
 International Journal of

Geo-Information

Article

Supporting Policy Design for the Diffusion of Cleaner
Technologies: A Spatial Empirical
Agent-Based Model

Caterina Caprioli * , Marta Bottero and Elena De Angelis

Politecnico di Torino, Interuniversity Department of Regional and Urban Studies and Planning (DIST),
Viale Mattioli 39, 10125 Torino, Italy; marta.bottero@polito.it (M.B.); elena.deangelis@polito.it (E.D.A.)
* Correspondence: caterina.caprioli@polito.it; Tel.: +39-0110906468

Received: 23 August 2020; Accepted: 28 September 2020; Published: 1 October 2020
����������
�������

Abstract: Renewable energy resources and energy-efficient technologies, as well as building
retrofitting, are only some of the possible strategies that can achieve more sustainable cities and
reduce greenhouse gas emissions. Subsidies and incentives are often provided by governments to
increase the number of people adopting these sustainable energy efficiency actions. However, actual
sales of green products are currently not as high as would be desired. The present paper applies a
hybrid agent-based model (ABM) integrated with a Geographic Information System (GIS) to simulate
a complex socio-economic-architectural adaptive system to study the temporal diffusion and the
willingness of inhabitants to adopt photovoltaic (PV) systems. The San Salvario neighborhood in
Turin (Italy) is used as an exemplary case study for testing consumer behavior associated with this
technology, integrating social network theories, opinion formation dynamics and an adaptation of the
theory of planned behavior (TPB). Data/characteristics for both buildings and people are explicitly
spatialized with the level of detail at the block scale. Particular attention is given to the comparison of
the policy mix for supporting decision-makers and policymakers in the definition of the most efficient
strategies for achieving a long-term vision of sustainable development. Both variables and outcomes
accuracy of the model are validated with historical real-world data.

Keywords: Geographic Information System (GIS); sustainable development; eco-district; photovoltaic
system; innovation diffusion; energy; decision-making process; consumer behavior; social network;
theory of planned behavior

1. Introduction

Urban policy is an increasingly relevant domain aimed at coping with the complexity of urban
problems in an overall perspective [1]. Normally, urban problems are characterized by multiple
conflicting aspects and incommensurable elements, as well as by multiple stakeholders, thus requiring
even more tools and methods able to synthetize a full set of factors for supporting policymakers and
defining efficient strategies.

Moreover, the increasing pressure of the state of transition of our cities through the sustainable
development model implies an urgent need to identify and evaluate the environmental, economic,
and social impacts of alternative policies and actions [2]. Cities are, in fact, responsible for more
than 70% of energy-related emissions and 60–80% of final energy use is consumed in cities [3];
at the same time, they represent the main place of attraction for people, technological, economic and
socio-cultural development [4]. Many market surveys have demonstrated a very positive attitude
towards eco-innovations and sustainability, but depite this, sales of green products are currently not
as high as would be desired [5]. Consequently, in recent decades, many directives, programs and
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frameworks have been adopted and supported by the European Union for promoting sustainable
development [6]. One of the most recent and relevant of these is the 2030 Agenda for Sustainable
Development with 17 sustainable development goals (SDGs) adopted in 2015, which amounts to an
urgent call for action to all countries. SDG 11—“Sustainable cities and communities”—is devoted
to the design of future cities able to generate social inclusion and mutual respect in the interaction
between people and their surrounding environment. Since this goal refers explicitly to the inherent
interrelation between communities and their living space, the “people” perspective is of utmost
importance, and requires specific tools. The agent-based model (ABM) is an extremely powerful
tool, suitable in different fields [7,8] and, in particular, in decision making. It considers individual
behaviors and networking among people, together with real-world data in a multi-temporal and
spatial dimension.

Policy design can deal with sectoral policies, which are implemented across different territories,
or, on the other hand, with area-based policies implemented at a more specific scale (such as
neighborhood) [1]. The term “neighborhood” is often blurred. The scale and characteristics of
neighborhoods vary a lot around the world, and this has consequences on the area-based policies
adopted. The internal dynamics within a given neighborhood combine with the multi-dimensionality
of urban problem, and require multiple policy strategies and the engagement of both public and private
stakeholders [9]. The area under analysis in the present study is an officially recognised neighborhood
defined by the city of Turin for administrative purposes, whose boundaries clearly separate the district
from the other parts of the city, for the presence of the station to the west, the main hospital of the city to
the south, the Po river to the east and the city center to the north. This neighborhood has been chosen
by the municipality of Turin as a test-bed place for creating a so-called eco-district in the city of Turin
and experimenting sustainable strategies and policies to be then spread to the overall municipality.
As testified by many eco-districts and sustainable neighborhoods which have been developed all over
the world [10], the neighborhood scale represents a good compromise as a scale for testing efficient
strategies and policies [11].

More than other scales, sustainable neighborhood policies require a spatial approach, with an
analysis of detailed information and finer data on buildings and inhabitants. Decision-makers
need appropriate tools to structure problems, to plan and evaluate alternatives in a multi-temporal,
multi-objective and long-term perspective. In that context, mixed methods have even more important for
supporting the decision process and the definition of efficient policies, contributing to the consideration
of multiple elements and feedbacks of stakeholders at the same time.

The present research investigates the potentialities of a mixed-method approach, which combines
an agent-based model (ABM) with a Geographic Information System (GIS), in supporting the
decision-making process and the definition of strategic policies. The integration of individual
behavior simulations through the adoption of ABM, and the real-world spatial distribution of data
and people through GIS is particularly promising although it is not well codified either in simulation
analyses or policy design. The choice of ABM is due to its many abilities. Firstly, it is possible to
perform analysis at different scales, spanning from a finer scale, such as single buildings or districts,
to a wider scale, including cities and entire countries. Secondly, it is able to integrate real spatial
data of a specific context related both to environmental characteristics (such as building properties,
services localization, pollutants distribution) and data on individuals (such as income, attitude, needs,
age). It is particularly necessary to consider people as single agents with their own decision rules and
personal attributes located in a real-world space, rather than looking at them in terms of statistics.
Thirdly, time represents a fundamental element in understanding the effects of actions and policies
over a timeframe. By taking time into consideration, it is possible to predict the impact of single or
multiple features within a given timeframe. Over time, the model simulates consumer behavior in
the adoption of photovoltaic (PV) systems by integrating real geospatial data with social network
theories, opinion dynamics formation and individual preferences of homeowners. The San Salvario
neighborhood in the city of Turin (Italy) is used as an exemplary case study for testing the pros and
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cons of this hybrid evaluation method. The “exploratory simulation” [12] capability of ABM makes
them extremely useful in studying complex systems, becoming like a sort of virtual laboratory, where
multiple simulation sessions occur, varying inputs and changing attributes [13].

The paper is structured as follow: after this introduction, the materials and methods section
describes the main behavioral theories applied in the model, as well as the main references used for
defining the variables considered in the simulation. Then, in the application section, the case study
is presented with a specific focus on how the model was set up, the variables considered, and the
set of data acquired. The results section illustrates the outcomes of the research and the role of the
policy mix for achieving more successfully policies. In particular, the results accuracy is validated with
historical real-world data and sensitivity analysis/parameters sweeping across the variables selected.
Finally, the last section contains the concluding remarks of the analysis and the future perspectives of
the research.

