Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Remote Sensing Data
2.3. Classification
2.4. Analysis of Deforestation Patterns
2.5. Landscape Structure Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moretto, E.M.; Gomes, C.S.; Roquetti, D.R.; de Jordão, C.O. Histórico, tendências e perspectivas no planejamento espacial de usinas hidrelétricas brasileiras: A antiga e atual fronteira Amazônica. Ambient. Soc. 2012, 15, 141–164. [Google Scholar] [CrossRef] [Green Version]
- Gall, N. As dificuldades em tomar decisões: Apagão na política energética. Braudel Pap. 2002, 32, 1–12. [Google Scholar]
- Grün, R. Apagão cognitivo: A crise energética e sua sociologia. Dados 2005, 48, 891–928. [Google Scholar] [CrossRef]
- Ministério de Minas e Energia. Plano Nacional de Energia 2030; MME: Brasília, Brazil, 2007. Available online: http://www.mme.gov.br/documents/36208/468569/03.+Geração+Hidrelétrica+%28PDF%29.pdf/12662270-da6d-a990-664e-9668e3141264 (accessed on 19 March 2020).
- Bermann, C. O projeto da usina hidrelétrica Belo Monte: A autocracia energética como paradigma. Novos Cad. NAEA 2012, 15, 5–23. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Goldemberg, J.; Matsumura-Tundisi, T.; Saraiva, A.C.F. How many more dams in the Amazon? Energy Policy 2014, 74, 703–708. [Google Scholar] [CrossRef]
- Blanco, C.J.C.; Secretan, Y.; Mesquita, A.L.A. Decision support system for micro-hydro power plants in the Amazon region under a sustainable development perspective. Energy Sustain. Dev. 2008, 12, 25–33. [Google Scholar] [CrossRef]
- Pottmaier, D.; Melo, C.R.; Sartor, M.N.; Kuester, S.; Amadio, T.M.; Fernandes, C.A.H.; Marinha, D.; Alarcon, O.E. The Brazilian energy matrix: From a materials science and engineering perspective. Renew. Sustain. Energy Rev. 2013, 19, 678–691. [Google Scholar] [CrossRef]
- Fearnside, P.M. Greenhouse Gas Emissions from a Hydroelectric Reservoir (Brazil’s Tucuruí Dam) and the Energy Policy Implications. Water Air Soil Pollut. 2002, 133, 69–96. [Google Scholar] [CrossRef]
- Sanches, F.; Fisch, G. As possíveis alterações microclimáticas devido a formação do lago artificial da hidrelétrica de Tucuruí—PA. Acta Amaz. 2005, 35, 41–50. [Google Scholar] [CrossRef]
- Sternberg, R. Damming the river: A changing perspective on altering nature. Renew. Sustain. Energy Rev. 2006, 10, 165–197. [Google Scholar] [CrossRef]
- Manyari, W.V.; de Carvalho, O.A. Environmental considerations in energy planning for the Amazon region: Downstream effects of dams. Energy Policy 2007, 35, 6526–6534. [Google Scholar] [CrossRef]
- Sieben, A.; Cleps Junior, J. Política energética na amazônia: A UHE estreito e os camponeses tradicionais de Palmatuba/Babaçulândia (TO). Soc. Nat. 2012, 24, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Finer, M.; Jenkins, C.N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 2012, 7, e35126. [Google Scholar] [CrossRef]
- Ferreira, L.V.; Cunha, D.A.; Chaves, P.P.; Matos, D.C.L.; Pia, P. Impacts of hydroelectric dams on alluvial riparian plant communities in eastern Brazilian Amazonian. An. Acad. Bras. Cienc. 2013, 85, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Barrow, C.J. The environmental impacts of the Tucuri dam on the middle and lower Tocantins river basin, Brazil. Regul. Rivers Res. Manag. 1987, 1, 49–60. [Google Scholar] [CrossRef]
- Coelho, M.; Miranda, E.; Wanderley, L.J.; Garcia, T.C. Questão energética na Amazônia: Disputa em torno de um novo padrão de desenvolvimento econômico e social. Novos Cad. NAEA 2011, 13, 83–102. [Google Scholar] [CrossRef] [Green Version]
- Fearnside, P.M. Environmental and Social Impacts of Hydroelectric Dams in Brazilian Amazonia: Implications for the Aluminum Industry. World Dev. 2016, 77, 48–65. [Google Scholar] [CrossRef]
- Becker, B. Amazônia; Ática: São Paulo, Brazil, 1990. [Google Scholar]
- de Souza, A.C.C. Assessment and statistics of Brazilian hydroelectric power plants: Dam areas versus installed and firm power. Renew. Sustain. Energy Rev. 2008, 12, 1843–1863. [Google Scholar] [CrossRef]
- Chen, G.; Powers, R.P.; de Carvalho, L.M.T.; Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 2015, 63, 1–8. [Google Scholar] [CrossRef]
- Hansen, M.C.; Wang, L.; Song, X.P.; Tyukavina, A.; Turubanova, S.; Potapov, P.V.; Stehman, S.V. The fate of tropical forest fragments. Sci. Adv. 2020, 6, eaax8574. [Google Scholar] [CrossRef] [Green Version]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Montoya, A.D.V.; de Lima, A.M.M.; Adami, M. Analysis of the land cover around a hydroelectric power plant in the Brazilian Amazon. Anu. Inst. Geociênc. 2019, 42, 74–86. [Google Scholar] [CrossRef]
- Montoya, A.D.V.; de Lima, A.M.M.; Adami, M. Mapping and temporary analysis of the landscape in the Tucuruí-pa reservoir surroundings. Anu. Inst. Geociênc. 2018, 41, 553–567. [Google Scholar] [CrossRef]
- La Rovere, E.L.; Mendes, F.E. Tucuruí Hydropower Complex. 2000. Available online: https://www.internationalrivers.org/sites/default/files/attached-files/csbrmain.pdf (accessed on 17 June 2020).
