitude dangerous
fields into a multiscale discrete grid system. Essentially, it is a method of exchanging grid database
storage space for traversing time. As shown in Figure 2, our algorithm is organized as follows. First,
we built a flight airspace total spatiotemporal subdivision and encoding model that subdivides and
encodes the flight trajectories, and low-altitude obstacles and fields, within the flight airspace to
achieve a multilevel grid discretization and data identification. Next, we designed a grid database
table structure and created a multilevel grid database. Finally, we established a global multiscale grid
spatiotemporal index. When the amount of data had increased dramatically, a database partition table
and a priority policy for a temporal or spatial index are designed to improve the efficiency of the
conflict state query. The workflow is shown in Figure 2.
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2.1. Spatiotemporal Subdivision and Encoding Model

Subdivision is the process of discretizing aircraft trajectories, low-altitude obstacle elements,
and dangerous fields over spatial and temporal dimensions. Encoding is the process of identifying the
spatiotemporal attributes of subdivision elements. Subdivision and encoding organize the discretized
subdivision elements in an orderly way [18,19].

A total spatiotemporal subdivision and encoding model was built to describe the geometries of
flight paths, low-altitude obstacles, and dangerous fields with multilevel, seamless, and unfolded
subdivision element sets (“grids”) and to identify each scale of the subdivision element codes. To build
such a model, first, we need to discretize the total time-space domain into "three-dimensional (3D)
space subdivision grid elements" and "time subdivision grid elements"; then, we need to re-aggregate
the flight trajectories, low-altitude obstacles, and dangerous fields with subdivision grid elements
(time elements and space elements) [as shown in Equation (2)], and finally identify the subdivision
grid elements with codes [as shown in Equation (3)].

Gridspace time
Subdivision
←

{
Gridspace + Gridtime

}
, (1)

{Line element, Vol element} Cluster
← Grids, (2)

Codes code
↔ Grids, (3)

Model f light space Sub−Code =
{
Codes = Un

i=1(Codespacei + Codetimei)
}
. (4)

The flight airspace total spatiotemporal subdivision and encoding model, as shown in the
equations above, essentially involve aggregating the subdivision elements into spatial objects using the
spatial finite element concept. Equation (1) indicates that the time and space attributes are recorded
by the subdivision elements. Equation (2) aggregates the subdivision elements into flight paths,
low-altitude obstacles, and dangerous fields. Equation (3) indicates that, within the subdivision space,
each subdivision element maps a unique subdivision code. In Equation (4) the operator “+” means we
can connect the spatial code and the temporal code. Equation (4) shows that the flight airspace total
spatiotemporal subdivision and encoding model is an orderly set of subdivision element codes and
that each subdivision code forms part of all subdivision code sets within the subdivision space.

One-dimensional coding consists of temporal coding and spatial coding, where the spatial coding
contains the level information (spatial scale information) and location information, and the temporal
coding contains the level information (temporal scale information) and start time.

2.1.1. Space Subdivision

GeoSOT Subdivision Technique
Space subdivision grids, which are discrete, hierarchical, and globally continuous, address both

the computer management of continuous spaces and the discretization of aircraft paths and other
elements [20].

To better describe the sizes of the aircraft trajectories and low-altitude obstacles, we base our
study on an existing global longitude and latitude subdivision grid of 2n one-dimension-integer arrays,
GeoSOT (geographical coordinate grid subdivision by one-dimension-integer and two to the n-th
power) [20]. GeoSOT subdivision essentially extends the longitude and latitude intervals from the
eight basic grids up to 512◦ (29◦), interpolates four levels between 1◦ and 2′ and another four levels
between 1′ and 2”, and extends the part below 0.5′ to 1/2048” to yield a graticule-based subdivision
system of {28◦, 27◦, 26◦, 25◦, 24◦, 23◦, 22◦, 21◦, 20◦, 25′, 24′, 23′, 22′, 21′, 20′, 25”, 24”, 23”, 22”, 21”, 20”,
2−1”, 2−2”, 2−3”, 2−4”, 2−5”, 2−6”, 2−7”, 2−8”, 2−9”, 2−10”, and 2−11”}.