2. Materials and Methods

2.1. Literature Review

ABM has been extensively used to study the diffusion of innovation, also in the context of
innovation technologies at the urban scale. To name a few of them, it is possible to recall the research
of Sopha et al. (2013) [14] and the paper by Snape et al. (2015) [15] on heating systems diffusion or the
one by Byrka et al. (2016) [5] on green products and practices. Frequently, these analyses have been
conducted also for supporting policymakers in the evaluation of possible interventions and the effects
of alternative policies. These claims are supported by existing literature reviews on the use of ABM
for studying innovation diffusion performed in the last ten years, such as the first by Kiesling et al.
(2012) [16], the one by Zhang and Vorobeychik (2017) [17] and the most recent on energy-efficient
technologies by Hesselink and Chappin (2019) [18]. The first two reviews highlight a general attitude of
authors in developing theoretical models with limited prediction capacity. However, some initial efforts
to perform empirical ABM for analyzing innovation diffusion are classified by Kiesling (2012) [16]
in three domains: agriculture (a) energy, transportation and environmental innovations (b) and
miscellaneous (c). The review of Zhang and Vorobeychik (2017) [17] adds to the three classifications of
Kiesling’s (2012) [16] other two issues: agricultural innovations and farming (a), sustainable energy and
conservation technologies (b), consumer technologies and innovations (c), information technologies
(d) and social goods (e). Concerning the second cluster, Zhang and Vorobeychik (2017) [17] report
21 documents to which Hesselink and Chappin (2019) [18] add another 17 papers. This list makes
clear the increasing and strong efforts and interest of the research on the topic of innovation diffusion,
in particular in the context of energy and environmental innovations.

In the specific framework of this research, it is also possible to state that precisely in the PV
system diffusion and the definition of related policies, there is a very recent and increasing interest
in ABM adoption, as testified for example by the recent papers by Haelg et al. (2018) [19], Lee and
Hong (2019) [20], Schiera et al. (2019) [21], Nuñez-Jimenez et al. (2020) [22]. However, other previous
examples also show the strong effort of the research in this context (such as [23–26]).

Table 1 reports the main documents in which ABM is applied for analyzing the temporal diffusion
of innovative technologies and used for defining the methodological framework of our analysis (Table 2).
Table 1 is precisely focused on the main theoretical models used in those research studies, the time and
scale of simulations—in particular, if GIS was applied and in which way—the identification of the
analyzed policies, as well as the variables considered and the level of detail of people characteristics.
In Table 1, the elements used in our simulation model are highlighted in grey. Then, Table 2 reports
the mixed ABM used in the present research, also showing the innovativeness of the analysis over
the others.
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Table 1. Main references on photovoltaic (PV) diffusion used for defining the methodological framework of the research (adapted and integrated from Schiera et al. (2019)).

Authors Behavior
Model 1

Time 2

–Timeframe
Scale Model

Purpose Policy Variables
Geographic
Information
System (GIS)

Agents Initialization Data
Validation

Bottaccioli et al.
(2019) [21]

TPB + RA +
SWN Q—20 years District/

household Policy design

(1to1) actual Italian
regulatory
framework vs.
(1toM) joint
self-consumption
citizen (Clean
Energy
package [27])

• Opinion uncertainty
• Innovation
• Income
• Payback period
• Electricity consumption,

electricity rates,
PV generation

Yes, block
scale

Italian statistics
characteristics

Sensitivity of
the attributes

Lee and Hong
2019 [20]

LR/PL + peer
effect Y—9 years District/

household
Diffusion
study -

• Building type, total
rooftop area, gross floor
area, and year of approval

• Density, average age,
and officially assessed
land price

• Technical performances
of the rooftop solar
PV system

• Economic performance of
the rooftop PV

• Payback period

Yes, block
scale Census block data

Empirical
data-driven
behavioral
rules of
rooftop solar
PV adoption

Nuñez-Jimenez et al.
(2020) [22]

TF/UF + peer
effects Y—6 years State Policy

evaluation

Adjusting
incentives:

• Deployment
(EUR/kWh
per MWp)

• Policy cost
(EUR/kWh per
EUR million)

• Profitability
(EUR/kWh)

• Available information
about PV

• Environmental awareness
• Investing attractiveness

No Electricity consumers in
Germany

Calibration of
the attributes
(historical
cumulative
installations
between 1992
and 2016)
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Table 1. Cont.

Authors Behavior
Model 1

Time 2

–Timeframe
Scale Model

Purpose Policy Variables
Geographic
Information
System (GIS)

Agents Initialization Data
Validation

Rai and Robinson
2015 [26]

TPB (partial) +
RA Q—6 years State/

household Policy design

• Rebate/price
changes on the
level of
PV adoption

• Low-income
solar program

• Agents’ attitudes
(financial (Fi),
environmental (Ei),
and social (Si) belief
indices) and uncertainty

• Individual control beliefs
(size of the house (s), tree
cover (T), and irradiance
received (I))

• Payback period

Yes,
distribution
with linear
regression and
results
(city-level
median)

• System details, location,
installation date, etc.

• Survey on
installation decision

• Home value, parcel size,
land-use code, etc.

• Light Detection and
Ranging (LIDAR)
images and National
Elevation Dataset

Calibration of
the attributes
(empirical
adoption
levels
between 2008
and 2013)

Rai and Sigrin
2013 [25] FE Y—25 years State

Financial
decision-process
of consumers

-

• Income
• Electricity consumption,

electricity rates,
PV generation

No Homogeneous (income, age,
degree)

5 Scenarios on
electricity and
PV system

Robinson et al.
(2013) [24]

TPB + RA +
SWN Q District/

household
Diffusion
study -

• Opinion on PV
• Environmental awareness
• Income
• Payback period

Yes, block
scale

Social, economic,
demographic and behavioral
attributes of Austin (Texas)
population (not more
specified)

Calibration of
the attributes
based on
historical data
of adoption
(2005–2008)

Zhao et al.
2011 [23] TF M—21 years Region Policy

evaluation

Two incentives
(Investment Credit
Tax and Feed-in
Tariff)

• Payback period
• Electricity generation

(PV) and consumptions,
incentive levels, PV
module price, and hourly
electricity price (grid)

• Income
• Word-of-mouth effect
• Advertisement effect

No U.S. Census Bureau

Sensitivity on
the attributes
and real
statistical data

1 TPB = theory of planned behavior, RA = relative agreement, SWN = small-world network, LR = logistic regression, PL = adoption probability level; UF = utility function, TF = threshold
function, FN = financial evaluation; 2 Y = yearly, Q = quarterly, M = monthly, W = weekly.
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Table 2. The framework of the model performed in the present research based on the literature review.

