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Abstract: Individual tree segmentation is essential for many applications in city management and
urban ecology. Light Detection and Ranging (LiDAR) system acquires accurate point clouds in a fast
and environmentally-friendly manner, which enables single tree detection. However, the large number
of object categories and occlusion from nearby objects in complex environment pose great challenges in
urban tree inventory, resulting in omission or commission errors. Therefore, this paper addresses these
challenges and increases the accuracy of individual tree segmentation by proposing an automated
method for instance recognition urban roadside trees. The proposed algorithm was implemented
of unmanned aerial vehicles laser scanning (UAV-LS) data. First, an improved filtering algorithm
was developed to identify ground and non-ground points. Second, we extracted tree-like objects
via labeling on non-ground points using a deep learning model with a few smaller modifications.
Unlike only concentrating on the global features in previous method, the proposed method revises a
pointwise semantic learning network to capture both the global and local information at multiple
scales, significantly avoiding the information loss in local neighborhoods and reducing useless
convolutional computations. Afterwards, the semantic representation is fed into a graph-structured
optimization model, which obtains globally optimal classification results by constructing a weighted
indirect graph and solving the optimization problem with graph-cuts. The segmented tree points
were extracted and consolidated through a series of operations, and they were finally recognized by
combining graph embedding learning with a structure-aware loss function and a supervoxel-based
normalized cut segmentation method. Experimental results on two public datasets demonstrated
that our framework achieved better performance in terms of classification accuracy and recognition
ratio of tree.

Keywords: UAV-LS point clouds; pointwise semantic learning; graph optimization; tree segmentation;
roadside trees; graph embedding learning
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1. Introduction

According to research of the United Nations Commission on Sustainable Development (CSD),
around 70% of the world’s population is expected to live in cities by 2050 [1]. Rapid urbanization may
cause a series of urban environmental problems that humanity urgently needs to face, such as global
warming, poor air quality, urban floods, urban heat island effect, and noise [2]. Urban trees provide
people with a beautiful and comfortable living environment, which can alleviate various environmental
problems mentioned above. As a significant requirement of smart cities, roadside trees inventory is
crucial in urban environmental construction. However, urban trees inventories in many cities are
regularly inaccurate and incomplete due to financial problems. According to a survey conducted by
the United Nations Board of Auditors (UNBoA), less than 20% of the cities in the United States have
information on urban tree inventories, only a few European countries have management plans for
urban forests, and many of Chinese cities lack the strategies and funding for urban tree inventories [3].
Consequently, it is imminent to carry out research related to urban trees inventories.

Extraction and segmentation of roadside trees is the basis of urban tree inventories and plays a
key role in various applications, including distribution of urban trees, carbon storage capacity of trees,
and post-disaster damage. The isolated trees can be utilized to explore urban microclimate and loss
of trees after a typhoon; thereby providing comprehensive and accurate information for urban tree
planting and management. With the rapid development of technology, traditional methods of manually
measuring trees have gradually been replaced by machine measurements. Besides, images-based
methods for the urban tree inventory face plenty of challenges including the limited image resolution,
sensitivity to weather conditions, and difficulties of geo-registration. Recently, the rapid development
of LiDAR technology makes it possible to acquire massive 3D geospatial information for the trees in
urban scenes. Research on tree has entered a new era [4,5].

As we all know, forest inventory (the same goes for urban tree inventory) requires accurate
individual tree structural attributes. Thus, the instance segmentation of roadside trees is the important
part of urban green space management. Numerous research methods focused on trees recognition
have been developed in recent years. To fully take advantages of the well-developed image-processing
algorithms in tree crowns delineation, the height variation of canopy height model (CHM) is employed
to find treetops. According to the statement of [6], the CHM-based tree detection algorithms (such as
watershed analysis [7], spatial wavelet analysis [8], and template matching [9]) are fast and efficient
but the existing problems are also obvious: it changes the shape of the tree crown to a certain extent,
reducing the original data information thanks to a variety of canopy sizes.

Some studies directly segmented individual trees on original point clouds since the increased
spatial resolution of ALS (airborne laser scanning) point cloud. A portion of existing point-based
clustering methods [10–14] have been widely used for individual tree segmentation. Compared with
CHM-based methods, point-based clustering methods prove to be robust to various types of trees and
greatly improve computational efficiency and require no prior knowledge of the shapes and sizes
of tree crowns. Nevertheless, for the above methods directly work on LiDAR data, there are three
unavoidable problems: (1) serious omission errors caused by the complexity of urban areas (such as
the spatial heterogeneity of urban forests) [15]; (2) commission errors caused by the diverse structure
and irregular shape of urban trees [16]; (3) suppressed trees (which have less information) and small
trees (which are blended with or located below tall trees) are difficult extracted and segmented due to
mobile laser scanning systems hard to penetrate the dense forest canopy [17].

Urban regions are a mosaic of kinds of objects, which will lower the efficiency and feasibility of
LiDAR data processing [18]. Thus, compared with the ALS point cloud, mobile laser scanning (MLS)
and terrestrial laser scanning (TLS) data are used less in urban trees inventory. In this paper, the data
acquired by UAV-based mobile LiDAR system is applied to detect and segment individual trees,
aiming at automated urban roadside tree inventory. Our work is divided into two parts: tree-like objects
extraction based on the point cloud labeling using pointwise semantic learning network, and individual
roadside trees recognition based on a novel graph convolutional neural network.
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Urban roadside trees extraction and recognition is a long-standing, yet still active topic.
The research on roadside trees from point cloud in urban areas is relatively less than that of forestry
resource inventory. In addition, the LiDAR data collected in the forest area mainly consist of tree,
while the urban scene contains various artifacts, which increases the complexity of tree segmentation task.
As regard to trees extraction, existing work can be further divided into two types: geometric rule-based
and semantic labeling-based methods.

Geometric rule-based methods generally detect and extract trees from environmentally complex
scenes using geometric attributes [19] such as tree shape, cylindrical trunk shape, points distribution,
etc. They can be divided into three classes: the clustering [20], region growing [21], and density
threshold-based method [22]. All of the above methods performed well in their own research
areas. However, they are basically difficult to extract trees from large-scale scenes of dense mixed
objects in urban areas, because the heavy computing costs required for local geometric features.
Specifically, most rule-based works are traditional and not competitive in speed and accuracy.

