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Abstract: Understanding the relationship between the built environment and the risk of COVID-19
transmission is essential to respond to the pandemic. This study explores the relationship between
the built environment and COVID-19 risk using the confirmed cases data collected in Hong Kong.
Using the information on the residential buildings and places visited for each case from the dataset,
we assess the risk of COVID-19 and explore their geographic patterns at the level of Tertiary Planning
Unit (TPU) based on incidence rate (R1) and venue density (R2). We then investigate the associations
between several built-environment variables (e.g., nodal accessibility and green space density) and
COVID-19 risk using global Poisson regression (GPR) and geographically weighted Poisson regression
(GWPR) models. The results indicate that COVID-19 risk tends to be concentrated in particular areas
of Hong Kong. Using the incidence rate as an indicator to assess COVID-19 risk may underestimate
the risk of COVID-19 transmission in some suburban areas. The GPR and GWPR models suggest a
close and spatially heterogeneous relationship between the selected built-environment variables and
the risk of COVID-19 transmission. The study provides useful insights that support policymakers in
responding to the COVID-19 pandemic and future epidemics.

Keywords: risk of COVID-19; built environment; global Poisson regression; geographically weighted
Poisson regression

1. Introduction

Three coronaviruses have emerged in the past two decades (i.e., SARS-CoV, MERS-CoV,
and SARS-CoV-2) [1]. Among them, the novel coronavirus (SARS-CoV-2) and the COVID-19 pandemic
it causes pose a particularly serious threat to global health, as the numbers of new COVID-19 cases
and deaths continue to increase at alarming rates in some countries. COVID-19 was designated as a
pandemic by the World Health Organization (WHO) on 11 March 2020 [2]. To mitigate the pandemic
and control its spread in human populations, most governments have implemented drastic intervention
measures, which include travel restrictions, stay-at-home orders, school closings, and restrictions of
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public gatherings [3–5]. These control strategies seek to mitigate the spread of COVID-19 by forcing or
encouraging people to practice social distancing and reducing risky social interactions.

Measures like social distancing, travel restrictions, and stay-at-home orders are non-pharmaceutical
interventions for controlling the spread of COVID-19 by reducing the close contact among people
and changing their behaviors [6]. Several studies have observed the benefits of non-pharmaceutical
interventions for controlling pandemics. These studies found that changes in individual behavior can
have large effects on reducing the transmission of infectious disease [7–11]. The benefits of human
behavioral changes via social distancing seem obvious. However, human behavior may change in ways
that lead to opposite consequences during a pandemic since human behavior is also shaped by the
built environment [12,13]. For instance, people still need to obtain groceries, medicines, and essential
services during a pandemic. Further, some people may still want to conduct certain outdoor activities
(e.g., hiking, picnicking, or taking beach vacations) or social activities at different venues or places to
maintain their mental health during long stay-at-home orders [14,15]. Hence, it is critical to investigate
the relationship between the built environment and COVID-19 transmission risk in order to effectively
control the pandemic. On one hand, the new knowledge generated can inform the development and
enhance the effectiveness of non-pharmaceutical interventions by identifying more targeted strategies
to reduce people’s risky contact with others. Further, informing people to avoid conducting high-risk
activities and visiting high-risk places would help generate the behavioral changes for mitigating the
spread of infectious diseases. On the other hand, certain features of the built environment can be
modified or dynamically managed to promote healthy behaviors and reduce the risk of contracting
COVID-19 during the pandemic.

This study thus investigates the relationship between built-environment features and COVID-19
transmission risk in Hong Kong. It seeks to answer the following questions: (1) What are the key
geographic patterns of the COVID-19 cases in Hong Kong? (2) What built-environment features and
areas are associated with a higher risk of COVID-19 transmission in the study area? To answer these
questions, we first assess COVID-19 risk using two different indicators derived from the data on
COVID-19 cases and their locations available on the Hong Kong Department of Health COVID-19
webpage. The first indicator is incidence rate (R1: case density) which is calculated based on the
number of confirmed cases per 1,000 people in each of the Tertiary Planning Units (TPU) in Hong
Kong. The second one is venue density (R2), which is computed based on the number of venues
or buildings visited by the confirmed cases in each TPU. Then, the spatial distribution and the
frequency distributions of R1 and R2 are analyzed. Finally, we use global Poisson regression (GPR)
and geographically weighted Poisson regression (GWPR) to investigate the relationship between
certain built-environment features and COVID-19 risk. The results show that COVID-19 risk declines
dramatically over space from the TPUs with the highest risk, indicating that the risk of COVID-19
transmission tends to be concentrated in particular areas of Hong Kong. Furthermore, the rate of
decay for R1, as reflected by the frequency distribution of the incidence rate, is greater than that of
R2. This implies that the incidence rate indicator may underestimate the risk of COVID-19 in some
suburban areas. The adjusted percent deviance explained of the GPR model is 0.44 for R1 and 0.58 for
R2, which suggests a close relationship between the built-environment variables and COVID-19 risk.
The GWPR models perform better than the GPR regression models, and the results indicate that the
relationships between the selected built-environment variables and COVID-19 risk (i.e., R1 and R2)
vary spatially across the study area.