Authors Behavior
Model Time–Timeframe Scale Model

Purpose Policy Variables GIS Agents Initialization Data Validation

Our model TPB + RA +
SWN Y—30 years District Policy

design

• Actual Italian
regulatory framework

• Vouchers from PV
sellers to adopters for
sharing with “friends”

• Low-income incentives
• Information diffusion

(both environmental
awareness and
technology information)

• Opinion uncertainty
•

Environmental awareness
• Information technology
• Environmental

awareness information
• Innovation
• Income
• Return on investment
• Electricity consumption,

electricity rates, PV
generation, PV rates

• Payback period

Yes, block
scale

• San Salvario spatialized
people characteristics at
block scale (degree,
number of components,
occupation,
rent/owner, nationality)

• Italian
statistics characteristics

Calibration of the
attributes based on
historical data of
adoption (2011–2019)
and sensitivity of the
attributes
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2.2. A Mixed Hybrid Agent-Based Model (ABM)

The present research proposes a mixed hybrid agent-based model, which combines the small
world network (SWN) theory [28] and the relative agreement (RA) opinion formation dynamics [29,30]
into an adapted theory of planned behavior (TPB) [31], using a rich set of real-world data and a spatial
representation through the integration of GIS maps. These combinations of theories and assumptions
were used to develop the individual single-family households calculation for the adoption of the
PV systems.

2.2.1. Theory of Planned Behavior

The theory of planned behavior (TPB) was developed by Ajzen in the 1970s and performed next
in 1991 [31]. This theory still represents one of the most commonly used approaches in social sciences
to predict people’s intentions to perform a behavior. Thus, it is particularly useful for studying the
diffusion of innovations, as testified by several very recent applications, such as [21,32,33]. According to
Ajzen, the intention “can be predicted with high accuracy from attitudes toward the behavior, subjective
norms, and perceived behavioral control” [31], as shown in Figure 1 [34].

Figure 1. The theory of planned behavior framework (Fishbein and Ajzen, 2005).

Individual factors (such as personality, emotion, values, experience, intelligence), social aspects
(such as education, age, gender, income, religion, race, ethnicity and culture) and information (such as
knowledge or media) contribute together to the formation of beliefs, which are at the basis of attitude
toward the behavior, subjective norm and perceived behavioral control formation.

A favorable or unfavorable attitude toward the behavior (att) is represented by the behavioral
beliefs, i.e., “the likely outcomes of the behavior and the evaluation of these outcomes” [35]. Personality,
emotion, values, experience, intelligence are some examples of factors that influence the formation of
the attitude toward the behavior.

Subjective norm (also called perceived social pressure) (sn) is the result of normative beliefs
which are connected to the “normative expectations of others and motivation to comply with these
expectations” [35]. This means that individuals are influenced in different ways by those people who
are important to them, such as family and friends, or the community of people around them, as well as
by government and the common sense and feel of their community. The social and job position of
individuals can also influence their choice: the motivation to comply can be stressed by what people
do for the position they have.
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Perceived behavioral control (pbc) derives from control beliefs, i.e., “factors that may facilitate or
impede the performance of the behavior and the perceived power of these factors” [35].

These three components contribute to the formation of the intention to the behavior, as reported in
the Equation (1):

bi = att ·Watt + sn ·Wsn + pbc ·Wpbc (1)

where att, sn and pbc are the three components explained before, Watt, Wsn and Wpbc are, respectively,
the weights for distinguishing between the level of importance given to att, sn and pbc by each individual.

Finally, the final behavior (B) is given by “a sufficient degree of actual control (act) over the behavior”
which people have “to carry out their intentions when the opportunity arises” [35] and formulated
as follows:

b = bi ·Wbi + act ·Wact (2)

where bi is the intention of the behavior explained in Equation (1), act is the actual control, whereas
Wbi and Wact are, respectively, the weights assigned by the individual for these two components.

2.2.2. Opinion Formation

As underlined by Deffuant et al. (2000) [30], the opinion dynamics model is mostly based on
binary opinions (such as [30,36–39]), which social actors modify according to social influence or their
own experience. We can consider opinion as a continuous variable in time, which can also influence the
final behavior of individuals. In the present model, opinion formation dynamics were used to perform
the evolution mechanism of the word of mouth, which directly influences the definition of the attitude
toward the behavior and the social norm of TPB. In the present model, opinion formation dynamics
follow the relative agreement (RA) algorithm, proposed by Deffuant et al. in 2002 [29], which combines
a degree of uncertainty to the opinion of individuals.

According to this model, each individual (agent i) is characterized by two variables, an opinion xi
and an uncertainty ui. Both opinion and uncertainty are real numbers, but the opinion varies between
-1 and 1 and uncertainty between 0 and 2. Graphically, they are represented by a point on an axis
and a segment, respectively, as is possible to see in Figure 2. The theory supposed that random pair
interactions among the agents can influence (and can update) each other’s opinion (and uncertainty).
In particular, as can be seen in Figure 2, the change in the opinion xj of agent j is due to the influence of
agent i and it is proportional to the overlap (hij) between both segments (the agreement aij) divided by
the uncertainty of the influencing segment (for that reason the method is called “relative” agreement
raij) [29].

Figure 2. The influence of individual i on individual j based on the “relative agreement rules” (adapted
from Deffuant et al. (2002)).

The calculation to obtain the updated opinion and uncertainty is reported below:
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- The overlap hij is given by:

hi j = min (xi + ui, x j + u j) −max (xi − ui, x j − u j) (3)

- The non-overlapping (noij):
noi j = 2ui − hi j (4)

- The agreement (aij) is the overlap minus the non-overlap:

ai j = 2 ∗
(
hi j − ui

)
(5)

- The relative agreement is the agreement divided by the length of segment si, which corresponds
to the double of the abs value of the uncertainty of agent i:

rai j =
2 ∗

(
hi j − ui

)
2 ∗ ui

=
hi j

ui
− 1 (6)

If hij > ui, the variation of agent j’s opinion (x′j) and uncertainty (u′j) due to the interactions is
significant and it is updated as follows:

x′j = x j + µ ∗

(hi j

ui
− 1

)
∗

(
xi − x j

)
(7)

u′j = u j + µ ∗

(hi j

ui
− 1

)
∗

(
ui − u j

)
(8)

The same process and updating occur per each pair interaction among agents.

2.2.3. Social Network Theories

The process of pair interactions at the basis of the RA algorithm needs to be more formalized in
the context of real-world case study, such as the one in the present research. The way how two random
agents start to interact generally happens for similarity features of agents and/or for their proximity.
Many theories were developed along the time on the social networking formation, also connected
with ABM development, spanning from neighborhood model (von Neumann “5-neighbour” or Moore
“9-neighbour” [40]) to the 2D or 3D Euclidean Space [7], from Network structure (such as Scale-Free
Network and the most recent Preferential Attachment [41], or the Small-World [28]) to GIS topology.
An in-depth analysis on the model of interaction is, therefore, strongly necessary since interaction
represents one of three key elements of ABM (together with the agents themselves and the environment).

The present paper adopted the small-world networks (SWNs) developed by Watts and Strogatz in
1998 [28] adapted to a real-world environmental of agents whose distance is determined by information
contained into GIS maps. The name “small-world” is properly an analogy to the small-world
phenomenon [42,43] known as six degrees of separation [44]. SWN represents an intermediate network
between a regular network and a complete disorder network, where p is the probability of randomness
interactions among agents. For p = 0, each node is connected with other local edges; if p increases,
the connections become increasingly disordered; for p = 1, we have the maximum randomness and
all edges are rewired [45]. For intermediate values of p, the network generated is properly the SWN,
which is generally characterized by local interactions like the regular network, but with some path
length, like a random graph [45].