In recent years, a series of deep learning methods are tried to apply to 3D semantic segmentation [23].
Note that deep learning based semantic segmentation of point clouds in outdoor scenes often includes
category of trees, this work is beneficial to complete the task of tree segmentation from laser scanning
data. The most direct way to exploit deep learning on the LiDAR point cloud classification is to first
convert the 3D points to regular collections of 2D images in various ways. Semantic segmentation is
then performed through a mature deep neural network (DNN) in the image field, and finally transfer
the image segmentation result back to the point cloud [24–26]. However, these models cause spatial
information loss and induce quantization errors in the conversion process [27]. Another feasible
method is to extend 2D convolution to 3D convolutional neural network (3D CNN). Most researchers
develop the professional model to transform point clouds to 3D voxels, followed by a 3D CNN that
predicts the semantic label based on the occupancy grid [28]. However, 3D volumetric grids entail
substantial memory consumption and computational cost.

To overcome the shortcomings of the above two methods, some work directly employs deep
learning models on raw point clouds. However, CNNs can handle only regular input format.
Direct application of standard CNNs to unordered and unstructured point clouds is infeasible.
In terms of this, the pioneering work PointNet [29] propose to learn per-point features using shared
multi-layer perceptron (MLP) and global features using symmetrical pooling functions. Based on
PointNet, a series of point-based networks have been proposed recently [23]. Overall, these methods
can be roughly divided into pointwise MLP methods [30–33], point convolution methods [34–37],
RNN (Recurrent Neural Network)-based methods [38–41], and graph-based methods [42–45].
To summarize, most of the existing deep learning-related methods that only focus on either global or
local statistical information, result in a performance reduction in representativeness and descriptiveness.
In addition, some of above models employ standard convolution kernels with regular receptive fields,
which neglect the structural connections between points and fail to account for varying point density.

Our method follows an idea similar to the point convolution methods, however, instead of
only focusing on the single features and ignore other relationships between individual points in
PointNet-derived deep learning models, we propose a point-wise semantic learning network to acquire
both global and local information of each point, avoiding the information loss in local neighborhoods
and reducing useless convolutional computations.

To improve the segmentation accuracy and efficiency simultaneously, we propose a deep learning
approach designed for recognizing individual trees from UAV-LS data. The non-ground points
are identified and acquired; subsequently, a revised point-wise convolution algorithm is proposed
to extract trees from non-ground points firstly; a graph-structured optimization algorithm is then
performed to obtain optimal classification results; finally, a novel approach called 3D graph embedding
learning with a structure-aware loss function is introduced for individual roadside trees segmentation.
To the best of our knowledge, this paper is the earlier application of deep learning based instance
segmentation method [46] to segment individual trees from ALS point clouds. We aim to obtain
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satisfactory segmentation results by utilizing deep learning while substantially reducing the impact of
scene complexity.

The main contributions of our approach include the following three aspects:
(i) Presentation of the urban scene understanding and the approach of roadside tree recognition

from the input of the UAV-LS data to the tree segmentation.
(ii) Improved classification of large-scale 3D unordered points without voxelizing by using

pointwise semantic learning network. Most of the parameters in the network are learned, and thus the
intensive parameter tuning cost is significantly reduced.

(iii) Effective aggregation of multi-level information (geometric information, discriminative
embedding information, and information from neighbors) and elimination of quantization errors
caused by regular voxelization by using graph convolutional neural network combining structure-aware
loss function with the attention-based k-nearest neighbor.

2. Materials and Methods

As shown in Figure 1, our method consists of four main steps: (1) Ground removal (2.1). Raw data
is divided into ground and non-ground points by an improved filtering algorithm. (2) Roadside trees
objects detection (2.2). Roadside trees objects are obtained through deep learning approaches based on
the revised PointNet network on non-ground points. (3) Labeling refinement (2.3). A graph-structured
optimization algorithm is performed to achieve spatial smoothing of the initial semantic labeling
results. (4) Recognition of individual roadside trees (2.4). Roadside trees objects are segmented by a
deep learning based method from point cloud of the given categories. The details of each step of our
method are as follows.
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2.1. Ground Removal by Improved Progressive TIN Densification Filtering

Because of the scan mode of Aerial LiDAR systems, ground points take up a great portion
of the entire scene. Such a great deal of ground points not only enlarge the searching regions for
extracting non-ground objects, but also increase the spatial complexities and slow the processing
speed. Therefore, removing ground points from a variety of scenes is a preliminary but crucial step.
To reduce the quantity of the data to be handled and consider terrain fluctuations in a large scene,
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we develop an improved progressive triangulated irregular network (TIN) densification (IPTD) filtering
algorithm, which can rapidly and effectively distinguish ground points from non-ground points,
particularly structurally complex regions.

In existing filtering algorithms, the morphological filtering algorithm [47] obtains non-ground
points while retaining the terrain details; the progressive densification method [48] has gained
popularity owing to its robustness and effectiveness in segmenting ground points, however, it has
inadequacies when dealing with topographically and environmentally complex regions and tends to
remove ground points on steep regions and flatten the terrain. To obtain better filtering performance for
complex urban areas, we investigate the feasibility of improving progressive TIN densification filtering
of point clouds. Compared with previous work [49,50], the enhancements of the proposed IPTD
filtering algorithm encompasses three aspects. (1) Potential ground seed points are obtained through
extended local minimum for the grids containing points and the nearest neighbor was adopted to
interpolate the elevations of grids without points instead of using the lowest points in user-defined grids.
(2) Accurate ground seed points are acquired by judging the elevation difference in the neighborhood
of the local thin plate spline interpolation by the given threshold. This operation provides more
ground seed points that are generally evenly distributed. (3) Before upward densification, downward
densification is performed to promote the ability of the proposed algorithm in coping with slope
variations. Lastly, the ground points are extracted by iteratively densifying ground seed points,
the remaining points are taken as non-ground points. Figure 2 shows an example of the point cloud
before and after ground removal, where the colors represent elevation variations.
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2.2. Detection of Tree-Like Structures via Pointwise Classification on Non-Ground Points

As a significant requirement of urban tree inventory, labeling input data with the category of tree
is fundamental in exploiting the informative values for the instance segmentation of trees. The problem
has been extensively researched. Some unified approaches combine handcrafted features in a heuristic
manner but fails to capture high-level semantic structures. The segmented points generated by
deep-learning methods are often corrupted with noise and outliers due to the unorganized distribution
and uneven point density, which are inevitable in complex urban environments. It is a challenge to
effectively and automatically recognize individual trees in environmentally complex urban regions
from such data. To solve this problem, we revise an existing deep-learning architecture to directly
process unstructured point clouds and implement a point-wise semantic learning network.