- Fearnside, P.M. Análisis de los Principales Proyectos Hidro-Energéticos en la Región Amazónica; DAR, CLAES: Lima, Peru, 2014. [Google Scholar]
- Fearnside, P.M. Social Impacts of Brazil’s Tucuruí Dam. Environ. Manag. 1999, 24, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Ministério do Planejamento. 11° Balanço Completo do PAC—4 Anos (2007–2010); Ministério do Planejamento: Brasília, Brazil, 2012. Available online: http://pac.gov.br/pub/up/relatorio/b701c4f108d61bf921012944fb273e36.pdf (accessed on 15 June 2020).
- Furtado, G.C.A.; Mesquita, A.L.A.; Morabito, A.; Hendrick, P.; Hunt, J.D. Using hydropower waterway locks for energy storage and renewable energies integration. Appl. Energy 2020, 275, 115361. [Google Scholar] [CrossRef]
- Gutman, G.; Huang, C.; Chander, G.; Noojipady, P.; Masek, J.G. Assessment of the NASA–USGS Global Land Survey (GLS) datasets. Remote Sens. Environ. 2013, 134, 249–265. [Google Scholar] [CrossRef]
- Instituto Nacional de Pesquisas Espaciais. TerraAmazon; INPE: São Jose dos Campos, Brazil, 2016; Available online: http://www.terraamazon.dpi.inpe.br/ (accessed on 2 September 2018).
- University of California. PostgreSQL; UC: Berkeley, CA, USA, 2012; Available online: https://www.postgresql.org/ (accessed on 2 September 2018).
- Instituto Brasileiro de Geografia e Estatística. Malhas Digitais: 2015; IBGE: Río de Janeiro, Brazil, 2015. Available online: https://mapas.ibge.gov.br/ (accessed on 2 June 2018).
- Shimabukuro, Y.E.; Mello, E.M.; Moreira, J.C.; Duarte, V. Fraction images derived from Terra Modis data for mapping burnt areas in Brazilian Amazonia. Int. J. Remote Sens. 2009, 30, 1537–1546. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Batista, G.T.; Mello, E.M.K.; Moreira, J.C.; Duarte, V. Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon Region. Int. J. Remote Sens. 1998, 19, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, C.H.; de Novo, E.M.L.M. Mapeamento do uso e cobertura da terra a partir da segmentação e classificação de imagens-fração solo, sombra e vegetação derivadas do modelo linear de mistura aplicado a dados do sensor TM/Landsat5, na região do reservatório de Tucuruí—PA. Acta Amaz. 2004, 34, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Camara, G.; Valeriano, D.; Vianei, J. Metodologia para o Cálculo da Taxa Anual de Desmatamento na Amazônia Legal; INPE: São Jose dos Campos, Brazil, 2013; Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes/pdfs/metodologia_taxaprodes-1.pdf (accessed on 2 June 2018).
- Souza, A.; Monteiro, A.M.V.; Rennó, C.D.; Almeida, C.A.; de Valeriano, D.M.; Morelli, F.; Vinhas, L.; Maurano, L.E.P.; Adami, M.; Escada, M.I.S.; et al. Metodologia Utilizada nos Projetos PRODES e DETER; INPE: São Jose dos Campos, Brazil, 2019; Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 15 June 2020).
- Environmental Systems Research Institute. ArcGIS Desktop; ESRI: Redlands, CA, USA, 2018; Available online: https://desktop.arcgis.com/es/ (accessed on 24 June 2018).