The Earth’s surface space is expanded from 180◦ × 360◦to 512◦ × 512◦; In the eight basic grids,
the 1st level 256◦ × 256◦, the 2nd level 128◦ × 128◦, the 3rd level 64◦ × 64◦,the 4th level 32◦ × 32◦. the
5th level 16◦ × 16◦. the 6th level 8◦ × 8◦. the 7th level 4◦ × 4◦. the 8th level 2◦ × 2◦.the advantage of the
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expanding segmentation is that the 0–9 layers of grids are all integer degree segmented. In the same
way, 1◦ × 1◦(60’ × 60’) is expanded into 64’ × 64’, which ensures that the 9–15 level grids are all integer
minutes segmented. While, 1’ × 1’ (60” × 60”) is expanded into 64” × 64”, which ensures that the 15–21
level grids are all integer seconds segmented.

According to the above mentioned definition of the subdivision hierarchy, GeoSOT contains 32
levels spanning from the global to the centimeter scale, and from the Earth’s core up to the solid
space of the Earth’s synchronous orbit, which is 60,000 km above the ground level. It equally divides
(same latitude and longitude scale) the Earth’s surface space into multilevel grids, which constitute a
global quad-tree system. The area ratios between adjacent levels of the GeoSOT grids vary equally at
approximately 4: 1, as shown in Figure 3.
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Grids = {spatial attributes, temporal attributes, codes} is the minimum element of a subdivision.
If a point is contained in a grid space, this may be expressed by a grid approximation. A grid
approximates a point when its side length is sufficiently small. After determining grid levels L1 and
L2, we can discretize the grid using the following Equations:

→

Point = {GridL1P}, (5)

Then, after L1 is discretized, the path is described as follows:

→

Line =
{
GridL1P1 , GridL1P2 , GridL1P3 , . . . , GridL1Pn

}
=
{
Un

i=1GridL1pi

}
, (6)

If the path is discretized with the L2 grids, then

→

Line =
{
GridL2P1 , GridL2P2 , . . . , GridL2Pm

}
=
{
Um

j=1GridL2p j

}
. (7)

In Equation (7), if L1 < L2, then n < m.
In an airspace, the total spatiotemporal subdivision and encoding model, a multiscale model

of trajectories is needed within the airspace. The following path data discretization rules need to
be established:

• The selected grid side length must be positively correlated to the speed (the faster the speed,
the larger the side length of the grid).

• The selected trajectory-scale level must neither be too high nor too low, since low levels would
make the grids too large to accurately describe the true flight trajectories and excessively high
levels could lead to significant trajectory fragmentation.

• To highlight the benefits of grid-coded multiscale query and retrieval, a two-level or multilevel
grid database is normally established to utilize the multiscale of subdivision grids by downward
segmentation and upward aggregation. When dividing sub-tables by row, lower-level patches are
included into the same sub-table as elements of the upper-level patches to improve the efficiency
of data retrieval.

• To utilize the benefits of multiscale grids, the grid side length may be used as a criterion for conflict
thresholds. If the flying safety distance is 1000 m, for example, the level-16 grids of GeoSOT may
be used [21].

Volume Element and Field Expression
Flying safety is subject to the environmental features of the underlying surface, such as high-rises,

lightning fields, or storm fields. Hence, the flight conflict detection must analyze the expressions of
these volume elements and fields. Here, the expressions of high-rises and simple fields are all treated as
volume-state expressions. The buildings and dangerous field are expressed by aggregating a number
of grids, as shown in Figure 5.

In the same way, volume elements and fields are clustered with subdivision grids on two levels.

→

Volume =
{
GridL1P1 , GridL1P2 , . . . , GridL1Pm

}
=
{
Um

i=1GridL1pi

}
=
{
GridL2P1 , GridL2P2 , . . . , GridL2Pm

}
=
{
Un

j=1GridL2p j

}
,

(8)
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2.1.2. Time Subdivision

Time subdivision includes the subdivision of time points and the subdivision of time spans.
A time point is the duration of a moment, whereas a time period is the time spanning from the
start to the end. Like space subdivision, time can be subdivided into different granularities such as
years-months-days-hours-minutes-seconds-milliseconds-microseconds. In actual application, the exact
time granularity must be selected as practically required.

During trajectory conflict detection, it is unnecessary to model all scales of time granularity.
According to the required computational efficiency, only the second-scale subdivision of the time
domain is needed in the method, One-scale and multiscale subdivision as shown in Table 1.

Table 1. The differences between one-scale and multiscale temporal subdivisions.