PointNet has revolutionized how we think about processing point clouds as it offers a learnable
structured representation for 3D semantic segmentation tasks. However, the local features of point
clouds cannot be effectively robustly learned, limiting its ability to recognize the object of interest in
complex scenes. The proposed architecture is similar to PointNet with a few small modifications, i.e.,
features are computed from local regions instead of the entire point cloud, which makes the estimation
of local information more accurate. We propose an improved 3D semantic segmentation network
based on pointwise KNN (k-th nearest neighbor) search method, which has unique advantage that
extract multi-level features. The proposed network takes local features of a query point from local
region composed of neighbors set as its new features and establishes connections between multiple
layers by adding skip connections to strengthen the learning ability of local features.
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In this section, we further present the theoretical and logical principles of the proposed network
for urban object segmentation from non-ground points of ALS data in details. Considering that
the descriptiveness of differences between points from low-dimensional initial features is far from
satisfactory and the richness of point features is good for local feature extraction, we first enhance
the discriminability of point features and then obtain local information in the new feature space.
The proposed network mainly contains two modules: (1) implementing optimized PointNet by KNN,
which is used to extract more powerful local information in the high-dimensional feature space;
(2) semantically segmenting large-scale point cloud using the global and local features. The architecture
of the proposed method is summarized in Figure 3.
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Our detailed and complete feature learning network is illustrated in Figure 3, the green part,
which consists of two key modules: sub-module of point feature extraction based on PointNet and
sub-module of local feature extraction in the high-dimensional feature space.

2.2.1. Sub-Module of Point Feature Extraction

The module is designed to obtain richer point cloud high-dimensional features by using feature
extraction operations many times. For the whole pipeline, we directly use simplified PointNet as
our backbone network. Our network takes a point cloud of size N ×D as input, then encodes it into
a N × 128 shaped matrix using the shared Multi-Layer Perceptron (MLP) [29]. After max pooling,
the dimension of the global feature of point cloud is 128. Finally, the global features are duplicated N
times and concatenates point feature into a feature vector. This vector is then input into the MLP to
obtain a novel N × 128 shaped feature vector, which is fed into the following module to acquire the
local attributes.

In general, the feature learning network mainly uses three sub-modules of point feature extraction
with the same principle. In other words, we perform three repeated feature extractions. We pass and
fuse the features of different layers through the connection, for extracting and fusing richer high-level
features. The feature learning network illustrated in Figure 4 is composes with two components
including a simplified PointNet and connection channels.
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2.2.2. Sub-Module of Local Feature Extraction

The features of points belonging to the same semantic category are similar, this module aims to
reduce the feature distance between similar points and increase the discriminability of different point
clouds. The output from the above module forms a N × 128 tensor with low-level information. To get
sufficient expressive power to transform each point feature into a higher-dimensional feature, a fully
connected layer is added to the KNN module. We first transform the original points P to a canonical
pose by a STN (spatial transformer network) [51], and then search for the K nearest neighbors on the
spatially invariant points P̃ for each query point p̃n. The point-to-point set KNN search is defined
as follows:

p̃n, k = KNN
(
p̃n|(P̃− p̃n)

)
(1)

where p̃n, k represents the k-th nearest neighbor of the query point p̃n.
In the feature space of the input data, we search for K neighboring points with the smallest feature

distance from the query point. The pseudocode of the KNN module, which shows the details of the
feature space search algorithm based on KNN, is presented in Appendix A.

The feature learning network contains three local feature extraction sub-modules with identical
structures. At a certain level, each module is a process of point cloud features learning within the
local neighborhood. Therefore, this paper completes the task of learning within the multi-levels local
neighborhoods by repeatedly applying sub-module of local feature extraction three times. The detailed
processing of this module is shown in Figure 5. The local feature extraction module based on feature
space extracts local features at one level. By applying this module multiple times, the receptive field
of operation can be expanded, it is equivalent to extracting multiple local features at different levels,
which is beneficial to extract more and richer point cloud features.
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2.2.3. Semantic Segmentation Module and Loss Function

The semantic segmentation component concatenates the three output vectors (low-level point
feature vector, high-level local feature vector, and global feature vector) into a 1280-dimensional feature
vector. This vector is gradually reduced in dimensionality by directly using MLP and then fed into the
Softmax layers to acquire the final segmentation result, which consists of N ×M scores for each of the
N points and each of the M semantic categories.
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To minimize model errors during training, the loss functionL of our network consists of semantic
segmentation loss Lsem and contrastive loss Lpair:

L = Lsem +Lpair (2)

where Lsem is defined with the classical and off-the-shelf softmax cross entropy loss function, which is
formulated as follows:

Lsem = −
N∑

i=1

gi log
ei∑
j e j

(3)

where gi denotes the one-hot label of i-th training sample, N denotes the batch size, and ei/
∑

j e j is the
softmax prediction score vector.

As for the contrastive loss, it is expressed by a discriminative function based on the assumption
that the features of points belonging to the same semantic category are similar. Feature distance and
point labels are metrics to measure the dissimilarity between two points. Therefore, in the training
process, the proposed network minimizes the feature similarity difference between the points of the
same label, and expands the feature difference between two points belonging to different object labels
in the feature space. Specifically, the contrastive loss function is defined as follows:

Lpair =
1

2N
×

N∑
n=1

yd2 + (1− y) ×max(margin− d, 0)2 (4)

where d represents the Euclidean distance of two points feature, N is the number of points, and margin
is a preset threshold, which is a metric to measure the discrimination between two points. y is a binary
function that indicates whether two points belong to the same category. y equals 1 if two points belong
to the same object:

Lpair =
1

2N
×

N∑
n=1

d2 (5)

In this case, if the feature distance between the two points is small, the model is more suitable and the
loss Lpair is smaller. If two points do not belong to the same category, then y = 0:

Lpair =
1

2N
×

N∑
n=1

max(margin− d, 0)2 (6)

If the feature distance between two points is greater than the margin, it means that the two points do
not affect each other, and the loss Lpair is 0. If the feature distance of the two points is less than the
margin, it means that the loss Lpair increases with the decrease of the feature distance, then the current
model is not suitable and needs to be retrained.

The point-wise semantic label is determined based on the prediction score vector after minimizing
the loss function. Finally, the semantic segmentation maps the initial point cloud features to new
high-level feature spaces. Namely, points of the same semantic category are clustered together, while the
different classes are separated in the semantic feature space.

2.3. Graph-Structured Optimization for Classification Refinement

The proposed method exists a few local errors in the result of point-wise semantic learning network.
For instance, a tree without canopy is misclassified as others or a pole mixed with tree is misclassified as
a tree. Considering the object tree in the classification result as input in last step, instance segmentation
of trees, these inaccurate labels may have undesirable consequences. Therefore, we can optimize the
initial results and further obtain locally smoothed results with a probabilistic model. It is obvious
that the wrong labels can be revised by their local context, as advocated in [52]. We model spatial
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correlations by applying a graph structure to ensure the consistency of point-wise label prediction,
in other words, the labeling refinement can be converted into a graph-structured problem.