- Nogueira, E.M.; Fearnside, P.M.; Nelson, B.W.; Barbosa, R.I.; Keizer, E.W.H. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. For. Ecol. Manag. 2008, 256, 1853–1867. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.; Qi, K.; Luo, Z.; Wang, X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci. Total Environ. 2018, 624, 1561–1576. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Dutta, I.; Das, A.; Guchhait, S.K. Quantification and mapping of fragmented forest landscape in dry deciduous forest of Burdwan Forest Division, West Bengal, India. Trees For. People 2020, 2, 100012. [Google Scholar] [CrossRef]
- Hietala-Koivu, R.; Lankoski, J.; Tarmi, S. Loss of biodiversity and its social cost in an agricultural landscape. Agric. Ecosyst. Environ. 2004, 103, 75–83. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. Available online: https://www.fs.usda.gov/treesearch/pubs/3064 (accessed on 22 June 2018).
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2002; Available online: https://www.umass.edu/landeco/ (accessed on 2 September 2018).
- Pinheiro, T.F.; Escada, M.I.S.; Valeriano, D.M.; Hostert, P.; Gollnow, F.; Müller, H. Forest Degradation Associated with Logging Frontier Expansion in the Amazon: The BR-163 Region in Southwestern Pará, Brazil. Earth Interact. 2016, 20, 1–26. [Google Scholar] [CrossRef]
- Fearnside, P.M. Amazon Forest maintenance as a source of environmental services. An. Acad. Bras. Cienc. 2008, 80, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, T.S.; Magalhães, A.S.; Domingues, E.P. Desmatamento e a contribuição econômica da floresta na Amazônia. Estudos Econ. 2016, 46, 499–531. [Google Scholar] [CrossRef] [Green Version]
- de Rocha, G.M. Todos Convergem para o lago: Hidrelétrica Tucuruí, Municípios e Territórios na Amazônia; NUMA, UFPA: Belém, Brazil, 2008. [Google Scholar]
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Lei dos Crimes Ambientais, no 9.605, de 12 de Fevereiro de 1998 e Decreto no 6.514, de 22 de Julho de 2008; Diário Oficial da União: Brasília, Brazil, 2014. Available online: https://www.fob.org.br/Pdfs/Resolucoes/LEI_9.605.pdf (accessed on 30 June 2018).
- Assunção, J.; Gandour, C.; Rocha, R. Deforestation slowdown in the Brazilian Amazon: Prices or policies? Environ. Dev. Econ. 2015, 20, 697–722. [Google Scholar] [CrossRef] [Green Version]
- Instituto Nacional de Pesquisas Espaciais. Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite; INPE: São José dos Campos, Brazil, 2020; Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 20 September 2020).
- Laurance, W.F.; Vasconcelos, H.L. Ecological consequences of forest fragmentation in the amazon. Oecol. Bras. 2009, 13, 434–451. [Google Scholar] [CrossRef]
- Laurance, W.F.; Camargo, J.L.C.; Luizão, R.C.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Bruce Williamson, G.; Benítez-Malvido, J.; Vasconcelos, H.L.; et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 2011, 144, 56–67. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [Green Version]
- Assembléia Legislativa do Estado do Pará. Cria Unidades de Conservação da Natureza na Região do Lago de Tucuruí no Território sob Jurisdição do Estado do Pará, e dá Outras Providências; Assembléia Legislativa do Estado do Pará: Belém, Brazil, 2002. Available online: http://www.ideflorbio.pa.gov.br/wp-content/uploads/2015/09/Lei-de-Criação-UCs-do-lago-de-Tucuruí.pdf (accessed on 30 June 2018).