One-Scale Subdivision Multiscale Subdivision

1970-01-01T:00:00Z- Year
0 S 1 S 2 S January February March . . . December

1st 2nd . . . 364th 365th

2.1.3. Unified Spatiotemporal Encoding

Subdivision codes, as identifiers of subdivision elements must, not only express the spatiotemporal
attributes of the subdivision elements, but also be applicable to the efficient query/retrieval and
analysis/computation among subdivision elements. Typical encoding methods include hierarchical
encoding and space-filling curve encoding [21].

As each code element of hierarchical encoding records the parent elements that has passed before
arriving at the current element, the encoding scheme essentially describes the "tree" structure of the
affiliations between different levels of elements within a grid system. In a coding system with a deep
hierarchy and many leaf nodes, the code query efficiency is low; the filling curve encoding operation
can design different space-filling curves, such as Hilbert curves, Peano curves, Sierpinski curves,
and Morton (Z) curves, according to the nature of the mapping function.

In general, space-filling curves feature spatial aggregation, namely, neighboring elements in
two-dimensional spaces are still neighbors with each other when mapped on the space-filling curve.
This approach adequately addresses the demand to express the neighborhood between the elements
and allows efficient neighborhood querying during flight conflict detection. The spatial z-order has the
advantages of simplicity and intuitionism in spatial encoding compared to other approaches. Hence,
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we propose a z-order binary encoding method that satisfies the requirement of direct computer storage
and makes the best use of bitwise operations on binary numbers.

GeoSOT-3D Subdivision Volume Element Encoding Algorithm

The GeoSOT-3D ellipsoid subdivision space is a discretized (digitalized) abstraction of the entire
geospace. The foundation for establishing a discretized GeoSOT-3D subdivision space is the GeoSOT
volume element encoding structure and method. GeoSOT encoding is based on the GeoSOT-3D space
subdivision theory, as shown in Figure 6.

Figure 6. GeoSOT-3D space-filling curves.

GeoSOT-3D subdivides a space downward as an octree and encodes the elements in order, as
shown in Figure 5a. The direction of z-order encoding is closely associated with the positions of the
volume elements. In the northeast quadrant, for example, the longitude is encoded in an ascending
manner, and the latitude and height are encoded on a bottom-up basis.

Binary 3D Space Encoding Algorithm

GeoSOT-3D binary encoding uses 3*32-bit binary numbers to indicate high coordinates of longitude
and latitude. As shown in the charts below, the first binary bit of its encoding structure defines the
south and north latitudes, east and west longitudes, and above and below the ground level. The integer
degrees of latitude and longitude each occupy eight binary bits; the integer minutes of latitude and
longitude each occupy six binary bits; the integer seconds of latitude and longitude each occupy six
binary bits; and the fractions of a second of the integer latitude and longitude each occupy 11 binary
bits. The longitude and latitude are expressed to an accuracy of 1/2048”, and the height is encoded
from the Earth’s core to 60,000 km above the ground level, as shown in Figure 7.
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Binary Time Encoding Algorithm

In this paper, time period encoding is used to express the spatial extent of dynamic aircraft
trajectories within a time period, in order to quickly detect path conflicts within the time dimension.
Essentially, this method uses a maximum of 64-bit binary code to store time, by dividing the 64 bits
from high bits to low ones, and stores the years, months, days, hours, minutes, seconds, milliseconds,
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and microseconds. The method identifies the granularity of a time period with the length of the code.
The longer the bits of a code, the smaller the time span is. The date, March 2, 2019, for example, is
encoded by adding the code for “day” to the code for March 2019. The number of bits of a code reflects
the size and hierarchical count of this code and, thereby, the chronology and hierarchical count of
the time.

The year, month, day, hour, minute, second, and microsecond are different levels of the time
scale. We use the time level of seconds in the method. In the case of “2019-03-02T10:21:50.000002”, for
example, the single-scale binary expression of the subdivision code is as follows:

0︸︷︷︸
unsigned

10000011111100011︸                   ︷︷                   ︸
year

0010︸︷︷︸
month

00001︸︷︷︸
day

01010︸︷︷︸
hour

010101︸ ︷︷ ︸
minute

110010︸ ︷︷ ︸
second

00000000000000000010︸                        ︷︷                        ︸
microsecond

3. Database Table Design and Establishment and Optimization of the Index

In this paper, we propose a trajectory conflict detection algorithm, based on a multiscale grid
spatiotemporal index. Designing a grid database and creating a grid spatiotemporal index are
fundamental for efficient conflict state querying within grids. Hence, the design of the table structure
in the grid database and the creation of a multiscale grid spatiotemporal index directly determines the
efficiency of the trajectory conflict detection.