2. The Built Environment and the Spread of Infectious Disease

At the time of writing, COVID-19 has become a global pandemic that constitutes a serious threat
to public health in many countries, and Hong Kong is experiencing a rampant third wave of the
pandemic. Past studies have found that local built-environment features and people’s socioeconomic
characteristics significantly influence viral transmission and incidence rates [16]. On one hand, the built
environment heavily influences the space–time patterns and intensity of people’s social interactions.
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The location, density, and accessibility of different built-environment features (e.g., subway stations)
may affect the density of people moving through certain spaces and thus may have a significant
impact on disease transmission (e.g., higher built-environment densities tend to increase people’s
interactions) [17]. Different types of housing and the amount of green space in an area (which facilitates
social distancing and the avoidance of crowdedness) may also be important factors. Specific types
of venues and areas where superspreading events and cluster outbreaks tend to occur (e.g., pubs,
restaurants, and karaoke venues) are also high-risk built-environment features for disease transmission.

Our knowledge about the influences of the built and social environments on the spread of highly
contagious infectious diseases like COVID-19 is still highly limited to date, and some apparently useful
findings from recent studies may be unreliable. For instance, in a recent study of 913 metropolitan
counties in the U.S., Hamidi et al. [18] found that metropolitan size is more important than density
in influencing the spread of the COVID-19 pandemic in the U.S., based on county-based COVID-19
infection and mortality rates. But this finding is contrary to the results we obtained using much smaller
areal units on the COVID-19 pandemic in Hong Kong; urban density seems to be an important factor
affecting the incidence rate and transmission risk of COVID-19. An important methodological issue
ignored in Hamidi et al. [18] is that whether density matters may depend on the spatial scale of the
analytical units or geographic areas (e.g., counties, census tracts, or census block groups) used in the
analysis. This is the well-known modifiable areal unit problem (MAUP), which means that research
findings may vary due to the use of different spatial scales or zonal schemes of the geographic areas for
deriving the area-based variables (e.g., urban density and infection rates).

Further, studies have found that the coronavirus can survive on various specific environmental
surfaces for a long time outside of its host organism [19]. For instance, Casanova et al. [20] observed
that the coronavirus can remain infectious in water and sewage for days to weeks. In 2003, a clustered
outbreak of SARS-CoV happened in a high-rise residential building in Hong Kong through the faulty
and contaminated sewage system of the building [21]. Van et al. [22] reported that the SARS-CoV-2
virus can remain in aerosols after 3 hours and on plastic and stainless-steel surfaces after 72 hours.
The various built-environment surfaces on which the coronavirus can survive are distributed among
various venues (e.g., pubs and restaurants) across urban spaces, and infected individuals may leave the
virus on certain surfaces (e.g., door handles, elevator buttons, and tableware) in the venues they visited
or stayed (e.g., restaurants or hotels). Hence, many built-environment features that allow people to
carry out their daily activities may become potential sources of infection transmission [23,24].

Many studies have investigated the relationship between the built environment, human behavior,
and health [25–28]. For instance, researchers have observed that neighborhoods with healthy
and diverse food environments can reduce the incidence of obesity [29,30]. Dense green spaces,
lower building height, and a good sky view may encourage people to undertake more outdoor
activities (e.g., running, walking, cycling, picnicking, and hiking) and may lead to better health [31,32].
People’s immunity may improve as a result of more physical activities and exposures to green spaces,
which in turn may reduce stress, obesity, and vulnerability to infectious disease [33,34]. These findings
are relevant to studies on COVID-19 risk because people with poor health are more vulnerable and
more easily infected, which often manifest in certain patterns of comorbidities (e.g., people with chronic
diseases like diabetes and hypertension are far more likely to die from COVID-19). On the other hand,
studies have found that people tend to visit areas with high accessibility and high-density commercial
areas for social activities with their friends (e.g., drinking in bars, watching movies, and dining in
restaurants) to reduce their stress [35,36]. Further, areas with high-density transport facilities and
diverse land-use types may encourage people to conduct more short-distance travel activities due to
the convenience of activity opportunities [37].

On the whole, these studies highlight that the spatial distribution of built-environment features
influences the geographic patterns of not only human contacts and social interactions but also people’s
health and immunity (by increasing certain health-promoting activities, which in turn may modify
people’s COVID-19 risk). This suggests that the risk of contracting COVID-19 may be reduced by
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modifying risky human behaviors through modifying their interaction patterns (e.g., stay-at-home
orders) and certain features of the built environment [38]. For instance, the nodal accessibility of an
area, which represents how well the area is connected with other areas via the transport network, can be
dynamically modified (e.g., travel restrictions) to help control the spread of a pandemic [39,40]. In the
long run, improving urban designs and restructuring urban spaces (e.g., including more green spaces
in high-density areas) may modify pedestrian flows and the concentrations of activities in certain areas,
which may help mitigate the spread of future pandemics [41]. Hence, the geographic patterns of human
behaviors and interactions can be modified using built-environment-related non-pharmaceutical
intervention measures to control the spread of COVID-19 [42]. It is thus important to first understand
the transmission dynamics of COVID-19 by examining the relationships among built-environment
features and COVID-19 risk.