The first step is construction of the graph to structure the objective functional, the graphical model
is constructed by the undirected adjacency graph G = {V, E}, where V = {vi} represents the nodes
and a set of edges E = {ei j} encode spatial relationship of adjacent points with weights w. In graph
G, for a central vertex v, we define its ten KNN neighbor according to the minimum number of
edges from the other vertex vi to v. With respect to the edge weights w ∈ [0, 1], the spatial distance,
difference of normal vector angles and similarity are adopted for estimating weights. Furthermore,
let p =

{
p1, . . . , pN

}
denote a set of the points, let C = {c1, . . . , cm} be a set of labels (in this paper,

m is determined by the number of labels in the dataset), let Ψ = {Ψ|i = 1, . . . , N} represent a set of
feature variables of points, and let L =

{
l = (l1, . . . , lN)

∣∣∣li ∈ C, i = 1, . . . , N
}

denote all possible label
configurations [53]. To achieve global optimization using the constructed graph, we then formalize
the optimal label configuration as an energy function minimization problem, and it is defined by
following equation:

E(L) = Edata(L) + λ · Esmooth(L) (7)

where unary potential term Edata(L) quantitatively measures the disagreement between the possible
label configuration L and the observed data, while smooth potential term Esmooth keeps smoothness and
consistency between predictions, and λ is a weight coefficient used to balance the influence between
the unary potential and the local smoothness.

With this configuration, the regularization process of the initial semantic segmentation will be
performed to ensure labels locally continuous and globally optimal. In the proposed framework, the two
terms have different definitions in the abovementioned energy functions. Consequently, the form of
unary potential Edata(L) is typically:

Edata(L) =
∑
i∈V

φi(li) (8)

where φi(li) measures how well label li fits the feature variables Ψi of given observed data and
enforces the influence of the labels. As for the urban region, the same objects have similar features,
while different objects have distinct features. The term φi(li) = − log P(li) is derived from the predicted
probability P(li) output from the point-wise classification. The higher the category posterior probability,
the smaller the unary potential.

The second term in Equation (7) suppresses the “salt and pepper” effect and demonstrates the
penalty to assign labels to a couple of 3D points, and is thus judged by Esmooth(L) =

∑
{i, j}∈E ψi, j

(
li, l j

)
=∑

{i, j}∈E µ
(
li, l j

)∑P
p=1 ωpk

(
fi, f j

)
[54]. More specifically, µ

(
li, l j

)
= 1 if li , l j or 0 otherwise, k represents

the Gaussian kernel relying on extracted features f which is determined by the XYZ and intensity
values of the points i and j, and ωp indicates constant coefficients. Two Gaussian kernels [55,56] are
chosen as follows:

ωb · e

−
‖coordinatei − coordinate j‖

2

2θ2
α

−

‖intensityi − intensity j‖
2

2θ2
β


+ωs · e

−
‖coordinatei − coordinate j‖

2

2θ2
γ


(9)

where, ωb is the weight of the bilateral kernel, ωs is the weight of the spatial kernel, θα, θβ and θγ are
three predefined hyperparameters.

While the regularization coefficient λ is estimated as follows:

λ = e−
d2

i j
δ2 (10)

where di j is the distance between points i and j, and δ is the expectation of all neighboring distances.
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Accordingly, the optimal label prediction L∗ is the solution of minimization energy function with
the following structure:

L∗ ∈ arg min
l∈C

∑
i∈V

φi(li) + λ ·
∑
{i, j}∈E

ψi, j
(
li, l j

)
(11)

Although accurate minimization is intractable, the minimization problem is easily and appropriately
solved by a graph-cut algorithm using the α-expansion [57,58]. With a few graph-cut iterations,
we can effectively and quickly find an approximate solution for optimizing multi-label energies.
The labeling cost is not considered since graph-based optimization can effectively leverage the
prediction and confidence, as well as semantic label assignment between two similar points in each
region. The optimized results could be automatically adaptive to the underlying urban scenes without
the predefined features for some uncertain objects.

2.4. Segmentation of Individual Roadside Trees with Deep Metric Learning

After the class tree is determined, the label-based segmentation method is used to extract the tree
points. As tree crowns are often clumped and connected together, it is vital to determine the points of
individual trees by correctly isolating tree crown points of each trunk. Instance recognition of trees
in environmentally complex urban areas is a challenge due to the poor-quality data. To overcome
this problem, the quality of the segmented tree data is first enhanced through recovering the missing
regions and removing the noise, outliers. We extend the previously proposed method in [59,60],
and seek self-similar points to denoise them simultaneously using graph Laplacian regularization.
Inspired by the algorithm of [61], we exploit an edge preserving smoothing algorithm using local
neighborhood information to recover the regions with missing data. Delineation of individual trees
from points after quality correction is then performed.

To automatically extract each tree crown points, a novel end-to-end architecture is applied to
individual tree segmentation, which combines structure-aware loss function and attention-based
k nearest neighbor (KNN). The proposed framework is summarized in Figure 6, we elaborate on
the three main components of our proposed network, including the submanifold convolutional
network, the structure-aware loss function and the graph convolutional network (GCN), respectively.
We firstly generate initial embeddings for each point by the submanifold sparse convolutional network.
Inspired by the work of [62], we obtain discriminative embeddings for each tree from the LiDAR
points based on the structure-aware loss function, which considers both the geometric and the
embedding information. In order to achieve refined embeddings, we develop an attention-based
graph convolutional neural network that aims to automatically choose and aggregate information from
neighbors. Finally, to get segmentation of individual roadside trees, we employ a simple improved
normalized cut segmentation algorithm to cluster refined embeddings.
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instance embeddings during the inference.
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Specifically, we directly use the architecture of the submanifold convolutional network (SCN)
as our first component by borrowing from [63]. In our experiment, we use two backbone networks,
including an UNet-like architecture (with smaller capacity and faster speed) and a ResNet-like
architecture (with larger capacity and slower speed). In this section, we mainly describe the last two
components of our proposed method for instance segmentation of trees. In the metric learning, the
points within the same tree have similar embeddings while points from different trees are apart in
the embedding space. Considering points within each tree do not only have embedding features but
also have geometric relations, we hope that the final results will more discriminative by combining
structure information with embedding features. Some commonly used metrics (e.g., cosine distance)
for measuring the similarity between embeddings may cause the learning process and the post-process
more difficult as kinds of reason. To make embedding discriminative enough, the Euclidean distance
chosen to measure the similarity between embeddings after many test experiments. After measuring the
similarity between embeddings, we obtain discriminative embeddings for each tree by a structure-aware
loss function. Our loss function is consisted of the following two items:

Lstructure =
1
N

N∑
i=1

L
intra
i +

1
N(N − 1)

N∑
i=1

N∑
j=1, j,i

L
inter
i j (12)

where N is the total number of the tree in the entire scene. The first item Lintra
i aims to minimize the

distance between embeddings within the same tree. As shown in Equation (13), the overall feature of a
tree can be described by a mean embedding.