3. Application

The present research aims at simulating a complex socio-economic-architectural adaptive system
to study the temporal diffusion and the willingness of inhabitants to adopt PV systems in a specific
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case study located in the city of Turin. In this way, our hybrid agent-based model (ABM and GIS)
becomes a virtual laboratory able to show empirically observed spatial and temporal patterns of PV
adoption by inhabitants at the district scale. Starting from that, a policy design mix was performed to
assess which kind of incentives or actions should be implemented for achieving the highest level of PV
adoption. This hybrid ABM was performed in Netlogo 6.1.1. [46] with the GIS extensions. The model
used the 18,182 single-family residential households in the San Salvario neighborhood (2.2 km2) in
Turin (Italy) with a level of detail at the census block scale and a spatial resolution of 2.5 × 2.5 m.
This neighborhood was chosen as an exemplary case study to analyze the effects of area-based policies.
In this neighborhood, public administration bodies (and in particular the Energy Center, a specific
office in charge for the energy policies for the city of Turin (for more details see the following link:
http://www.energycenter.polito.it/) have the aim of developing in this area an exemplary eco-district
for the city of Turin, where they could experiment different policies and sustainable actions that
could be extended to the overall city. In particular, the single families were created based on the data
provided by the Italian National Institute of Statistics (ISTAT) (accurate as of 2011) which is the most
disaggregated and recent dataset containing the richest demographic characteristics of the population
in Italy. The timeframe considered for the simulation is from 2011 to 2040. The period between
2011 and 2019 was used to calibrate the attributes considered in the model, thanks to information on
the adoption of residential PV provided by the Energy Services Society (GSE) Annual Report [47],
whereas the period between 2019 and 2040 was used for testing policy mix solutions.

This section presents the step-by-step process of our hybrid ABM:

1. Model setup (entities, state and dynamic variables);
2. Individual family adoption calculation;
3. Policy mix framework.

3.1. Model Implementation and Variables Setting

For the initialization, calibration and validation of the model developed, empirical data were
considered. Table 3 shows all entities considered in the model, the static and dynamic variables
connected to each entity and how these variables were set, as well as the references used for identifying
and setting those variables. Four types of entities were used in this model:

1. The global type refers to all entities responsible for the system-level implementation, such as
electricity and policies (for the latter, we have considered both the current Italian regulatory
framework and those policies designed by the authors for analyzing the possible increasing
adoption of PV technology).

2. The technological type is a specific type of global entity related to the characteristics of the energy
technology analyzed in our model, i.e., the PV system.

3. The environmental type collects those entities which refer to the spatial characterization of the
district. In the present research, it was considered only information about the location of
buildings and the census block division, since more details are not necessary for our simulation
model (such as building age, rooftop surface), even if available from municipality databases.
However, these entities contain real-spatial data related to family characteristics and composition.
In Netlogo, the building/census block representation was performed thanks to the GIS extension
based on raster data performed in QGIS 3.4.14. Each raster has specific information on the family
composition, level of instruction, job employment, nationality, and property status (owners or tenants).
In this way, in Netlogo, the agents with their specific characteristic contained in the raster were
“sprout” from their census blocks. Sprout is a specific command in Netlogo, which mainly refers
to the agents sprouting from the related environment (patches).

4. The agent type considers the single-family residential households distributed in the district.
As described before, some characteristics of each family arise from the raster and represent
the real-spatial distribution of specific families in the different census blocks. In this way,

http://www.energycenter.polito.it/
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potential adopters are individual, heterogeneous agents representing the population of electricity
consumers of the district.

Table 3. Entities, static and dynamic variables in the model.

G/E/A/T 1 Entities Static
Variables

Dynamic
Variables Setting Source

G electricity electricity cost median electricity cost in
Italy Eurostat database [48]

G electricity electricity
increment cost rate −8% per year GSE [47]

G policy subsidies per
kW

0.5% of investment cost
per 10 years

2020 Italian Budget
Law [49]

E census
block

family
distribution

number of families and
their characteristics

(family composition, level
of instruction, job

employment, nationality,
and owners or tenants)

census
block—municipality of

Turin database
1:1000 (shp) + ISTAT
census variables at
census block [50]

E buildings family
distribution number of families

building—municipality
of Turin database

1:1000 (shp)

A family number of
components 1–6 components ISTAT census variables

at the census block

A family energy
expenditure

median energy
expenditure for n of

components

ISTAT energy
expenditure based on
the number of family

components [51]

A family energy need energy expenditure × 12
months/electricity cost

A family property status n of property and rent
families

ISTAT census variables
at the census block

A family employment/
unemployment

n of households employed
and unemployed

ISTAT census variables
at the census block

A family nationality n of foreign citizens ISTAT census variables
at the census block

A family education level
illiterate, literate, primary
school, secondary school,

graduation

ISTAT census variables
at the census block

A family status from 1 to 9
[21,52]—Family

classification for social
group

A family income

normal distribution based
on equivalent income per
each class ×mean income

of household (standard
deviation based on the
class Gini coefficient)

[21,52]—Family
classification for social

group

A family PV adoption true or false

A family opinion opinion after
interaction random between −1 and 1 [29,53]

A family uncertainty uncertainty after
interaction random between 0.1 and 2 [29,53]

A family environmental
awareness random between 0 and 1

A family innovation
level 1–5 (based on the status) [21,54]

T PV
system PV power 3 kW

T PV cost EUR 2000 per kW
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Table 3. Cont.

G/E/A/T 1 Entities Static
Variables

Dynamic
Variables Setting Source

T PV decreased rate
cost -0.08 per year Italian trend 2

T reduction
efficiency 0.6 per year De Paoli et al. [55]

T

maintenance
and operational

cost (O&M
cost)

EUR 35 × kWh per year Italian trend 3

T O&M increment
cost rate 0.02 Italian trend 3

1 G = global entities; E = environmental entities; A = agents; T = technological characteristics (PV); 2 Data provided
by the practical use and tests on materials, for example: https://www.fotovoltaiconorditalia.it/idee/quanto-cala-il-
rendimento-di-un-impianto-fotovoltaico-nel-tempo-e-nello-spazio; 3 Data provided by the practical use and tests
on materials, for example: http://www.consulente-energia.com/ao-quanto-costa-la-manutenzione-dei-pannelli-
fotovoltaici-costo-annuo-manutenzione-ordinaria-di-un-impianto-fotovoltaico-costi-interventi-manutenzione-
periodica-fv.html.

For each agent, a set of variables was identified. The static variables are the once fixed in the
entire timeframe of the simulation; the dynamic variables change every time step. For simplifying the
calculation, the families created at the time 2011 do not change for the entire simulation (2011–2040)
and are based on the data at the census block provided by the ISTAT for the year 2011. This choice
helps us also to understand the real contribution of the policies implemented without compromising
the results due to the variation of people characteristics.