3. Data and Methods

3.1. Study Area and Data

As the study area of this research, Hong Kong is a special administrative region of China in
the eastern Pearl River Delta (Figure 1). It is one of the most densely populated cities in the world.
It has an estimated population of about 7.4 million (by the end of 2019) of various nationalities in a
1104 km2 territory. This study seeks to shed light on the relationships between COVID-19 risk and
built-environment features that may differ from other previous studies or other study areas [43,44].
It examines the spatially heterogeneous influences of various built-environment features on COVID-19
transmission risk in Hong Kong.
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Figure 1. Study area and the residential spatial distribution of the confirmed cases (TPU, Hong Kong
Tertiary Planning Unit).

The study uses the COVID-19 data provided by the Hong Kong Department of Health that are
freely available via the government’s open-data website (https://data.gov.hk). These data provide
the following information about the COVID-19 cases in Hong Kong: the number of confirmed cases,
a brief history and some demographic data for each case, and the countries, buildings, or venues
visited by the cases during the incubation period for both imported and local cases. The confirmed
cases are classified into two groups according to the geographic origin of infection: (1) imported
cases (individuals who were infected in a foreign country or city) and (2) local cases, which include
cases with clearly local sources (e.g., infected by a family member or a colleague at work), and cases
involving infection by local or imported cases or by possible close contact with local or imported cases
(see Figure 1). The Hong Kong Government started releasing the COVID-19 data from 27 January 2020,

https://data.gov.hk
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and the data have been updated daily after that. Furthermore, the first wave (i.e., most of the cases
are imported cases) and the second wave (i.e., most of the cases are local cases) of the pandemic in
Hong Kong had been under control by 14 April 2020 (i.e., no more local cases were found for several
weeks after 14 April 2020). Hence, our analysis uses the data between 27 January 2020, and 14 April
2020 (which demarcate a period with two clear and complete waves of the pandemic) and is based on
the 291 Tertiary Planning Units (TPUs) of Hong Kong and the specific buildings or venues visited by
the confirmed cases (note that Hong Kong is divided into 291 TPUs for the purpose of town planning
and census).

Using the building location information in the COVID-19 data, we first aggregate the case locations
into the TPUs. Data on the relevant built-environment features of Hong Kong are then assembled
from the same government open-data website (https://data.gov.hk) provided by various government
departments (e.g., the Planning Department and the Transport Department). These data cover land use,
population, building footprints, the multimodal transportation network, green spaces, transport facility
density, and other features. The land-use dataset was compiled by the Planning Department in 2018
using multiple data sources (e.g., satellite images, in-house survey data, and other relevant information
from various government departments), which is a 10 × 10 m raster dataset with 27 land-use types.
Figure 2 shows an example of the data that includes various types of land use. The 2020 estimated
population distribution was released by the Working Group on Population Distribution Projections
(WGPD), which adopted the latest Census and Statistics Department’s population projections released
in September 2017 as the control. The building polygons are available as a 3D spatial dataset with
building geometry and height. The multimodal transportation network dataset (as of 9 March 2020)
includes data on the public transit routes and the location of public transit stations and stops (i.e.,
buses, the Mass Transit Railway, and ferries). Further, a sky-view factor (SVF) distribution dataset
generated in a previous study is obtained from the authors [45]. This SVF dataset is a 10 × 10 m raster
dataset retrieved from airborne LiDAR data. The SVF is the ratio of the visible sky with obstructions to
that without obstruction, which ranges from zero to one to indicate a totally obstructed sky and open
sky [46]. It has been found that the SVF is influenced by building height and density, which may in
turn influence the health risk of an urban area [47]. Figure 3 shows the building polygons with height
information and the spatial distribution of the sky-view factor.
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3.2. Assessing COVID-19 Risk

We use two different measures to assess the COVID-19 risk in Hong Kong. The first measure
is the incidence rate or prevalence (R1: case density), which is the number of confirmed cases per
1000 people in each of the 291 Tertiary Planning Units (TPUs) over a specified time period. Note that
only “local” confirmed cases are included to calculate the incidence rate in this study because imported
cases are the result of the risk factors in their source areas, not the built-environment risk factors of
Hong Kong. The second measure is R2 (venue density), which is the number of venues or buildings
visited by the confirmed cases in each TPU. As mentioned earlier, the coronavirus can survive on
various built-environment surfaces, and certain built-environment features tend to attract more human
activities and interactions and thus are more likely to become sources of COVID-19 transmission.
Hence, the second measure COVID-19 risk (R2) is computed based on the number of places and venues
visited by all confirmed cases (i.e., buildings or places visited by confirmed cases in the last 14 days).
Note that both “local” and “imported” confirmed cases are included when calculating R2 because the
measure identifies the high-risk places or venues (which have been visited by confirmed cases and as a
result, other people who visited these places have a higher risk of contracting COVID-19). The formula
for R2 is as follows:

R2s =
∑
i∈Ts

wi (1)

where R2s is the venue density of TPU Ts, and wi is the number of buildings or places in TPU Ts

that have been visited by confirmed cases. TPUs with higher values of R1 and R2 have higher
COVID-19 risk (i.e., their built-environment features and human activity patterns are more conducive
to COVID-19 transmission).