3.1. Database Table Structure Design

Traditional relational databases suffer from severe bottlenecks in expansibility, storage, and query
behaviors. MongoDB, as an open-source NoSQL database written with C++ and based on file storage,
supports data structures in BSON format, which is similar to the JSON format. It is loosely structured
and schema-free and can store complicated types of data. Here, we created a conflict detection-oriented
grid database, based on MongoDB, and use grid spatiotemporal codes as the keys for the database to
make the best use of the query and retrieval behavior of binary one-dimensional encoding in efficient
bitwise operation. The table structure is designed as follows:

Each of the subdivision elements maps a subdivision element code, and each subdivision element
maps a number of aircraft objects (there can be more than one aircraft in one grid simultaneously).
Hence, they can be organized by grid data and aircraft object data.

To enable the quick query and retrieval of grid data and the dynamics of different aircraft, two
table structures, including a grid database table and objects data table, are designed. The grid database
table was used to store the discretized grid data of a number of paths, low-altitude building objects,
and dangerous fields. A multiscale grid code database was created to utilize the multiscale of grid
codes. That is, if a conflict was detected in the parent grid, this conflict may be queried in the child grid
to further confirm if such a conflict exists. If no conflict is detected in the parent grid, we will jump
out of the query and conclude that no conflict exists in the child grid. The object data table is used to
store the attributes of an aircraft object. The two tables are correlated with the aircraft object ID. This
approach enables both the efficient query of the grid database and the query of the object attributes
with high retrieval efficiency.

Database Table Structure Design of the aircraft trajectory as follows (Table 2):



ISPRS Int. J. Geo-Inf. 2019, 8, 289 10 of 17

Table 2. Database Table Structure Design 1 of the aircraft trajectory.

Database Table Structure Instructions

{
“_id”: GeoSOT 3Dcode,

“data_exist”:1,
“data”:[

{
“dataid”:0,
“timecode”:01010 010101 110010,
“L”:110.470244,
“B”:9.000059,
“H”:3307.167235,
“up”:1500.0,
“down”:1500.0,
“left”:75.0,
“right”:75.0,
“v”:197.2,
“type”:2,
“conflict”:0,
“con_type”:1,
“OID”:“PLANE2”,
“trackid”:“track0”
]}

}

geosot code of aircraft tracking, building, etc.

time code
Latitude
Longitude
Height
top of aircraft tracking
bottom of aircraft tracking
left width of aircraft tracking
right width of aircraft tracking
speed of aircraft
type of aircraft
conflict or not
conflict type of conflict
aircraft ID
id of aircraft tracking

A distributed grid code database uses the GeoSOT codes as the main keys. The table contains as
GeoSOT codes the longitude (“L”), latitude (“B”) and height (“H”) within the grid, the time codes
(“timecode”), the extent of aircraft trajectories, including the height of the top of the aircraft tracking
(“up”), the height of the bottom of the aircraft tracking (“down”), the left width of the aircraft tracking
(“left”), and the right width of the aircraft tracking (“right”), the flying speed (“v”), the type of
aircraft within the grid (“type”), whether a conflict exists (“conflict”), the type of conflict (“con-type”),
the aircraft ID (“OID”), and the ID of the aircraft tracking (“trackid”). This design allows a normal
query as well as a quick query of a conflict in a grid at a time point from the grid database.

The object data table is designed as follows (Table 3):

Table 3. Database Table Structure Design 2 of the object data.

Database Table Structure Instructions

{“_id”:
{“$oid”:“5ae18ec655c45e894619469c”},
“OID”:“PLANE2”,
“name”:“J-20”,
“crew”:1,
“length(m)”:21,
“Thrust/Weight”:0.75,
“span(m)”:12.8,
“height(m)”:6.22,
“practicalceiling(m)”:15,500,
“Maximum_range(km)”:3650,
“wing_area(m*m)”:42.2,
“empty_weight(kg)”:14,500,
“Maximum_take-off_weight(kg)”:27,415,
“Maximum_flying_speed(ma)”:1.7

}

aircraft ID

the number of crew

wing_area
empty_weight
Max take-off_weight
Maximum_flying_speed

GeoSOT codes are used as the database keys for “name”, “crew (person)”, “length (m)”,
“thrust/weight ratio”, “span (m)”, “height (m)”, “practical ceiling (m)”, “maximum range (km)”,
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“empty weight (kg)”, “maximum take-off weight (kg)”, and “maximum flying speed (ma)”. Continuous
trajectories are discretized into discrete grid code expressions with spatiotemporal attributes. An object
attribute table is used to store the object attributes to minimize data redundancy. The data table and
object table are correlated via the object “OID”.