L
intra
i =

ni∑
j=1

1

1 + e−sdi, j
[edi, j − α]

2
+ (13)

where α denotes a threshold for penalizing large embedding distance, ni is the point number of the ith
tree. sdi, j is the coordinate of the jth point within the ith tree, which measures the spatial distance between
the jth point and the geometric center µsd,i of the ith tree; edi, j is the embedding of the jth point within
the ith tree, which measures the embedding distance between the jth point and the mean embedding
µed,i. Further explanation, sdi, j and edi, j are then represented as Equations (14) and (15), respectively.

sdi, j = ‖sd j − µsd,i‖ =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣sd j −

1
ni

ni∑
j=1

sdi, j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (14)

edi, j = ‖ed j − µed,i‖ =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣sd j −

1
ni

ni∑
j=1

edi, j

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ (15)

On the other hand, the second item Linter
i j is commonly used to make points from different trees

discriminative. Specifically,
L

inter
i j = [β−

∣∣∣∣∣∣µsd,i − µsd, j
∣∣∣∣∣∣]2+ (16)

where β denotes a threshold for the distance between mean embeddings. After repeated experiments,
α and β is set 0.7 and 1.5 respectively.

To achieve the goal that is to generate similar embeddings within the same tree and discriminative
embeddings between different trees, KNN algorithm is applied to improve the local consistency of
embeddings and aggregate information from surrounding points for a certain point. However, it is
unfortunate that some wrong information brought by KNN will be harmful for embeddings. It is
more obvious that a point near the edge of a certain tree may aggregates information from another
trees. Instead of the standard KNN aggregation (xaggregate

i ), an attention-based KNN is developed
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for embedding aggregation (xaggregate′

i ), which can assign different weights for different neighbors.
The transform process can be formalized as follows:

xaggregate
i =

1
k

k∑
m=1

x jim 7→ xaggregate′

i =
k∑

m=1

αm · x jim (17)

where the input embeddings of point clouds are denoted by X = {x1, . . . , xn} ⊆ RF,
{
x ji1

, . . . , x jik

}
are

the k nearest neighbors of xi according to their spatial positions, and αm is the attention weight for each
neighbor and the normalization of the softmax function.

Figure 7 is the illustration of attention-based KNN which is the aggregator of our proposed graph
convolutional neural network containing two steps. In step 1, for each input point, k nearest neighbors
are searched according to the spatial coordinate. Different weights are assigned to different neighbors
in step 2. The output of the aggregator is the weighted average of the embeddings of k neighbors.
In general, aggregator in the form of attention-based KNN is a natural and meaningful operation for
3D points and allows the network to learn different importance for different neighbors.

In the previous research, the GCN is normally composed of two parts: the aggregator and the
updator (illustrated in Figure 8). As explained above, the aggregator is to gather information from
neighbors using the proposed attention-based KNN. To update the aggregated information by mapping
embeddings into a new feature space, a simple fully connected layer without bias is used as the updator.
The operation is formalized as follows:

xupdate
i = [xi, xaggregate

i ]W, (18)

where W ⊆ R2F×F is a trainable parameter of the updator.
A portion of GCNs describe the relation using the laplacian matrix and the eigen-decomposition,

which require huge computing cost (complexity O(n2)). In contrast to previous GCNs, the main
spotlight of our spatial GCN is that the attention-based KNN is used as the aggregator. In other word,
the KNN (complexity O(n × k)) is used to describe the relation. It is quite vital for GCN to be applied to
the original data. Last but not least, the proposed network will be easily trained end-to-end and uses
the ADAM optimizer with constant learning rate 0.001. During implementation, we firstly pretrain the
backbone network to obtain a pretrained segmentation model, then train the whole tree segmentation
network based on the pretrained model, which can save time when conducting multiple experiments.
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aggregator and the input embedding together. Finally, a fully connected (FC) layer follows to update
and get the refined output embedding.

The spatially independent trees are quickly and effectively separated, but the overlapping or
adjacent trees are difficult to isolate. Several previous researches reduced omission errors by a certain
graph-cut algorithm, which enhanced accuracy but increased computational complexity. To further
segment those objects containing more than one object, a supervoxel-based normalized cut segmentation
method is developed. The mixed objects are firstly partitioned into homogeneous supervoxels with
approximately equal resolution using the existing over-segmentation algorithm proposed in [64],
which can preserve the boundary of object much better than others. Then, consider a complete weighted
graph G(V, E) constructed from the given supervoxels according to their spatial neighbors, where the
vertices V are represented by the center of supervoxels, and edges E are connected between each pair
of adjacent supervoxels. The meaningful weight assigned to the edge is adopted for measuring the
similarity between a pair of supervoxels connected by the edge and is calculated by the geometric
information associated with the supervoxels as follows:

ωi j =


exp

− (D
XY
ij )2

σ2
XY

 · exp

− (D
Z
ij)

2

σ2
Z

 · exp

− (G
max
ij )2

σG

, DXY
ij ≤ rXY

0, DXY
ij > rXY

(19)

where DXY
ij and DZ

ij are the horizontal and vertical distance between supervoxels i and j, respectively.

σXY, σZ and σG indicate the standard deviations of DXY
ij , DZ

ij and Gmax
ij , respectively. rXY is a distance

threshold for determining the maximal valid distance between two supervoxels in the horizontal plane.
Gmax

ij is expressed as

Gmax
ij = max

(
DXY(i, treeTop), DXY( j, treeTop)

)
(20)

where DXY(i, treeTop) and DXY( j, treeTop) denote the horizontal distance between supervoxels i, j and
the top of nearest tree.