3.3. Deriving the Built-Environment Features

As shown in Table 1, nine built-environment features are selected as the independent variables
in our analysis: nodal accessibility (NA), population density (PD), private residential density (PR),
commercial density (CD), green space density (GSD), building height (BH), transport facility density (TF),
land-use diversity (LUD), and sky view (SV). They are computed for each of the 291 TUPs of Hong Kong
based on the land-use data, population census data, building polygon data, multimodal transportation
network data, and the SVF dataset described earlier. These nine built-environment features are
described as follows.

The nodal accessibility of a TPU is derived based on the multimodal transport stations in each
TPU. First, each public transit station (i.e., a metro, bus, or ferry station) is regarded as a node,
where a link connects node n and m according to the route network. A specific recommendation from
Alexander et al. [48] is that the distance between two stations for a transfer trip should not exceed
183 m (e.g., Lee et al. [49] connected bus stops for internode transfers within a distance of shorter
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than 120 m in Seoul). Hence, we add a transfer link that connects nearby nodes n and m of different
transport modes if the distance between these two stations is not more than 100 m. Second, we create a
connectivity matrix C, where Cmn presents all the links between nodes n and m (i.e., Cmn = 1 if node n
and m are connected or 0 if node n and m are not connected). Note that there may be l shortest paths
between nodes n and m. Assume that a path connects li stations via k− 1 nodes with p modal transfers,
then the connectivity between nodes n and m is estimated as follows:

C(k)
mn =

∑kmax

k=1
Sk

∑
l1,l2,l3...lk−1

Cml1Cl1l2Cl2l3...Clk−1ntp (2)

where t (0 < t < 1) is the scalar measure of the ineffectiveness of transfer, and S (0 < S < 1) represents the
scalar of the distance-decay effect. In this study, t is 0.7 and S is 0.8 based on the results of a previous
study [50]. After estimating the connectivity between each pair of nodes, the nodal accessibility of
node m is obtained by summing the total connectivity Cmn over all n:

Cm =
∑

n
Cmn (3)

Finally, the nodal accessibility of a TPU is derived by summing up the nodal accessibility of all the
public transit stations in that TPU.

Table 1. Explanations of the abbreviations for the built-environment variables.

Name Abbreviations Dependent Variables

Nodal accessibility NA R2
Population density PD R1 and R2
Private residential PR R1 and R2

Commercial density CD R2
Green space density GSD R2

Building height BH R1
Transport facility density TF R1

Land-use diversity LUD R1
Sky view SV R2

Population density (PD) is the number of people per kilometer in each TPU. Private residential
density (PR), commercial density (CD), transport facility density (TF), and green space density (GSD)
are computed based on the area of each of these land-use types in each TPU divided by the area of
that TPU. Note that green space density (GSD) in each TPU is estimated based on the sum of the area
of grassland, shrubland, and woodland, which cover about 65.4% of the total land-use area of Hong
Kong. This area is calculated based on the land-use data mentioned earlier, which classify a cell’s
land use as green space (i.e., grass, woodland, and shrubland) if the cell is covered dominantly by
vegetation. Land-use diversity (LUD) is estimated using the following widely used entropy model:

LUD = −
n∑

i=1

pi ∗ ln pi

n
(4)

where pi represents the proportion of the ith land-use type, and n is the total number of land-use types.
Building height (BH) is estimated using the building polygon data and digital topographic information.
In this analysis, building height refers to the average building height for each TPU. Sky view (SV)
refers to the average SVF per km2 in each TPU, which is the total SVF in each TPU divided by the area
of that TPU.
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3.4. Exploring the Relationship between Built-Environment Features and COVID-19 Risk

Given that the risk of COVID-19 (i.e., R1 and R2) mentioned in Section 3.2 are count data and
that the Poisson regression model is a suitable technique for modeling count data [51], we thus use
both global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR) to
investigate the relationship between built-environment features and COVID-19 risk. In this analysis,
R1 and R2 are the dependent variables, and the independent variables are the nine built-environment
features. The GPR and GWPR models are estimated based on the TPUs as the units of analysis.
The GPR model is formulated as follows:

ln(Ri) = β0 + β1NA + β2PD + β3PR + β4CD + β5GSD + β6BH(or SV) + ε (5)

where Ri represents the COVID-19 risk of TUP i, βi denotes the regression coefficients for the intercept
term and the independent variables, and ε denotes the random error. The GWPR model was developed
to take into account the issues that the relationships between variables may vary over space, which is
referred to as spatial nonstationarity [52], and to reduce estimation error due to spatial autocorrelation.
The GWPR model is a localized model that captures the spatial variations in the relationships between
variables by fitting parameters that vary over space, weighting relevant neighboring observations
(which are TPUs in this study) by using a spatial weight matrix. In this study, the GWPR model is
formulated as follows:

ln(Ri) = β0(ui) + β1(ui)NA + β2(ui)PD + β3(ui)PR + β4(ui)CD + β5(ui)GSD
+β6(ui)BH(or SV) + ε