At the time 0 (the year 2011 in our model), other features were provided to each family:

- Energy expenditure and energy need were defined based on the family composition. Data on the
average energy expenditure for family composition at a national level were provided by ISTAT [51]
and these values were simply converted into the energy need of each family as follows: energy
need = energy expenditure * 12 months / electricity cost;

- Status, innovation level and income are all static variables which are dependent on different combined
features, such as education level, job occupation, number of components and nationality. The status
classification was based on the social groups provided by ISTAT in its 2017 Annual Report [52].
The innovation level was assigned to the family based on its status class, which was, in turn,
related to the diffusion of innovations classification provided by Rogers’ adopters categories [54].
Finally, the income was assigned as a normal distribution value for each status class. In particular,
the ISTAT analysis [52] gives information on the equivalent income and the Gini coefficient of each
class. The income was thus obtained by multiplying the latter value for the mean national income
(equal to EUR 29,998 in Italy in 2017) and considering, as a standard deviation, the GINI coefficient
for the income of the class. The same assumptions for the definition of status, innovation level
and income have been made by Bottaccioli et al. (2019) and are synthetized in Table 4;

- Environmental awareness is a static variable of the family which refers to the awareness of
environmental problems. This variable represents how much a family is conscious and pro-active
in adopting sustainable actions for the environment. This variable adds to the innovation and
income level an alternative catalyst in the diffusion of eco-products and sustainable energy
technologies (studies on this topic are, for example, [56,57]);

- Opinion and uncertainty are two static variables defined at time 0 of the model, which represent
the individual family household’s consideration on the PV technology. These variables, however,
can change after interactive communication among the agents during the time flow. Based on
the theoretical model of opinion formation and dynamic by Deffuant et al. (2002) [29] and
Meadows and Cliff (2012) [53] (see Section 2), the distribution of opinions and uncertainties follow
a random-flow distribution, between −1 and 1 for opinion and between 0 and 2 for uncertainty,

https://www.fotovoltaiconorditalia.it/idee/quanto-cala-il-rendimento-di-un-impianto-fotovoltaico-nel-tempo-e-nello-spazio
https://www.fotovoltaiconorditalia.it/idee/quanto-cala-il-rendimento-di-un-impianto-fotovoltaico-nel-tempo-e-nello-spazio
http://www.consulente-energia.com/ao-quanto-costa-la-manutenzione-dei-pannelli-fotovoltaici-costo-annuo-manutenzione-ordinaria-di-un-impianto-fotovoltaico-costi-interventi-manutenzione-periodica-fv.html
http://www.consulente-energia.com/ao-quanto-costa-la-manutenzione-dei-pannelli-fotovoltaici-costo-annuo-manutenzione-ordinaria-di-un-impianto-fotovoltaico-costi-interventi-manutenzione-periodica-fv.html
http://www.consulente-energia.com/ao-quanto-costa-la-manutenzione-dei-pannelli-fotovoltaici-costo-annuo-manutenzione-ordinaria-di-un-impianto-fotovoltaico-costi-interventi-manutenzione-periodica-fv.html
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respectively. In the assignment of uncertainties, it was set 0.1 as a minimum value, in order to
avoid problems of values equal to 0.

Table 4. Status, level of innovation and income with related references (adapted from Bottaccioli et al.
(2019) [21]).

ISTAT Social Group Status Roger’s Adopters
Categories

Innovation
Level

ISTAT
Equivalent

Income

ISTAT GINI
Coefficient Income

Ruling class (RC) 9 Innovators, Early
adopters 5 1.694 0.283
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Clerk household (CH) 8 Early adopters 4 1.323 0.257

Young blue collars (YB) 7 Early adopters,
Early majority 4 1.135 0.232

Silver pensioners (SP) 6 Early majority 3 0.965 0.246
Low-income Italian

households (LI) 5 Early majority,
Late majority 3 0.934 0.226

Lonely old ladies and
young unemployed (LY) 4 Late majority 3 0.804 0.324

Traditional provincial
households (TP) 3 Late majority,

Laggards 2 0.758 0.282

Retired blue collars (RB) 2 Laggards 2 0.707 0.290
Low income with

foreigners (LF) 1 Laggards 1 0.606 0.283

In the initialization phase, it was defined as a fixed number of initial adopters and ecologist. Here,
1.2% of families with a status level equal to 5 in the model—the innovators—were randomly chosen
as initial adopters. Once the PV adoption occured, the family in question changed its opinion and
uncertainty (more or equal to 0.8 for opinion and equal to 0.1 for uncertainty, respectively). The initial
percentage of adopters was proportionate to the population density of the district under analysis using
the data provided by GSE [47] on the number of residential PV adoption in the metropolitan city of
Turin. The adoption trend provided by GSE [47] for the year between 2011 and 2019 was also used for
the calibration and validation of the model (see 4. Results). At time 0, about 2% of households were set
as ecologists, i.e., those who have already adopted sustainable actions (such as building retrofitting,
replacement windows). For those, the environmental awareness characteristic was set equal to 1. In the
same way, for each following step of the simulation, the same percentage of new ecologists was added
in the model. The number of ecologists per each year was based on the data provided by ISTAT [58] on
the families who invested to reduce energy consumption expenditure in Piedmont (region of the Turin
city) between 2009 and 2014.

3.2. Individual Family Adoption Calculation

As described in the Materials and Methods section, the mixed hybrid agent-based model presented
here performs an adapted TPB [28] for developing the individual single-family households calculation
for the adoption of PV systems. In particular, TPB combines SWN [25] and RA [26,27] into a real-world
environment where agents are spatialized at a census block scale thanks to the integration into the
Netlogo software of some GIS maps, which contains a set of information about families’ characteristics.

In this section, a detailed explanation of the different components (att, sn, pbc) of TPB, used in
the present analysis for defining the intention and the behavior of the single-families in adopting PV
system, is given. In particular, Figure 3 shows, for illustrative purposes, exemplary questions and
reasonings of individuals in the formation of the intention and actual control in the present analysis
and according to TPB. For the different TPB components, equal weights were assigned due to the lack
of information caused by the inability to conduct a specific questionnaire in the neighborhood for the
COVID-19 spread in the city of Turin.
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Figure 3. Components of the behavior for PV adoption (adapted from Ajzen (2002) and Robinson et al.
(2013)).

3.2.1. Attitude Toward the Behavior (att)

Three different beliefs were considered for the creation of the agents’ att, based also on the
literature review of ABM applications for the adoption of PV (as reported in Figure 4):

- Opinion (opi) is strictly related to the PV technology and, in particular, to the consideration that
each agent has on the technology in itself (such “PV would look ugly on my roof?”, “PV is an
efficient technology?”) (see for example [21,24]). The definition of agents’ opinions, as mentioned
in the Methods, follow the RA theory. Every year, agents create their own networks, following the
SWN theory (see Section 2.2.3), as shown in Figure 4. These networks, then, change every 5 years,
simulating the variation of relations among people during the years. The assignment of the
opinion (as for the uncertainty) did not depend on one or more background factors of the agents,
but simply it was assigned to each agent as a random opinion between -1 and 1 (as for uncertainty
between 0.1 and 2, where the minimum uncertainty 0 was excluded for avoiding problems in
the calculation). As mentioned in the previous section, 1.2% families at time 0 have already
adopted the PV; they represented the innovators (or extremists in the model) and, their opinion
and uncertainty were set as follows: x >= 0.8 and u = 0.1. For the final formulation of the agent’s
attitude, the opinion should be standardized. In the present analysis, an interval standardization
was performed: (x− xmin)/(xmax − xmin.)