3.2. Establishment and Optimization Index

A multiscale grid spatiotemporal index is a multiscale index comprising multiscale grid time
codes and multiscale space codes based on space subdivision and encoding. When establishing a
multiscale spatiotemporal index, if a large number of aircraft and a large amount of grid data are
involved, we need to create global multiscale grid spatial and temporal code indexes first, then partition
the table according to the range of space to improve the query efficiency, and finally, determine the
sequence of the spatial indexes and temporal indexes according to the sparseness of the space and time
data and find the space and time domains, as shown in Figure 8.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 17 
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3.2.1. Global Spatial Index and Temporal Index of Multilevel Grids

Grid indexing is an indexing method that uses the space and time codes of multilevel grids as
the conflict detection result, to allow a quick query. Unified spatiotemporal encoding is performed
according to the total spatiotemporal subdivision model of the airspace. The performance of a grid
index relies on the sizes of the grids and objects and the relationships between object densities [22,23].
For data with high spatial densities, a multilevel index grid system is usually created to provide
optimum performance.

In multilevel grid indexing, when the user performs a spatial query, he/she first calculates the
space grid hosting the queried object and uses this grid to quickly locate the selected space object.
The grid indexing method is the most intuitive indexing method for space objects. Its corresponding
algorithm is also simple enough for the quick query of the objects. This is a typical space-for-time
indexing method whose high data redundancy does not prevent its wide acceptability owing to the
high efficiency of grid indexing.

Multilevel grid spatial indexing is a method of querying flight conflicts in two levels of spatial
grids by utilizing the multiscale structure of the GeoSOT subdivision grid. This method first queries
conflicts in the parent grid and, if any conflict exists there, further queries its child grid and returns to
the conflicted child grid code or, if no conflict exists, directly queries conflicts in the next parent grid.
Essentially, this method is also a process of coarse filtration to fine filtration.
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3.2.2. Partition Index Techniques

With the increasing quantity of large-area grid data, traditional centralized database systems are
suffering from expansibility and performance bottlenecks and are far from addressing high-concurrency,
low-delay real-time applications. Distributed organization and indexing techniques represent an
effective solution to this problem. Logically, the distributed processing of space indexes involves
cross-node segmentation and a local data storage structure.

However, when a large number of aircraft or long paths are involved and the data size of the
grid database increases sharply, the efficiency of the conflict detection results will be compromised by
traversing the index table. Hence, we propose the concept of a data partition, which partitions the
index table and utilizes the merits of a distributed database query to provide the speed required for
big data path conflict detection.

3.2.3. Space Index and Time Index Priority Policy

The spatiotemporal data distribution varies in granularity. In a grid database with sparse time
elements, if a unified spatiotemporal index is used or if the space and time search method is used,
the efficiency of the conflict detection results will be compromised by the unequal distribution of space
and time data. For example, when the number of aircraft objects is determined and the flying time
varies from 1 h to 24 h, a unified spatiotemporal index would limit the speed of the conflict detection.
In view of this issue, we establish a priority policy for selecting the temporal or spatial index with the
table partition result.

The time density (T_time) and space density (T_space) are defined as follows:

T_time =k1
numbergrids

numbertiime span

T_space =k2
numbergrids

numberobjects
,

(9)

Here, numbergrids, numbertime span, and numberobject represent the total number of grids, time span,
and number of aircraft objects, respectively; k1 and k2 are the weights of time and space, respectively.

3.2.4. Real-Time (Dynamic/Static) Conflict Detection

During static fight conflict detection, the paths are pre-discrete and stored in the database to form
a grid database. During dynamic track conflict detection, this proposed method uses a technique,
where only the new grid conflict state needs to be queried under the static conflict detection result (new
paths are discretized into the grid then updated to the grid database). On the one hand, the amount of
new path data is limited under normal circumstances; on the other hand, querying the specified grid
code conflict state is efficient; in conclusion, in the real-time demand of flight conflict detection, both
dynamic detection and static detection can be met.