(6)

where i represents the ith TPU, Ri stands for the COVID-19 risk of the ith TPU, βi is the estimated
regression coefficients of the ith TPU, and εi is the error term for TPUi. Note that β j is now a function
of location ui = (uxi, uyi) , which denotes the two-dimensional coordinates of the ith point (the
centroid of the ith TPU) in space. Thus, spatial nonstationarity is addressed in the GWPR modeling
framework. In this modeling effort, spatially adaptive bandwidth values are obtained by using the
method that minimizes the Akaike information criterion (AIC) of regression models. The variance
inflation factor (VIF) is used to test the multicollinearity of the variables. The Akaike information
criterion (AIC) approach is used to evaluate the tradeoff between the goodness of fit and the simplicity
of the models (i.e., to assess the risk of overfitting or underfitting).

4. Results

4.1. Assessing the COVID-19 Risk in Each TPU

In this subsection, we explore the characteristics of COVID-19 risk in Hong Kong based on the
two measures described in Section 3.2. Recall that the first measure is the incidence rate or prevalence
(R1: case density), which is the number of confirmed cases per 1000 people in each of the 291 Tertiary
Planning Units (TPUs) over a specified time period. The second measure is R2 (venue density), which is
the number of venues or buildings visited by the confirmed cases in each TPU.

Figure 4 presents the frequency distribution of COVID-19 risk at the TPU level. Both the frequency
distributions of R1 and R2 among the 291 TPUs in Hong Kong declines dramatically, indicating that
COVID-19 risk is concentrated in the top few TPUs. In order to understand the decay effects in the
frequency distributions of R1 and R2, we fit two probability distribution curves using the exponential
function p(x) ∼ ebx and the power-law function p(x) ∼ xb to the distributions. The results indicate
that both R1 and R2 have a better fit to the exponential function (i.e., R2 = 0.97 for R1 and R2 = 0.98
for R2) than to the power-law function (i.e., R2 = 0.88 for R1 and R2 = 0.91 for R2). Further, the rate of
decay for R1 is higher than that for R2, reflecting that the number of TPUs with high R1 is smaller
than R2.
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Figure 4. The frequency distribution of COVID-19 risk in Hong Kong: (a) The frequency distribution
of R1; (b) The frequency distribution of R2.

Figure 5 shows the spatial distribution of COVID-19 risk in Hong Kong at the TPU level.
As indicated by the results of the frequency distribution analysis of R1 and R2, areas with a high
COVID-19 risk are concentrated in a few TPUs in Hong Kong. With respect to the spatial distribution
of R1 (Figure 5a), there are three areas (marked as A, B, and C) with high R1. Specifically, Area A is
the downtown area with a high density of population and commercial buildings. Areas B and C are
suburban areas with low population density and large amounts of public spaces (e.g., country parks
and beaches). Figure 5b displays the spatial distribution of R2, where six areas (marked as A, B, C,
D, E, and F) with high R2 are identified. Specifically, Areas A and B have high-density commercial
and residential buildings, while Areas C, D, E, and F are suburban areas with large amounts of open
space (e.g., country parks and beaches). These results suggest that both the downtown and certain
suburban areas in the city are high COVID-19 risk areas. Moreover, the incidence rate indicator
(R1) may underestimate the COVID-19 risk in some suburban areas with a considerable amount of
public spaces.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 19 

 

(a) (b)  
Figure 4. The frequency distribution of COVID-19 risk in Hong Kong: (a) The frequency distribution 

of R1; (b) The frequency distribution of R2. 

Figure 5 shows the spatial distribution of COVID-19 risk in Hong Kong at the TPU level. As 
indicated by the results of the frequency distribution analysis of R1 and R2, areas with a high COVID-
19 risk are concentrated in a few TPUs in Hong Kong. With respect to the spatial distribution of R1 
(Figure 5a), there are three areas (marked as A, B, and C) with high R1. Specifically, Area A is the 
downtown area with a high density of population and commercial buildings. Areas B and C are 
suburban areas with low population density and large amounts of public spaces (e.g., country parks 
and beaches). Figure 5b displays the spatial distribution of R2, where six areas (marked as A, B, C, D, 
E, and F) with high R2 are identified. Specifically, Areas A and B have high-density commercial and 
residential buildings, while Areas C, D, E, and F are suburban areas with large amounts of open space 
(e.g., country parks and beaches). These results suggest that both the downtown and certain suburban 
areas in the city are high COVID-19 risk areas. Moreover, the incidence rate indicator (R1) may 
underestimate the COVID-19 risk in some suburban areas with a considerable amount of public 
spaces. 

 
(a)  

 
(b)  

 

Figure 5. Spatial distribution of COVID-19 risk in Hong Kong: (a) Spatial distribution of R1; (b) 
Spatial distribution of R2. 