- Environmental awareness (awenv) is a constant awareness between 0 and 1 (see, for example, [22]),
where 0 represents low awareness on environmental problems, whereas 1 is high interest in the
environmental issue. As for the opinion and uncertainty, also the environmental awareness was
defined with a random distribution, without any dependence on other characteristics of the agent.
This variable can change only when an agent was selected as a new ecologist over the lifespan.

- Innovation level (inn) is the last component of the individual attitude of an agent and represents the
propensity toward an innovation. This static variable depends on many characteristics, such as
lifestyle, habits and personality, and for that reason, in our model, it was assigned to an agent based
on their social role [21]. The innovation values vary between 1 to 5, where 1 means a low level of
innovation, whereas 5 represents high innovativeness of the agent. For the innovation level, it is
necessary to perform the interval standardization before the final calculation of the attitude.
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Figure 4. Dynamic network formation of the agents in the neighborhood following SWN.

Opinion (opi) and environmental awareness (awenv) are very complex beliefs which are commonly
based on a variety of agent’s background factors and their interrelations, such as personality, experience,
education, knowledge and/or feelings. The approach adopted in the present research is, thus, certainly
simplified. In fact, opinion (opi) and environmental awareness (awenv) are only assigned through a
random distribution, and these beliefs can be changed due to the interactions with other agents.
However, because of the complexity in modeling those beliefs, a simplification of the reality is needed,
in particular when no data or empirical analyses show how to detail them. For the innovation level (inn),
which is more consolidated in literature, the present research tried to combine the different background
factors that influence the formation of the innovation level, such as lifestyle, habits and personality,
following Roger’s adopters categories [54] (see Table 4).

Agent’s attitude toward the behavior was performed as follow:

att = opistd ∗ Wstz + awenv ∗ Wenv + innstd ∗Winn (9)

where Wstz, Wenv and Winn represent the different weights assigned by individuals to each component
in the construction of their personal att. For lack of specific data and surveys on that topic, the three
components all have the same weight equal to 0.33.

3.2.2. Subjective Norm (sn)

For the calculation of the subjective norm (second element of the TPB theory), two levels of
pressures on the behavior are considered: the social pressures of those in the same network (considered
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as «friends») and the pressures generated by the common feelings in the entire neighborhood. The result
is a weighting sum of these two pressures as below:

sni = splink ∗ Wsplink + spdistrict ∗ Wspdistrict (10)

where the weigh Wsplink is defined in the simulation stronger than Wspdistrict, assuming that friends
have a predominant role in influencing behavior (respectively, 0.7 and 0.3) and splink and spdistrict are
both calculated based on the mean values of attitude in the network and in the neighborhood, in the
following way:

spi j = atti ∗ (1− wi j∗∗
(
atti − att j∗

))
(11)

where spi j is the social pressure exerted on agent i by the agent j∗, that is a fictitious agent described by
the mean of the attitudines of the agents in the network (for splink) or in the neighborhood (for spdistrict),
and wi j∗ is the strength of the influence exerted by agent j over agent i:

wi j∗ =

unci
unc j∗

− 0.05

20− 0.05
(12)

where 20 and 0.05 are, respectively, the maximum and minimum value for establishing the influence
rate between 0 and 1.

3.2.3. Perceived Behavior Control

The perceived behavior control (the third component of the TPB) was calculated in the present
research combining a rapid payback period quantification and a comparison of the income of the agent
with the minimum and maximum income in the neighborhood, as follows:

pbci = p fi ∗ Wp f ,ki + i fi ∗ Wi f ,ki (13)

where the weights (Wp f , ki and Wi f ,ki) are both equal to 0.5, p fi is the payback of the agent i and i fi is
the income of agent i compared with the mean income of all agents in the model.

The i fi factor represents the capability of the household to purchase the investment, considering
his/her income condition compared to the one in the neighborhood. We strongly simplify the calculation
of this factor, considering the most real and easy way of people reasoning, in contrast with the calculation
provided by Schiera et al. (2019) [21] and Zhao et al. (2011) [23]. These two publications consider
the level of income per capita of a household as the average income value of the adopters in the
neighborhood according to an exponential relation. We consider that the level of information of people
on the socio-economic status of the adopters is low and, as a consequence, the perceived control is
more based on their general income situation compared with the condition in the neighborhood. In our
case, i fi is simply calculated as follows:

i fi =
incomei − minincomet

maxincomet −minincomet
(14)

The p fi factor was based on an interval standardization of the payback period (15) calculated by
the agent to know the time required to recoup the investment on the PV:

p fi =
pp− 20
1− 20

(15)

where 20 is the minimum value of the standardization corresponding to the maximum lifetime of
the panel.

To obtain this payback period, a dynamic discounted cash flow (DCF) analysis was performed.
We call the DCF performed as dynamic because each year of the simulation, some variables change their
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values. These variations can be related to market condition, such as the PV variation cost, the incentives
on the investment and the increasing electricity cost over the time, or to the reduction efficiency of the
panel and their related operational and maintaining costs. These changes during the timeframe had
both a positive and negative effect on the decision to install the PV system. Considering, for example,
that the cost of the panel decreased by 15.5% from 2002 to 2016, in our simulation it was assumed
a constant yearly reduction in the price equal to 8%, similarly to Schiera et al. (2019) [21]. On the
contrary, it was assumed that the cost of electricity will increase with a rate of 2% each year, based on
GSE [47] estimation. Details on the attributes variation in the model are reported in the column called
Dynamic variables contained in Table 3.

For the payback calculation, each year the agent calculates the net present value (16) in order to
report all values to the evaluation time and compared to the investment cost, as below:

npv = −I +
n∑

y=0

R (y)
(1+r)y

npv ≥ 0→ y = pp
(16)

where r is the discount rate (r = 0.8%, i.e., mean discount rate calculated from 2011 to 2019 (for details
see the following link: https://www.miolegale.it/utilita/tasso-interesse-legale/), n is the last year of
the npv calculation, which corresponds to the maximum PV lifetime (20 years), y corresponds to the
time, R (y) is the net cash flow (i.e., cash inflow minus cash outflow, at time y). The net cash flow is
initialized equal to the investment I (with a minus sign). The year (y) when the npv ≥ 0 corresponds to
the payback period (pp).

The investment I takes into account when the agent starts to think about the installation and, so,
on the variation (tPV) over the time of the PV cost in the market:

I(y) = CPV ∗ ( 1 + tPV)
y (17)

R (y) is calculated as the difference between revenues and costs over time:

R(y) = −O&M(y) + Rtax(y) + Rt (y) (18)

O&M(y) corresponds to the yearly maintaining and operational costs. Rtax(y) are the annual
financial reliefs spread over 10 years provided by the Italian government for the purchase of the PV.
Rt (y) are the total revenues produced by the PV installation. Their specific calculations are reported in
the following equations:

O&M(y) = CO&M ∗ ( 1 + tO&M)y (19)

where CO&M is a fixed yearly cost (equal to EUR 105/y) per kW installed, whose value increases every
year by an incremental quantity equal to 2%.