4. Prototype System Implementation and Experiments

4.1. Case Description

The experimental data were sourced from the data of 300 paths of aircraft departing and landing
at three airports in the southeastern coastal area of China at different times. In southeastern China,
which is subject to frequent storms during the summer, flights must always be managed with high
timeliness and accuracy. The aircraft data include attribute data and path data, the latter of which
are presented in the format of time (s), longitude (◦), latitude (◦), and height (m). Some examples are
as follows:

2018-08-14 15:21:07, 113.3080, 23.3244, 1097.28
2018-08-14 15:21:27, 113.3110, 23.3053, 1249.68
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2018-08-14 15:21:45, 113.3275, 23.2952, 1463.04.
Sixty low-altitude obstacles and storm fields are organized, with the low-altitude obstacles

appearing in the form of polygons + elevations. The coordinate string is formatted as start time, end
time, longitude (◦), latitude (◦), the height of the top (m) of the obstacle, and the height of the bottom of
the obstacle (m); in the case of a building, the start and end times are defaulted as always existing,
and the height of the bottom of the obstacle is 0. Some examples are as follows:

2018-08-14 10:00:00- 2018-08-20 10:00:00, 106.1100, 34.3050, 300.0, 10000.00.
2018-08-14 10:00:00- 2018-08-20 10:00:00, 106.1200, 34.3310, 300.0, 10000.00.
2018-08-14 10:00:00- 2018-08-20 10:00:00, 106.1606, 34.3010. 300.0, 10000.00.

4.2. Prototype System Development

To verify the effectiveness of the theory proposed herein, a prototype experiment verification
system was developed that supports the visualization of fundamental geophysical data and displays
different scales of GeoSOT grids. To perform the experiment, first, one needs to pre-grid the path,
low-altitude obstacles, and dangerous field data. Then, we need to establish a database of discretized
gridded data. Next, we create a multiscale grid spatiotemporal index to obtain the aircraft trajectory
conflict detection results under different algorithms and compare the query efficiencies of the conflict
detection results among different algorithms.

4.2.1. Data Gridding

The path data is composed of a series of points. Before the data were added to the grid, polynomial
interpolation was performed to obtain the real-time aircraft positions at second-scale time intervals.
Then, based on the GeoSOT subdivision theory and according to the path data discretization rule, 300
paths were discretized using Equation (2) at a safety distance of 1 km (considering the possibility of
supersonic aircraft) on level 14 (with an equator grid length of 4 km) and level 16 (with an equator grid
length of 1 km) grids, and a 1-second time encoding granularity was selected. The gridding process
covering both storm fields and low-altitude obstacles yielded 1,800,000 points of discretized grid data.
To test the query efficiencies of our algorithm for different data sizes, we reproduced three copies of
the data of the paths, low-altitude obstacles, and dangerous fields and yielded a maximum of 1,800,000
grids × 4 = 7,200,000 grid data. The query efficiencies were compared in the laboratory at 10 paths
(50,000 grids), 50 paths (150,000 grids), 300 paths (1,800,000 grids), and 1200 paths (7,200,000 grids).

4.2.2. Creating a Database

After the discretized path data and low-altitude obstacle data were gridded, each grid data point
was formatted according to the grid data in Tables 2 and 3 and documented. The path data were edited
and imported into MongoDB, as shown in Figure 9.
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4.2.3. Creating a Multiscale Grid Spatiotemporal Index

A global index was created in MongoDB to ensure the effectiveness of the partitioned index.
First, we created a joint index with the spatial codes and time codes of the grids as the keys.

({ “_id”:1.”timecode”:1},{“_id”:” geosot 3Dcode”}).
Next, a data partition table was created by analyzing the grid data size to improve the query

efficiency of the distributed data. Finally, the time and space features were quantitatively compared
by calculating the spatiotemporal sparseness of the data. As our experiment was conducted on civil
aircrafts, which normally fly in the daytime, and whose T_time is less than T_space, according to
Equation (9), the priority of the indexes was determined to be the time index before the space index.
When querying the space index, if a conflict existed at a parent node, we entered into the child grid to
query the conflicts there and returned the result. If no conflict existed at the parent node, we proceeded
to the next parent grid. The aircraft object table was correlated to the attribute table with the OID.