4.2. The Relationship between Built-Environment Features and COVID-19 Risk: Results of the GPR 
Analysis 

In this subsection, we explore the relationships between selected built-environment variables 
and COVID-19 risk in the study area. The nine built-environment variables described in Section 3.3 
are used as the independent variables in the following global Poisson regression (GPR) and 

A

B

C

A

B

D

E

F
C

Figure 5. Spatial distribution of COVID-19 risk in Hong Kong: (a) Spatial distribution of R1; (b) Spatial
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4.2. The Relationship between Built-Environment Features and COVID-19 Risk: Results of the GPR Analysis

In this subsection, we explore the relationships between selected built-environment variables and
COVID-19 risk in the study area. The nine built-environment variables described in Section 3.3 are
used as the independent variables in the following global Poisson regression (GPR) and geographically
weighted Poisson regression (GWPR) analysis, and R1 and R2 are the dependent variables in separate
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models (see Table 2). Note that population density and building height are rescaled and standardized
to a range from 0 to 1 in the GPR and GWPR models.

Table 2. Descriptive statistics of the independent variables and dependent variables.

Abbreviations Mean Standard Deviation

Independent variables

Nodal accessibility NA 0.20 0.23
Population density PD 30,042.00 40,741.63
Private residential PR 0.08 0.11

Commercial density CD 0.03 0.06
Green space density GSD 0.42 0.34

Building height BH 22.71 16.04
Transport facility density TF 0.13 0.13

Land-use diversity LUD 0.61 0.18
Sky view SV 0.78 0.14

Dependent variables

Risk 1 R1 0.18 0.23
Risk 2 R2 11.97 13.21

Two GPR models with R1 or R2 as the dependent variable are estimated to examine the global
relationships between the built-environment variables and COVID-19 risk, respectively, in Hong
Kong. The regression results are presented in Table 3. As the results indicate, the values of the
variance inflation factor (VIF) of the independent variable are less than 10, indicating that there is no
multicollinearity among the variables. Transport facility density, population density, private residential
density, land-use diversity, and building height are significantly associated with R1. Meanwhile,
nodal accessibility, population density, private residential density, commercial density, green space
density, and sky view are significantly associated with R2. The ratios of residual deviance to degrees of
freedom are 1.01 and 1.03 for R1 and R2, suggesting that there is no significant overdispersion in the
GPR models. The adjusted percent deviance explained is 0.44 for R1 and 0.58 for R2, which means that
the selected built-environment variables can explain 44% and 58% of the variance in R1 and R2.

Further, the regression coefficients indicate that private residential density has a positive association
with both R1 and R2, which means that areas with higher private residential density tend to have
a higher COVID-19 risk. Population density, however, has a negative association with both R1 and
R2. Transport facility density and building height have positive associations with R1, while land-use
diversity has a negative association with R1. Green space density has a positive association with R2,
which means that higher green space density tends to increase the visiting frequency of the confirmed
cases. The reason is that green space is likely to attract people to undertake various outdoor activities
and these people include some of the confirmed cases. Moreover, sky view has a negative association
with R2, which suggests that areas with better sky view have lower risk assessed with R2. The result
means that a higher possibility of seeing the sky tends to reduce the risk of COVID-19.
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Table 3. Global Poisson regression (GPR) results.

GPR Model (R1)

Variable Abbreviations Coef. S.E. p-value VIF

Transport facilities density TF 2.50 0.54 0.000 *** 3.84
Population density PD −4.00 0.48 0.000 *** 2.35
Private residential PR 3.21 0.74 0.000 *** 2.76
Land-use diversity LUD −1.13 0.19 0.000 *** 1.78
Building height BH 0.90 0.37 0.015 ** 4.68
Residual deviance = 97
Degrees of freedom = 96
AIC = 331.21
Adjusted percent deviance explained = 0.44

GPR Model (R2)

Variable Abbreviations Coef. S.E. p-value VIF

Nodal accessibility NA 1.78 0.11 0.000 *** 2.48
Population density PD −1.59 0.17 0.000 *** 3.32
Private residential PR 2.58 0.28 0.000 *** 2.82
Commercial density CD 1.98 0.40 0.000 *** 1.27
Green space density GSD 0.95 0.15 0.000 *** 2.03
Sky view SV −4.82 0.42 0.000 *** 4.17
Residual deviance = 187
Degrees of freedom = 181
AIC = 1513.14
Adjusted percent deviance explained = 0.58

* Represents statistically significant at the p < 0.1 level. ** Represents statistically significant at the p < 0.05 level.
*** Represents statistically significant at the p < 0.01 level.

4.3. The Relationship between Built-Environment Features and COVID-19 Risk: Results of the
GWPR Analysis

In this subsection, we examine the relationship between the built-environment variables and
COVID-19 risk based on the results of the GWPR models. The values of the bandwidth estimated by the
models are 66 and 55 for R1 and R2, respectively. Table 4 shows the results of the relative performance
of the GPR and GWPR models. As the table indicates, the adjusted percent deviance explained by the
GWPR models (0.63 for R1 and 0.74 for R2) are higher than those of the GPR models (i.e., 0.44 for R1
and 0.58 for R2). Moreover, the Akaike information criterion (AIC) of the GWPR models (i.e., 149.42 for
R1 and 512.93 for R2) are remarkably lower than those of the GPR models (429.71 for R1 and 1513.14
for R2). The improvement in adjusted percent deviance explained and the reduction in the AIC values
indicate that the GWPR models have better explanatory power than the GPR models for examining
the influence of the built-environment features on COVID-19 risk in Hong Kong.