Rtax(y) = I(y) / 10 (20)

Rt(y) = RPV(y) −Rgrid(y) (21)

RPV(y) =
(
Encomp −

(
EPVoutput(y) ∗

(
1− re f f

)y))
∗

(
CEgrid ∗

(
1 + tegrid

)y)
(22)

Rgrid(y) =
(

Encomp ∗
(
CEgrid ∗

(
1 + tegrid

)y) )
(23)

where Encomp is the energy need required by each family based on the number of components and
this value is calculated as follows: Encomp = Eexp ∗ 12 / CEgrid. Eexp corresponding to the median
monthly energy expenditure per the number of components based on ISTAT statistics of 2018 on
family expenses [51].

https://www.miolegale.it/utilita/tasso-interesse-legale/
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EPVoutput is the energy produced by the panel, taking into account the panel efficiency ε (irradiance,
exposition, etc.) fixed in the neighborhood equal to 0.6. re f f is the reduction coefficient of the panel
during its lifespan (0.8% each year5).

CEgrid is a constant price of the electricity that considers also the service costs; it is fixed equal to
0.23, while its variation over time is given by tegrid with an increasing rate of 2% each year, based on
GSE [47] estimation.

3.2.4. Actual Control

The actual control act is the last component required for the calculation of the behavior (see Figures 1
and 4). In TPB, act is often considered equal to the pbc, when information is limited because pbc is
considered as veridical. However, act is strongly based on past experiences and failures, that could be
quite easily measured in the context of green products adoption. For that reason, the present research
has considered both the case of act equal to pbc and equal to environmental awareness (awenv). The latter,
as mentioned before, contains the information about who has already adopted sustainable actions
(such as building retrofitting, replacement windows), thus perfectly representing a past behavior in
line with the PV adoption. Experiments on these two act calculations show that the second approach
represents well the real adoption conditions in the neighborhood under analysis.

3.3. Policy Design

The main objective of this research is to provide a virtual laboratory for testing alternative policy
scenarios, thus supporting policymakers in the definition of effective actions at the local scale. Four
different policies are tested in the model:

- Scenario 0 represents the state-of-the-art of the actual policy in the Italian context, which consists
of the 50% tax relief on the investment cost for the purchase of PVs, deferred for ten years;

- Scenario 1 considers a different subsidies policy for low-income and high-income classes.
Low-income people receive a subsidy equal to the 70% of the investment cost in ten years.
For high-income people, two alternatives are tested: the first alternative considers no subsidies
and the second one considers a subsidy equal to the 30% of the initial investment;

- Scenario 2 introduces to the actual Italian policy, a discount voucher proposed by PV sellers:;
this discount may be obtained by families if in their network there is at least one adopter. Different
levels of discount were tested in the model (10%, 20% and 50%);

- Scenario 3 provides for an information campaign on environmental issues in order to increase the
population awareness over this topic. A medium and a high information diffusion are tested, as a
percentage increase in the level of environmental awareness of the individual, equal to 0.5 and
1.0, respectively;

- Scenario 4 considers the development of an information campaign for increasing population
awareness over the advantages of adopting the PV system. Additionally, in this case, two levels
of information diffusion (medium and high) are considered, equal to 0.5 and 1.0, respectively.

4. Results

The model was calibrated based on the data of PV diffusion and trends in Italy and the metropolitan
city of Turin, contained in the GSE report [47] (Table 5). These data are reported for the San Salvario
neighborhood using a simple density proportion and homogeneous distribution of the values in the
8 years considered (last row of Table 5).
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Table 5. PV diffusion in Italy and the metropolitan city of Turin provided by GSE [47], used to identify
the number of adoptions in the San Salvario neighborhood.

2011 2012 2013 2014 2015 2016 2017 2018 2019

PV adoption in Italy 160,963 335,358 485,406 596,355 648,196 687,759 732,053 774,014 822,301
PV adoption in the
Metropolitan City Turin 4293 8762 12,529 15,280 16,556 17,526 18,611 19,636 20,813

% residential 81%
% PV in San Salvario 137 280 400 488 528 559 594 627 664
% PV in San
Salvario—omogeneous
distribution per year

137 203 269 335 401 466 532 598 664

Some parameters sweeping on attributes values were conducted to verify the robustness of the
simulation model (such as on the type of interactions, µ, number of turtles in the network, PV installation
power, and behavior threshold), but also on the calculation of the attribute (such as for the income
attribute i fi and the actual control act). These analyses were conducted using the BehaviorSpace (for
details see the following link: https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html), a tool
integrated in NetLogo, which performs experiments on the model.

Figure 5 reports the results of the calibration phase, showing the comparison of the real data and a
representative set of simulations conducted. As can be seen, only slight variations are visible between
the two, but the model generally describes well the real condition of diffusion in the neighborhood.

Figure 5. Comparison between real-world data of PV adoptions (pink) and seven exemplary simulation
results (blue).

The differences between the six simulations reported are due to some variations in the family
compositions and the random assignment of some values. Table 6 shows the aspects that contribute to
these variations in the results.

To analyze the quality of the model implemented, some experiments were also conducted
considering extreme conditions of population characteristics (Figure 6). In the population with very
low income (in Figure 6 “lowI”) in the entire neighborhood (and all the other characteristics fixed as
previous simulations), no one decided to adopt the system. In the population with average income
(in Figure 6 “averageI”), the number of adoptions was lower than that of the real spatial model
implemented (e.g., in 2019 the adopters were less than 400). At the beginning of the simulation runs,
for the population with high income (in Figure 6 “highI”), the trend of adoptions was similar to
the model implemented, but at the end of the simulations, about 900 people adopted PV systems.
When extreme values of opinion and uncertainty of the agents were simulated, the results were
more similar to that of the model implemented: for high uncertainty and low opinion (in Figure 6
“lowO-highU”), it was necessary to wait for a longer timeframe to achieve the same results (e.g., in 2015
only about 180 people had already adopted the technology, but in 2019 about 600 people decided
to adopt it). For low uncertainty and high opinion (in Figure 6 “highO-lowU”), at the beginning,

https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html


ISPRS Int. J. Geo-Inf. 2020, 9, 581 20 of 27

the trend was very similar, but at the end, the adoptions started to decrease. This can be explained by
the fact that a variety in opinion and uncertainty (unlike extreme positions) is more useful in diffusion
technology because, due to the interaction, people can change their positions on a specific topic.

Table 6. Variables that can modify the results in each simulation run.

Static Variables Dynamic Variables Description

Property status

After the formation of the families with all their characteristics
in the neighborhood, the model excludes all families with a
rental contract, because these families cannot decide on
adoption. This means that for every simulation run,
the families excluded can, to some extent, change the
configuration of the possible adopters.

Opinion
and uncertainty

These two variables are assigned with a random distribution
whenever the model starts to run the simulation.

Environmental
awareness

Same as before, the number of ecologists at the beginning of
the simulation, and every year, was the same.

Attitude toward
the behavior

Since this attribute depends on opinion and environmental
awareness, the initial configuration of those variables affects
the results of the attitude toward the behavior.