Specifically, the similarity between two supervoxels is measured by considering their distance
in the horizontal plane and their relative horizontal and vertical distributions. By such a definition,
we partition the complete weighted graph G into two disjoint groups A and B by normalized cut
segmentation method, which maximizes the similarity within each group (A ∩ B = ∅) and the
dissimilarity between two groups (A∪ B = V). According to [65], the corresponding cost function is
defined as

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(A, B)
assoc(B, V)

(21)

where cut(A, B) =
∑

i∈A,i∈B ωi j denotes the sum of the weights on the edges connecting groups A and B;
assoc(A, V) =

∑
i∈A,i∈V ωi j and assoc(B, V) =

∑
i∈B,i∈V ωi j denote the sum of the weights on the edges

falling in group A and B, respectively.
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The process of dividing the weighted graph G into two separate groups A and B is regarded as
the minimization of Ncut(A, B). Since minimization problem is NP-hard, the proposed method relies
on the approximation strategy, which achieves fairly good results in terms of solution quality and
speed. Then the minimization of Ncut(A, B) is obtained by solving the corresponding generalized
eigenvalue problem

(D−W)y = λDy (22)

where W(i, j) = ωi j, and D is a diagonal matrix, whose ith row records the sum of the weights on the
edges associated with supervoxel i

D(i, j) =


∑
m∈V

ωim, i f i = j

0, otherwise
(23)

We introduce a parameter z denoted as D−
1
2 y, thus, the Equation (22) is represented as

D−
1
2 (D−W)D−

1
2 z = λz. From the basic principle of the Rayleigh quotient, it can be known that solving

the minimum value problem of Ncut(A, B) is converted into solving the second minimum eigenvector
of the feature system, and the best division result of normalized segmentation is obtained.

z = arg min
zTz0=0

zTD−
1
2 (D−W)D−

1
2 z

zTz

y = arg min
yTDy0=0

yT(D−W)y
yTDy

(24)

where
{
λ = 0, z0 = D−

1
2 I

}
is the small solution of the abovementioned feature system, y0 = I is the

smallest feature vector.
Based on the normalized cut principle, the overlapping objects are divided into two segments by

employing a threshold to the eigenvector associated with the second smallest eigenvalue. Since elements
of the second smallest eigenvector generally appear as continuous real values, a separation point needs
to be introduced to bisect, usually 0 or the median of the eigenvector elements is used as the separation
point. In order to minimize Ncut(A, B), heuristic method [66] is used to find the optimal separation
point. The elevation information plays a significant role in aerial LiDAR data processing, we finally
adopt an elevation-attention module [67] which directly applies the per-point elevation information to
improve segmentation results.

3. Results

A brief description about the experimental data is first given in this section. Then, we qualitatively
and quantitatively analyze the performance of the results derived from the proposed method, respectively.

3.1. Data Description

We assess the performance of our approach using the following two public datasets: 2019 IEEE
Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest 3D point cloud classification
challenge (DFC 3D) [68] and Dayton Annotated LiDAR Earth Scan (DALES) [69] dataset. The DFC 3D
is an aerial LiDAR dataset, which is collected by the IEEE GRSS and covers approximately 100 km2

over parts of Southern United States, provided in ASCII text files. Considering the difference in
category definition, we investigate six predefined semantic classes, namely, ground, tree, building,
water, elevated road/bridge and unlabeled points. The XYZ and intensity are used as the inputs in
our experiments. Scenes from three different types areas are provided on the IEEE GRSS 3D labeling
website: two scenes with 10 files are employed as the training set and the other one scene with 6 files
are used as the test set.
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The DALES dataset is also composed of ALS data acquired with a Riegl LiDAR system flown with
a mean flying height of about 1000 m above some Canadian cities. As a new large-scale ALS dataset,
it spans 10 km2 of area and eight object categories with over 0.5 billion labeled points. The dataset is
randomly split into two regions, namely training set and testing set with roughly a 70/30 percentage
split, respectively.

3.2. Classification Performances

We quantitatively assess the classification performance of the proposed approach in terms of the
following evaluation metrics [70]: precision, recall, F1 score, overall accuracy (OA), and average F1
score (AvgF1). Among them, the first three metrics are specifically applied to assess the performance on
each single class, whereas overall accuracy and average F1 score are used to evaluate the performance
on the whole test set. To test the performance of the improved network based on pointwise KNN search,
the comparisons between the results with the original PointNet is conducted. Furthermore, to validate
the feasibility of the graph-structured optimization designed for labeling refinement, the comparisons
between the results with and without smoothing is conducted. Here, Tables 1 and 2 list the final
classification results on the DFC 3D dataset and the DALES dataset, respectively. More specifically,
we finally achieved the precision of 87.0%, recall of 91.2%, and F1 score of 89.1% for labeling the tree
class on the DFC 3D dataset, and an IoU of 94.1% for tree category on the DALES dataset.

Table 1. Performance of classification results of our model with optimization using DFC 3D dataset.
We report the precision, recall, and F1 score for each category in the first 3 columns as well as the OA
and Avg F1 in the last two columns (All values are in %).

Metrics Ground Buildings Water Others Tree OA Avg F1

precision 94.5 92.8 90.7 65.7 87.0 91.1 82.9
recall 96.1 95.6 32.4 83.1 91.2

F1 score 95.3 94.2 49.2 86.9 89.1

Table 2. Overview of the proposed method on the DALES data set. We report the overall accuracy,
mean IoU and per class IoU, for each category (All values are in %).

Ground Buildings Cars Trucks Poles Lines Fences Tree OA Mean

95.8 95.2 86.3 54.2 43.6 92.4 58.9 94.1 94.6 72.6

3.2.1. Comparison between PointNet and Our Method

For the point-wise semantic segmentation, the feature learning of ALS data is a fundamental
problem that directly affects the results of urban scene understanding. To validate the classification
performance of the proposed network, we compared the results obtained by extracting more powerful
local information using an optimized PointNet by KNN to those by extracting global features directly
from the original PointNet. The classification results of original and optimized PointNet on the DFC
3D dataset are presented as a comparison in Table 3. The proposed network can largely improve
the performance of classification with an increase of 10.7% in OA and a 19.9% increment in AvgF1.
Additionally, the precision, recall, and F1 of tree show remarkable increase by 0.7%, 11.6%, 6.1%,
respectively, indicating that the proposed strategy can produce higher accuracy, especially for the
tree object extraction. The possible explanation is that the induction of multi-scale local information
can provide better representation, especially in improving object integrity. Figure 9 presents the
visualization of the classification results on DFC 3D dataset, it can be seen that the use of optimized
PointNet procedure provides good initial result, which shows the efficacy of the proposed network in
providing informative features.
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the labeling smoothing by contextual information. In order to evaluate the usefulness of graph based-

Figure 9. Classification results of the DFC 3D dataset. (a) the classification result with PointNet; (b) the
classification result with the proposed model; (c) the ground truth.

Table 3. Performance of our model and PointNet on the DFC 3D dataset. We report the precision (p),
recall (r), and F1 score for tree category in the first 3 columns as well as the overall accuracy (OA) and
average F1 score (Avg F1) in the last two columns (All values are in %).