Table 4. Comparison of the global Poisson regression (GPR) and geographically weighted Poisson
regression (GWPR) models.

Goodness of Fit

Model AIC Percent Deviance
Explained

Adjusted Percent
Deviance Explained

R1

GPR 429.71 0.46 0.44
GWPR 149.42 0.71 0.63

R2

GPR 1513.14 0.59 0.58
GWPR 512.93 0.81 0.74
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Figure 6 presents the spatial distributions of local percent deviance explained by the GPWR
models for R1 and R2. The results show that the two GPWR models present similar spatial distributions
of local percent deviance explained in the north and western parts of the study area. Meanwhile, it can
be observed that the GPWR models have lower explanatory power for R1 and R2 in the TPUs of and
around Kwun Tong (marked as A in Figure 6a) and Mong Kok (marked as A in Figure 6b), respectively.
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(a) Local percent deviance explained R1; (b) Local percent deviance explained R2.

Figure 7 shows the spatial distributions of the standard residuals from the two GPWR models for
R1 and R2; 95% and 96% of the standard residuals have values in the range of (−2.58, 2.58), respectively.
We further examine the spatial autocorrelation of the standard residuals and obtain the global Moran’s I
for the standard residuals of the GPWR models, which are −0.03 and −0.02, respectively, revealing that
the distributions of the standard residuals from the GPWR models are random at the 5% level of
significance. Moreover, the low values of the global Moran’s I also indicate that there is no systematic
error in the models.

The spatial distribution of the estimated coefficients of the built-environment variables is presented
in Figures 8 and 9. The blue color signifies that the corresponding built-environment variable has a
negative influence on COVID-19 risk, while the red color indicates a positive influence. The GWPR
models reveal the spatially varying influence of each built-environment variable on COVID-19 risk.
In Figure 8, it can be observed that the associations between transport facility density, population density,
private residential density, land-use diversity, and building height, and COVID-19 risk fluctuate from
negative to positive for R1. For variables such as transport facility density, private residential density,
and building height, the proportions of TPUs with positive and negative coefficients are comparable to
each other, which implies a complicated relationship between these variables and R1. For instance,
the positive values for transport facility density, private residential density, and building height are
mainly distributed in the downtown area and Tung Chung, while the negative values are found largely
in the peripheral suburban areas (Figure 8a,c,e). Regarding population density, most TPUs in Hong
Kong exhibit negative associations with R1, while the TPUs with positive associations only cover the
village clusters in Ma On Shan (Figure 8b). Similarly, land-use diversity has a negative relationship
with R1 for most TPUs (Figure 8d).
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Figure 9a indicates that nodal accessibility has a positive association with R2 for the entire study
area, and higher associations are located in Hong Kong Island, Lamma Island, and Tin Shui Wai.
Private residential density has a positive association with R2 for most TPUs (Figure 9c). Further,
the associations between population density (Figure 9b), commercial density (see Figure 9d), green space
density (Figure 9e) and sky view (Figure 9f) and R2 fluctuate from negative to positive. The proportions
of TPUs with positive and negative coefficients are comparable to each other, which indicates a
complex relationship between these variables and R2. For example, the positive values for green space
(which includes hills, mountains, and country parks for hiking or picnicking) are mainly distributed in
suburban areas, while the negative values are found in areas such as Central, Tsim Sha Tsui, and Wan
Chai, where the density of pubs, restaurants, and shopping malls is high. Sky view and population
density have similar patterns of values distribution: positive in the western part of Hong Kong and
negative in the eastern part of Hong Kong.

In summary, the associations between the selected built-environment features and COVID-19
risk vary spatially across the study area. The GPR models provide the global relationship between
the built-environment features and COVID-19 risk for the TPUs, and the GWPR models reveal some
distinctive and complex differences among the TPUs by considering spatial autocorrelation and spatial
nonstationarity. The model results shed light on the relationships between built-environment variables
and COVID-19 risk at a more microscopic scale.
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5. Discussion and Conclusions

Understanding the relationship between the built environment and COVID-19 risk could support
health authorities to respond to the pandemic. In this paper, we utilized GPR and GWPR models to
investigate the relationship between built-environment features and COVID-19 risk in Hong Kong at
the TPU level. The risk of COVID-19 is assessed using the incidence rate (R1) and venue density (R2).
The main findings of the study are summarized as follows.