Path/Row | 1984 | 1988 | 1999 | 2010 | 2017 |
---|---|---|---|---|---|
223/63 | 27 July | 22 July | 13 July | 5 September | 6 July |
223/64 | 11 July | 22 July | 21 July | 3 July | 6 July |
224/62 | 22 October | 14 August | 28 July | 26 July | 13 July |
224/63 | 31 May | 14 August | 5 August | 26 July | 13 July |
224/64 | 31 May | 29 July | 28 July | 26 July | 13 July |
Land Cover 1984 | ||||||||
Land Cover 1988 | Hydrography | Flooded Area | Urban Area | Forest | Anthropized | Cloud | Total (b) | Var. (b-a) |
Hydrography | 7131 | 55 | 0 | 368 | 569 | 13 | 8136 | −781 |
Flooded area | 577 | 37,279 | 320 | 185,386 | 46,541 | 6012 | 276,115 | 238,386 |
Urban area | 35 | 6 | 780 | 19 | 523 | 15 | 1379 | 267 |
Forest | 275 | 35 | 0 | 1,124,967 | 567 | 2 | 1,125,846 | −374,726 |
Anthropized | 898 | 353 | 13 | 189,085 | 293,061 | 5856 | 489,266 | 147,864 |
Cloud | 0 | 0 | 0 | 746 | 141 | 35 | 922 | −11,011 |
Total (a) | 8916 | 37,728 | 1113 | 1,500,572 | 341,402 | 11,933 | 1,901,664 | |
Permanence | 80% | 99% | 70% | 75% | 86% | 0% | ||
Land Cover 1988 | ||||||||
Land Cover 1999 | Hydrography | Flooded Area | Urban Area | Forest | Anthropized | Cloud | Total (b) | Var. (b-a) |
Hydrography | 7483 | 35 | 5 | 426 | 855 | 0 | 8805 | 669 |
Flooded area | 1 | 258,703 | 0 | 4103 | 1450 | 7 | 264,264 | −11,850 |
Urban area | 5 | 6 | 1357 | 76 | 1005 | 0 | 2449 | 1069 |
Forest | 205 | 5281 | 0 | 710,221 | 15,733 | 298 | 731,738 | −394,108 |
Anthropized | 443 | 12,090 | 17 | 411,021 | 470,222 | 616 | 894,409 | 405,143 |
Cloud | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −922 |
Total (a) | 8136 | 276,114 | 1379 | 1,125,846 | 489,266 | 922 | 1,901,664 | |
Permanence | 92% | 94% | 98% | 63% | 96% | 0% | ||
Land Cover 1999 | ||||||||
Land Cover 2010 | Hydrography | Flooded Area | Urban Area | Forest | Anthropized | Cloud | Total (b) | Var. (b-a) |
Hydrography | 7803 | 4 | 13 | 269 | 1335 | 0 | 9425 | 620 |
Flooded area | 9 | 253,899 | 5 | 2785 | 5990 | 0 | 262,688 | −1577 |
Urban area | 8 | 11 | 2317 | 1 | 1834 | 0 | 4172 | 1723 |
Forest | 145 | 1518 | 0 | 464,599 | 17,045 | 0 | 483,307 | −248,431 |
Anthropized | 839 | 8832 | 114 | 264,084 | 868,204 | 0 | 1,142,072 | 247,664 |
Cloud | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total (a) | 8805 | 264,264 | 2449 | 731,738 | 894,409 | 0 | 1,901,664 | |
Permanence | 89% | 96% | 95% | 63% | 97% | 0% | ||
Land Cover 2010 | ||||||||
Land Cover 2017 | Hydrography | Flooded Area | Urban Area | Forest | Anthropized | Cloud | Total (b) | Var. (b-a) |
Hydrography | 7761 | 1 | 33 | 348 | 1793 | 0 | 9935 | 511 |
Flooded area | 64 | 260,249 | 38 | 4103 | 26,538 | 0 | 290,992 | 28,304 |
Urban area | 6 | 2 | 4099 | 1 | 1012 | 0 | 5120 | 948 |
Forest | 109 | 1158 | 0 | 406,593 | 10,281 | 0 | 418,141 | −65,167 |
Anthropized | 1485 | 1277 | 2 | 72,262 | 1,102,450 | 0 | 1,177,476 | 35,403 |
Cloud | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total (a) | 9425 | 262,688 | 4172 | 483,307 | 1,142,073 | 0 | 1,901,664 | |
Permanence | 82% | 99% | 98% | 84% | 97% | 0% |
Year (t) | Forest [ha] (f) | Deforestation [ha] | Cumulative Deforestation Rates [%] | ADR [%] | Carbon Emissions from Deforestation [Gg C] |
---|---|---|---|---|---|
1984 | 1,500,572 | 341,402 | - | - | 52,308.25 |
1988 | 1,125,846 | 374,726 | 25.0 | 5.7 | 57,414.02 |
1999 | 731,738 | 394,108 | 35.0 | 2.8 | 60,383.65 |
2010 | 483,307 | 248,431 | 34.0 | 2.7 | 38,063.60 |
2017 | 418,141 | 65,166 | 13.5 | 1.8 | 9,984.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velastegui-Montoya, A.; Lima, A.d.; Adami, M. Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS Int. J. Geo-Inf. 2020, 9, 583. https://doi.org/10.3390/ijgi9100583
Velastegui-Montoya A, Lima Ad, Adami M. Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS International Journal of Geo-Information. 2020; 9(10):583. https://doi.org/10.3390/ijgi9100583
Chicago/Turabian StyleVelastegui-Montoya, Andres, Aline de Lima, and Marcos Adami. 2020. "Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam" ISPRS International Journal of Geo-Information 9, no. 10: 583. https://doi.org/10.3390/ijgi9100583
APA StyleVelastegui-Montoya, A., Lima, A. d., & Adami, M. (2020). Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS International Journal of Geo-Information, 9(10), 583. https://doi.org/10.3390/ijgi9100583