Method Tree (p) Tree (r) Tree (F1) OA Avg F1

PointNet 84.5 78.4 81.4 79.1 60.5
Ours (initial) 85.2 90.0 87.5 89.8 80.4

3.2.2. Effectiveness of Labeling Smoothing Using Graph-Structured Optimization

There exists a small number of wrongly labeled points in the outputs, which can be corrected
in the labeling smoothing by contextual information. In order to evaluate the usefulness of graph
based-optimization, a regularization framework was tested for obtaining spatially smooth semantic
labelling of UAV-LS data from a pointwise classification. Here, Table 4 lists the initial and optimized
results of semantic segmentation, it can be seen that the overall performance does not show considerable
improvements, the implementation of label smoothing improves the OA by 0.2%, but the influence of
classification optimization is clear in some specific classes such as trees. Figure 10 shows the detailed
visual illustration, which indicates an improvement in both smoothness and classification performance.
As aforementioned, although wrongly classified points of most urban scenes are correctly labeled
through a powerful deep learning method, the change in the statistic of the classification accuracies not
seems apparent. This can be attributed to the reason that our strategy has already provided global and
local properties with high quality, especially the implementation of the pointwise KNN search strategy.
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Figure 10. Detailed classification results of a certain selected area. (a) the initial classification result;
(b) the smoothed classification result; (c) the ground truth.

Table 4. Comparison of the initial and smoothed classification results using DFC 3D dataset. We report
the precision (p), recall (r), and F1 score for tree category in the first 3 columns as well as the OA and
Avg F1 in the last two columns (All values are in %).

Method Tree (p) Tree (r) Tree (F1) OA Avg F1

Initial 85.2 90.0 87.5 89.8 80.4
Smoothed 87.0 91.2 89.1 91.1 82.9
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3.2.3. Comparison with Other Published Methods

Additionally, we implemented several 3D semantic segmentation approaches to make a fair
comparison using the above-mentioned two public dataset; such a comparison can reveal that the
proposed method can outperform other classic methods.

After illustrating the effectiveness, we compare the proposed method with other published
high-accuracy methods that have available codes using the DFC 3D dataset, including DANCE-Net [71]
and GA-Conv [67]. The DANCE-Net method [71] classified the ALS data by introducing a density-aware
convolution module which uses the point-wise density to reweight the learnable weights of
convolution kernels and further developing a multi-scale CNN model to perform per-point semantic
labeling. In GA-Conv method [67], whose strategy is similar to that of the DANCE-Net [71],
approximating convolution on unevenly distributed 3D point sets with a geometry-attentional network
consisting of geometry-aware convolution, dense hierarchical architecture and elevation-attention
module to embed the three characteristics effectively, which can be trained in an end-to-end manner.
Furthermore, compared to the aforementioned methods, the proposed method that also operates directly
on point clouds, ranks second among three strategies, with OA value that are 5.1% higher than those of
GA-Conv [67]. Table 5 displays a comparison of the classification accuracy with the aforementioned
evaluation metrics among three different methods. Compared to DANCE-Net [71], we achieve a lower
OA; however, we provide improved performance in classifying tree that produce a higher accuracy.

Table 5. Quantitative comparison between our model and other methods on the DFC 3D dataset.
We report the precision (p), recall (r), and F1 score for tree category in the first 3 columns as well as
the overall accuracy (OA) and average F1 score (Avg F1) in the last two columns. The boldface text
indicates the best performance (All values are in %).

Method Tree (p) Tree (r) Tree (F1) OA Avg F1

DANCE-Net 87.4 89.9 87.0 93.8 78.0
GA-Conv 78.6 93.0 85.8 86.0 74.7

Ours 87.0 91.2 89.1 91.1 82.9

To further investigate the versatility of the proposed method on large-scale ALS datasets, we also
obtained the pointwise classification results on the DALES dataset. We follow the evaluation
metrics of similar large-scale LiDAR point cloud benchmarks and use the mean IoU and the OA
as our main evaluation metrics. The per class IoU is first defined as Equation (25), the mean IoU
is simply the mean across all eight categories, excluding the unknown category, of the form as
Equation (26), and the OA can be calculated as Equation (27). For further evaluation, the proposed
method was compared to previous published methods (we selected only algorithms that have published
results and available codes, including PointNet++ [30], ShellNet [72], and Superpoint Graphs [42]).
Quantitative comparison results on the DALES dataset are listed in Table 6, showing that the proposed
network achieves better classification performance in terms of OA and mean IoU score than the other
models. Specifically, the proposed model obtains state-of-the-art extraction performance for the trees.
The notably strong performance of our architecture on trees with an IoU of 94.1%, over 2% higher than
other networks is likely due to the difference between the proposed architecture and other methods,
is that we did not rely on the selection of a fixed number of points within a search radius. This method
of batch selection makes it possible to select a wide enough neighborhood to adequately get information
while also having enough points to identify small objects.

IoUi =
cii

cii +
∑

j,i ci j +
∑

k,i cki
(25)

IoU =

∑N
i=1 IoUi

N
(26)
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OA =

∑N
i=1 cii∑N

j=1
∑N

k=1 c jk
(27)

Table 6. Quantitative comparison between our model and other methods on the DALES 3D dataset.
We report the overall accuracy, mean IoU and per IoU for tree category. Our model outperforms all
other methods on the DALES dataset. We also note that all methods had a large variance between
object categories. The boldface text indicates the best performance (All values are in %).

Method Tree (IoU) OA Mean IoU

PointNet++ 81.9 85.7 63.1
ShellNet 88.4 93.2 69.4

SuperPoint 91.5 94.0 70.2
Ours 94.1 94.6 72.6

3.3. Segmentation Performances of Individual Trees

3.3.1. Roadside Trees Segmentation

Figures 11 and 12 illustrate the roadside trees segmentation results for the selected point clouds
test data 1, test data 2 from DFC 3D dataset, respectively. Figures 11a and 12a indicate the two
selected scenes, colored by the elevation of each point. After ground points removed by the IPTD
filtering algorithm, the road facilities were semantically recognized from the non-ground points.
Figures 11b and 12b show the object recognition results dotted in different colors, where gray, red,
orange, green and blue points represent points from ground, buildings, water, trees and others
respectively. Figures 11c and 12c show roadside trees extraction outcomes, where tree is drawn in
green and ground is dotted in gray. Figures 11d and 12d show roadside trees instance segmentation
outcomes, dotted in different color. Just like Figures 11 and 12, Figures 13a–d and 14a–d show the
visualized results of each step of our method on the DALES dataset. More details of the individual
roadside tree segmentation result are shown in Figure 15, Figure 15a is the segmentation outcomes for
small trees and Figure 15b is segmentation outcomes for incomplete trees. It can be seen that the trees
are well detected if they are not seriously overlaid, implying that the proposed method provides good
performance in instance recognizing roadside trees, even small and incomplete objects.
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3.3.2. Evaluation of the Proposed Method

We ran the tree segmentation algorithm in Python and compared the result with the reference trees.
In this study, the performance of the proposed individual tree segmentation method on these two ALS
datasets is evaluated by the following metrics [6]: segmentation accuracy (AC), omission error (OM)
and commission error (COM). AC is the rate of trees correctly detected; OM is the rate of undetected
trees, and COM is the rate of falsely detected trees.