First, both R1 and R2 have a remarkable decay effect over space. It implies that there are a few areas
with a high COVID-19 risk. Similar results have been observed in the studies by Desjardins et al. [53]
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and Gatto et al. [54] in the U.S. and Italy in the early stage of the pandemic. Further, the rate of decay
of R1 is higher than that of R2, reflecting that the number of TPUs with a high R1 is smaller than the
number of TPUs with a high R2. This implies that the incidence rate indicator may underestimate
the COVID-19 risk in some suburban areas with a large area of public space. Second, the GPR model
results reveal a close relationship between selected built-environmental variables and COVID-19
risk. Note that Nguyen et al. [55] reported similar results by using large Google Street View image
datasets on American neighborhoods (i.e., zip code area). They found that land-use diversity and
higher accessibility have positive associations with higher COVID-19 cases without considering
spatial nonstationarity. Meanwhile, our results show a negative association between population
density and the risk of COVID-19. The result differs from those of the studies of Amram et al. [56]
and Xiong et al. [57] in the U.S. and China (i.e., population density has a positive or nonsignificant
association with COVID-19 risk). These conflicting results raise several hypotheses that are worth
discussing. First of all, as we mentioned in Section 2, using different spatial scales of the analytical units
or geographic areas (e.g., counties, census tracts, or census block groups) in the analysis may lead to
different results (i.e., the modifiable areal unit problem). Then, several other variables could potentially
prevent disease transmission over the neighborhoods in a dense and developed city. For instance,
dense areas in a developed city may have better access to health care facilities and better adherence
to social distancing by residents (e.g., more than 97.5% of the people in Hong Kong wore a mask
when they went out and more than 85% of them avoided crowded places during February and March
2020 [58]).

Taking into account spatial nonstationarity, our results present that the GWPR models perform
better than GPR models based on the value of adjusted percent deviance explained and AIC. The low
global Moran’s I values (R1: −0.03; R2: −0.02) in the residual maps indicate that there is no systematic
error in the models. The results show that the relationships between selected built-environmental
variables and COVID-19 risk (i.e., R1 and R2) vary spatially across the study area. For built-environment
features such as transport facility density, private residential density, building height, population density,
commercial density, green space density, and sky view, the relative proportions of TPUs with positive
and negative coefficients indicate a complicated relationship between selected built-environment
variables and COVID-19 risk.

Based on the results of the two sets of regression models, we observed the complex relationships
between selected built-environment variables and COVID-19 risk. The results also suggest other
interesting observations that are worth discussing. For instance, most of the confirmed cases who lived
in Tung Chung were actually infected in their workplaces (i.e., Central). It implies that the strong spatial
interactions between suburban areas (e.g., Tung Chung) and the downtown area (e.g., Central) may
result in similar patterns in COVID-19 risk (e.g., transport facility density for R1 and nodal accessibility
for R2). Moreover, green space density and sky view in the downtown area (e.g., Central and Tsim
Sha Tsui) and some suburban areas (e.g., Tung Chung and Tuen Mun) have opposite effects on
COVID-19 risk.

Our findings have several important implications for non-pharmaceutical intervention measures
for the government during the pandemic. First, the results of the frequency and spatial distributions
of COVID-19 risk indicate that a few TPUs have a higher COVID-19 risk. Health authorities should
thus focus on these areas for follow-up interventions in order to control the COVID-19 pandemic.
Second, the results suggest that the incidence rate may underestimate the risk of COVID-19 in some
suburban areas with large areas of public recreational space (e.g., parks). On one hand, areas with
dense transport facilities, higher nodal accessibility, more green space, and a good sky view tend to
attract more visitors. On the other hand, people who live in suburban areas may have to go to work
in the downtown area, which has a higher risk. Moreover, the GPR and GWPR models indicate that
dynamic interventions of COVID-19 transmission risk should be considered during the pandemic.
For instance, restricting people from going to the country parks and certain residential areas in the
suburb or limiting group activities in these areas may help control the pandemic.
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In this study, we found that the spatial patterns of built-environment features influence the
spatial patterns of COVID-19 risk across the study area. The findings suggest that COVID-19 can be
explained by pertinent built-environment features. The methods used in the study can be applied to
other cities in the world to investigate the relationship between the built environment and COVID-19
risk. Comparative studies would be helpful in revealing the effects of different human behaviors
and intervention measures in different sociocultural contexts. This is a fruitful possible direction for
future research.

Meanwhile, there are several limitations in this study. First, the study used COVID-19 data
from 27 January to 14 April 2020, during which the Hong Kong Government had implemented
several non-pharmaceutical intervention measures in response to the COVID-19 pandemic. The results
from our regression models thus captured the relationship between built-environment features and
COVID-19 risk under these non-pharmaceutical interventions. It is unclear whether the relationship
between the built environment and COVID-19 risk we identified will also hold under normal times
(i.e., without intervention measures). In the future, we plan to explore this in the post-pandemic
period. Second, this study used the incidence rate and venue density as measures of COVID-19 risk.
Other indicators, such as the decrease in survived coronavirus estimated based on the last visiting time
by confirmed cases, could be considered in the future. As the decay effect of coronavirus survival over
time is related to different environmental surfaces, incorporating this variable into the analysis may
provide more insights into COVID-19 risk and its relationship with specific types of built environments.
Third, this study did not consider the temporal dynamics of the spatial interaction among TPUs
(e.g., the spatial interactions among TPUs may change between different times of a day or before and
after the implementation of intervention policies), which may lead to different associations between
the built environment and COVID-19 risk.
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