4.2.4. Flight Conflict Range Search Method Based on the BKD-Tree

To compare the efficiency of the proposed method and the Bkd-tree method, we implemented
the Bkd-tree in C++ using TPIE. We used a block size of 16 KB for the internal nodes (following the
suggestions of reference [12] for the B-tree), resulting in a maximum fanout of 512. The leaves of a
kd-tree, which were stored in 16 KB blocks as well, contain a maximum of 1364 (key, pointer) elements.
We use the data set of discrete points of aircraft routes every second and set 500 m as a safe distance.

4.3. Results and Analysis

All trials were conducted on The ThinkPad T470p Signature Edition with the i7-7700HQ CPU.
The machine had 16GB of memory. In the experiment, the conflict detection results between the current
paths or between the paths and high-rises and storm fields were tested using a traditional polynomial
equation algorithm, the range search method of the BKD-Tree, simple unified spatiotemporal code
retrieval, and multiscale grid spatiotemporal indexing (our method).

To test the conflict detection times of the different methods under different data sizes, a conflict
query was conducted on different data sizes of the path data, including data of 10 paths, 50 paths,
300 paths, and 1200 paths, as shown in Figure 10. The yellow grids represent volume elements and
dangerous field, the cyan grids represent aircraft paths, and the red grids represent conflict areas.
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From Figure 11, when the traditional multipath traversing conflict detection algorithm is used,
as the number of paths increases, the time needed for path conflict detection increases geometrically;
when the spatiotemporal code of the grid is used as the only key, the conflict detection efficiency
increases, although the time consumed will continue to increase with the increasing data size.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  15 of 17 
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the time code and space code as two separate keys. It quickly locates the grid codes in the space and 
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exchanging "storage space" for "computational time". First, a flight airspace total spatiotemporal 
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Figure 11. Comparison of flight conflict detection efficiency among different methods.

The grid index has a certain number of child nodes, but the number of child nodes of the Bkd-tree
is not fixed. The need for rebalancing Bkd-tree index structures can also be prohibitively expensive
than grid index. And the Bkd-tree method has the same tendency as the spatiotemporal uniform index,
i.e., the large amount of distance calculation needed is an increasingly time-consuming process as the
amount of data grows.

When the path conflict retrieval algorithm, based on a multiscale grid spatiotemporal index is
used, as the data size increases, the time consumed for conflict detection virtually stays within 1 second.
This result occurs because, as the number of paths increases, the data size traversed by the traditional
algorithms will increase geometrically, causing the query time to increase geometrically as well.

If the unified grid spatiotemporal code is used as the only key for indexing, an unequal
spatiotemporal distribution of the data will give rise to numerous invalid grid codes, leading to
data redundancy (e.g., when encoding paths, discrete encoding to the time of the entire region,
including the time when, and after, the aircraft flies past the grid) and consequently compromising the
retrieval efficiency.

Our path conflict detection algorithm, based on the multiscale grid spatiotemporal index, treats
the time code and space code as two separate keys. It quickly locates the grid codes in the space and
time domains by utilizing the neighborhood between the neighboring grid codes and the multilevel
regression of the grids and, when the data are unequally distributed in space and time, it automatically
optimizes the sequence of the time index and space index. Furthermore, our data partition policy
allows database table partitioning in times when the data size increases and utilizes the concurrent
query capability of distributed databases. This policy ensures that the time consumed for the conflict
detection query will remain basically constant despite the increase in the grid data size.
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5. Conclusions and Future Studies

A new, low-altitude trajectory conflict detection algorithm, based on the multilevel grid
spatiotemporal index, is presented that transforms the traditional path-by-path traversing computation
into a conflict state query of distributed databases. Essentially, it is a method of exchanging “storage
space” for “computational time”. First, a flight airspace total spatiotemporal subdivision encoding
model is built, using the GeoSOT subdivision scheme, to discretize and identify the airspace. Next,
a multilevel grid time/space index priority policy is established. Finally, a data partition strategy is
used to improve the grid conflict query efficiency for large data sizes. This method not only allows the
computation of the conflict detection results between different paths but also supports the detection of
path conflicts under complicated low-altitude spatiotemporal variations (high-rises or storm fields).
Our method also provides the speed and accuracy required for the real-time (dynamic/static) detection
of path conflicts among individual aircraft or aircraft flying in formation, with an efficiency one
order of magnitude higher than those of traditional algorithms. In future studies, our algorithm
may be extended to support train dispatching, unmanned aerial vehicle (UAV) swarm management,
low-altitude flight control, and satellite orbit operations.
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