AC = se/ref (28)

OM = use/ref (29)

COM = fse/ref (30)

where de is the number of trees correctly segmented, ude is the number of unsegmented trees, fde is the
number of trees falsely segmented and ref is the number of reference trees.

Table 7 shows the segmentation accuracy, omission error and commission error of individual tree
segmentation from these two datasets. Our method achieves good results in segmenting roadside trees
with an average AC, OM and COM of (86.8%, 13.2%, 9.5%) for the two datasets. Three metrics decline
slightly with the sharp increasing scene complexity.
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Table 7. Individual tree segmentation results of the DFC 3D and DALES datasets using our method
(All values are in %).

Dataset AC OM COM

DFC 3D 85.1 14.9 10.2
DALES 87.5 12.5 8.9
average 86.8 13.2 9.5

3.3.3. Comparative Studies

To evaluate the effectiveness of the instance segmentation of tree, we designed a group of
experiments and compared it with other three methods, including Li’s method [73], ForestMetrics [74],
and treeseg [75] in terms of segmentation accuracy, omission error, and commission error for recognizing
roadside trees, as listed in Table 8. We apply the same data to evaluate the proposed method and other
methods in this paper.

Table 8. Comparison of tree segmentation performance among four different approaches (All values are in %).

Method AC OM COM

Li [73] 83.5 15.5 10.9
ForestMetrics 85.9 14.1 11.8

treeseg 80.9 19.1 13.2
Ours 86.8 13.2 9.5

Li et al. [73] adopted a top-to-bottom region-growing method for tree segmentation in coniferous
forests. However, the performance of the algorithm is not ideal when applied to urban roadside
trees. ForestMetrics [74] mainly detects trunks and delineates individual trees from ALS to be
well suited for trees with crowns of structurally complex shapes by a new bottom-up algorithm.
Although ForestMetrics achieved a good tree segmentation performance with the AC, OM, and COM
values of 85.9%, 14.1%, and 11.8%, respectively. Unfortunately, it fails to deal with extended and
irregular tree shapes, especially if the canopy border is not correctly depicted. The data-driven
approach, treeseg [75], utilizes generic point cloud processing techniques including Euclidean clustering,
principal component analysis, region-based segmentation, shape fitting, and connectivity testing.
The open-source approach to automate tree segmentation task, which uses few a priori assumptions of
tree architecture, achieved worse segmentation accuracies with the AC, OM, and COM values of 80.9%,
19.1%, and 13.2%, respectively.

The proposed method employs an attention-based GCN which can automatically choose and
aggregate information from neighbors, and a structure-aware loss function for tree segmentation to
improve the geometric and the embedding information distinctiveness for individual tree. The proposed
method also develops a novel and effective supervoxel-based normalized cut segmentation method,
improving segmentation performance for incomplete and small trees. Thus, we have better accuracy
of tree segmentation than those of Li’s method [73], ForestMetrics [74], and treeseg [75].

4. Conclusions

To address the complicated problem of classifying large-scale scenes and segmenting individual
roadside trees objects, we proposed a complete workflow from airborne LiDAR data in environmentally
complex urban areas, including (1) an improving progressive TIN densification filtering algorithm
is applied to remove ground points, (2) a deep learning framework that integrates a point feature
learning network, and a local feature learning network for the efficient semantic parsing of large-scale
UAV-LS data, (3) a graph-structured optimization model to ensure the consistency of point-wise label
prediction, (4) a simple yet novel method employing graph embedding learning with a structure-aware
loss function and supervoxel-based normalized cut segmentation for isolating individual roadside



ISPRS Int. J. Geo-Inf. 2020, 9, 595 22 of 26

trees. Our approach was evaluated by estimating accuracy on two publicly accessible ALS datasets,
resulting in a satisfactory detection and segmentation of tree points from connected and clumped objects.

The experimental results demonstrate that our method provides a powerful solution to segment
individual trees from urban UAV-LS data in terms of accuracy and correctness. It performed better
than several classic 3D semantic segmentation methods and individual tree segmentation methods in
terms of detection and segmentation accuracy. The proposed approach only utilizes 3D coordinates
and intensity of point clouds and does not require any supplementary information, and is also robust to
detect and segment roadside tree objects in overlapped region. The instance segmentation of tree from
UAV-LS data also lay a good foundation for accurately calculating the structure metrics of trees and
classification of species of urban trees, providing a good database for environmental impact assessment,
biomass estimation, and tree risks management. In the future, we will test the proposed method on
more large-scale road environment to build a complete roadside tree objects database for planning and
management of urban forests.
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Appendix A

Algorithm A1: KNN-based local feature extraction

Input: point cloud P, D =
{
p1, p2, . . . , pn

}
, the dimension of each point is d;

Output: point cloud P, D =
{
p1, p2, . . . , pn

}
, the dimension of each point is d;

Parameter: K for KNN search

Step 1: The calculation of the feature distance between any pair of points.
Initialization: Define the similarity matrix Sn×n between point pairs.
For i = 1, 2, . . . , n do

The calculation of the Euclidean distance Si j =
∣∣∣∣∣∣xi − x j

∣∣∣∣∣∣2F of the feature space between point xi and
individual points x j (1 ≤ j ≤ n);

End For

Step 2: Select K neighboring points of each query point.
Initialization: Define the K-nearest neighbor matrix EN×K of each point and each local neighborhood

feature matrix EN×d, where d is the feature dimension.
For i = 1, 2, . . . , n do

Extract the distance vector Si = {Si1, Si2, . . . , Sin } between point xi and other points;
Sort the vector Si from small to large, and select the top K elements, EiK = [e1, e2, . . . , en];
Extract the d-dimensional local features Fi = MAX

{
h(xi), h(xe1 ), h(xe2 ), . . . , h(xek )

}
(where h is MLP) of

point xi and K neighboring regions using MLP and max pooling layers;
End For

Step 3: Update the feature of each query point.
For i = 1, 2, . . . , n do

For point xi, update the feature of the given point as xi = Fi.
End For
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