Social norm

Since this attribute depends on opinion, environmental
awareness and attitude toward the behavior, the initial
configuration of those variables and attributes affects the
results of the social norm.

Interactions network

Interactions among agents followed SWN, choosing randomly
a fixed number of agents (e.g., 6) inside and outside the radius
selected (20 m). The model implemented asked agents to
change their network every 5 years. This does not mean that
an agent changes his/her opinion, attitude and social norm
after five years; in fact, during this timeframe, agents are
influenced also by the neighborhood as a whole, and this
influence can also change opinion, attitude and norm in
the network.

Figure 6. Experiments on the quality of the model with extreme population conditions.

Next, the alternative policy scenarios were tested to verify their efficiency, see Figure 7, Figure 8,
Figure 9, Figure 10. All policies were compared to the results of current law simulations (Scenario
0): the x-axis shows the number of people who adopt the PV and the y-axis shows the years of the
performed simulation. In particular, the number of adopters per year was based on the mean value
obtained from 20 simulation runs developed for each scenario.
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Figure 7. Comparison between Scenario 0 and Scenario 1.

Figure 8. Comparison between Scenario 0 and Scenario 2.

Figure 9. Comparison between Scenario 0 and Scenario 3.

Figure 10. Comparison between Scenario 0 and Scenario 4.

The results of the policy simulations generally show that economic policies did not give a real
and effective contribution. Figure 7 shows the policies designed for low-income people. Figure 8
highlights the contribution of voucher policy with different degrees of discount. None of these policies
contributed to an increase in family adoption. Although these results may seem strange at first, they
can be explained with two reasons: firstly, non-economic motivations are fundamental in individuals’
decision-making processes (e.g., environmental awareness or innovation level), secondly, economic
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reasons are often affected by knowledge and information on the technology under analysis. This effect
is apparent both in empirical agent-based model applications in innovation diffusion, such as [59–61],
and, more in general, in individuals’ attitudes and behaviors research, such as [62,63].

For these reasons, we also tested other policies that consider other motivations for the efficiency of
sustainable actions and strategies. Concerning Scenario 3, as shown Figure 9, information campaigns
on environmental issues were not efficient in the diffusion of PV systems. However, the increase
in technological awareness (Figure 10) was more suitable for that purpose, demonstrating the role
of communication and information of people with respect to technological benefits and advantages.
In particular, the awareness of the PV advantages was the main catalyst in the adoption of PV in the
San Salvario neighborhood, demonstrating the role of information in the diffusion of green products.

Figure 11 shows the variation of quantity in the adoption of PV over time for Scenario 0: (a) 2011,
(b) 2019, (c) 2040. These distributions result from the calculation of the mean of adoptions in each
single block from ten simulations performed with the same policy scenario (Scenario 0). The figure
exemplifies the combined use of ABM and GIS for a dynamic simulation of the process under
investigation. Analogously, similar maps have been produced for the other scenarios considered
in the present study that have been useful for visualizing in a clear and easy way the results of the
model. From the data of the maps, it is apparent that the difference in the spatial distribution of
adopters is very small. The south-west portion remains the area with the greatest adoptions over the
years, with an increase from less than 10 adopters in 2011 to more than 70 in 2040. The increase in
adoptions in the other blocks of the neighborhood is not strongly evident in specific areas, but quite
well distributed. However, the north-east portion mantains the higher number of adopters over the
years, unlike the middle area. Integrated analysis on the people’s characteristics and their spatial
distribution would help us to establish the reasons of these results, as well as to develop specific policy
mix in the neighborhood.
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Figure 11. Variation of quantity in the adoption of PV over time for Scenario 0: (a) 2011, (b) 2019,
(c) 2040.

5. Discussion and Conclusions

The present research investigates the potentialities of a mixed-method approach, which combines
ABM with GIS in the definition of strategic policies for the diffusion of PV systems in a real case study
of the San Salvario neighborhood in the city of Turin (Italy). The study demonstrates the “exploratory
simulation” [12] capability of ABM in studying complex systems and in supporting the decision-making
process, becoming a sort of virtual laboratory [13] in a vision of sustainable development of our cities.

Some innovations can be detected in the present contribution. Firstly, it represents the first
European attempt to simulate solar photovoltaic adoption with a level of detail of individual
characteristics at the census block scale. The only examples in literature are in Austin (Texas) [26]
and in the Gangnam district, Seoul (South Korea) [20]. This detailed analysis of individual decisions
allows DMs to study the effects of policies based on the real conditions of the population and the place
under analysis. Secondly, the model tests the efficiency of information programs provided by the
municipality on environmental and technological awareness of citizens. The other contributions on
this topic only explore in different ways the role of economic policies in increasing the diffusion of this
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technology. Our findings indicate that information campaigns, in particular those on the advantages
of PV adoption, are the main catalyst in the diffusion of the technology—more so than economic or
fiscal incentives. Thirdly, the present analysis tests the formation of actual control (act) in different
ways, showing how past experiences and behaviors are better at describing the real contribution of
this component of the TPB in the context under analysis than the repetition of perceived behavior
control (pbc).

Future research will regard a more in-depth explanation of the results obtained: in this work,
we focused only on the final results of policy implications without considering the characteristics
of adopters (e.g., income level, level of education, spatial distribution in the neighborhood) and the
mean level of attitude, social norm and perceived behavior control. All these insights are strongly
relevant for the design of effective policies, including the real context of San Salvario. Individuals with
favorable attitudes are those first convinced to adopt PV. Building on this, we will be able to test a
policy mix based on the case study under analysis, and its specificity and contextual factors.

Another perspective of the research will be the comparison of the results based on proximity
random interactions, and people characteristics and status. The present model only considered
interactions among agents in spatial terms without connecting them to other aspects, such as a similar
education level, income or status.

Moreover, due to the COVID-19 situation, some data used for the implementation of the model
were simply based on statistical data (e.g., the number of ecologists) which refer to the entire region of
Piedmont and are not site-specific or, in other cases, assigned randomly (e.g., opinion and uncertainty).
As a result of this, the next steps of the research will consider the construction and conduction of a
specific questionnaire in the neighborhood for collecting all these data, thus improving not only the
quality of the model performed but also identifying what is relevant and what is not in an individuals’
decision-making process, in particular in the context of San Salvario and for the adoption of new
sustainable technology such as the PV systems. In this way, it will also be possible to give more
reliability to the present simulation, taking into account the attitudes and reactions of citizens where
green products and practices are concerned.

Some reasonings in TPB can be criticized because people may often find them hard to grasp (e.g.,
fluctuation of price along the time or the rational calculation of payback period). However, other aspects
such as social norm considerations, opinion and uncertainty, and environmental awareness are able to
capture more intangible and extra-economic reasons in the human decision-making process.

The present application shows the ability of the integrated and adapted TPB in representing the
historical trend of PV adoption in the metropolitan city of Turin. This proves that it can be used as a
virtual laboratory to test the efficacy of policy mix in a given neighborhood. However, the main effort
in future research development will regard the comparison of TPB with other implementation models.
This is particularly relevant because TPB is usually considered a good theory to explain past events but
is less reliable in predictive terms.
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