Opportunities and Challenges of Geospatial Analysis for Promoting Urban Livability in the Era of Big Data and Machine Learning
Abstract
:1. Introduction
- RQ1: How can we assure the reliability of results based on social media data and Volunteered Geographic Information (VGI) for urban livability analysis and planning?
- RQ2: How can geospatial analysis aid urban livability assessment and planning that relies on machine learning methods?
- RQ3: How can relevant information be identified in urban big data to facilitate urban livability improvement?
2. Urban Theories and Assessment in the Light of Livability and BIG Data
2.1. Urban Morphology Assessment
2.2. Urban Livability Assessment
2.3. Illustrations of GIS-Based Social Media Data Analysis to Support Urban Planning
2.3.1. Towards Citizen-Contributed Urban Planning Using Twitter Data—Case Study for Planned Large Events
2.3.2. Classifying Parks and Their Visitors in London Based on Twitter Data Analysis
3. Valuable Data Source Types and Methodologies for Analyzing Complex Urban Systems and Their Quality
3.1. User-Generated Data Sources
3.2. Improving Data Quality and Reliability in Urban Analysis by Combining Data from Several Crowd-Sourcing Platforms
3.3. Potential of Machine Learning Algorithms in Geospatial Urban Analysis and Assessment
4. Potential Methodological Problems for Urban Planning and Livability
4.1. Finding the Signal in the Noise
4.2. Distinguishing Information about the City, and Information within the City
- Descriptive information about the city, used to guide actions usually by centralized agents. Examples of descriptive information include maps, measurement datasets, and user survey data.
- Prescriptive information in the form of rules that prescribe actions. They generally produce static configurations, e.g., “all cars stop at the line when a light is red”, and so on. Examples include zoning codes, traffic laws, and other regulations.
- Generative information. This is information within the city, operating iteratively between distributed agents and/or their environments (actor-networks). This kind of information is capable of generating emergent structures through self-organization, and more particularly, through the dynamic of stigmergy [116]. Examples include built-up environmental patterns (like the modest pathway changes in Figure 4), pop-up structures, neighborhood-scale cooperative projects, and other ‘bottom-up’ iterative changes by residents.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 1 October 2020).
- United Nations General Assembly. Habitat III New Urban Agenda: Quito Declaration on Sustainable Cities and Human Settlements for All; United Nations General Assembly: Quito, Ecuador, 2016. [Google Scholar]
- Caprotti, F.; Cowley, R.; Datta, A.; Broto, V.C.; Gao, E.; Georgeson, L.; Herrick, C.; Odendaal, N.; Joss, S. The New Urban Agenda: Key opportunities and challenges for policy and practice. Urban Res. Pract. 2017, 10, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, S.; Finnveden, G.; Kratochvil, P.; Sendi, R.; Smagacz-Poziemska, M.; Matos, R.S.; Bylund, J. New Urban Transitions towards Sustainability: Addressing SDG challenges (Research and Implementation Tasks and Topics from the Perspective of the Scientific Advisory Board (SAB) of the Joint Programming Initiative (JPI) Urban Europe). Sustainability 2019, 11, 2242. [Google Scholar] [CrossRef] [Green Version]
- Mehaffy, M.W.; Haas, T.; Elmlund, P. Public Space in the New Urban Agenda: Research into Implementation. Urban Plan. 2019, 4, 134–137. [Google Scholar] [CrossRef]
- Elmlund, P.; Haas, T.; Mehaffy, M.W. Public Space in the New Urban Agenda. The Challenge of Implementation. J. Public Space 2018, 3, 165–170. [Google Scholar] [CrossRef]
- Foth, M.; Choi, J.H.; Satchell, C. Urban informatics. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work—CSCW ’11, Hangzhou, China, 19–23 March 2011. [Google Scholar]
- Kang, W.; Oshan, T.; Wolf, L.J.; Boeing, G.; Frias-Martinez, V.; Gao, S.; Poorthuis, A.; Xu, W. A roundtable discussion: Defining urban data science. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1756–1768. [Google Scholar] [CrossRef]
- Law, T.; Legewie, J. Urban Data Science. In Emerging Trends in the Social and Behavioral Sciences; Wiley: Hoboken, NJ, USA, 2018; pp. 1–12. [Google Scholar]
- Batty, M. Big Data and the City. Built Environ. 2016, 42, 321–337. [Google Scholar] [CrossRef]
- Singleton, A.D.; Spielman, S.; Folch, D. Urban Analytics; Sage: Thousand Oaks, CA, USA, 2017; ISBN 9781473958630. [Google Scholar]
- Resch, B.; Szell, M. Human-Centric Data Science for Urban Studies. ISPRS Int. J. Geo-Inf. 2019, 8, 584. [Google Scholar] [CrossRef] [Green Version]
- Balduini, M.; Brambilla, M.; Della Valle, E.; Marazzi, C.; Arabghalizi, T.; Rahdari, B.; Vescovi, M. Models and Practices in Urban Data Science at Scale. Big Data Res. 2019, 17, 66–84. [Google Scholar] [CrossRef] [Green Version]
- Nosratabadi, S.; Mosavi, A.; Keivani, R.; Ardabili, S.F.; Aram, F. State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability. In Green Technology for Smart City and Society; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 228–238. [Google Scholar]
- Mumford, L. What’s a City? Archit. Rec. 1937, 37, 235–264. [Google Scholar]
- Park, R.E.; Burgess, E.W. The City: Suggestions for Investigation of Human Behavior in the Urban Environment; Chicago Press: Chicago, IL, USA, 1925. [Google Scholar]
- Harvey, D. Justice, Nature and the Geography of Difference; Wiley: Hoboken, NJ, USA, 1997; ISBN 9781557866813. [Google Scholar]
- Sassen, S. The Global City: New York, London, Tokyo; Book Collections on Project MUSE; Princeton University Press: Princeton, NJ, USA, 2001; ISBN 9780691070636. [Google Scholar]
- Howard, E. Garden Cities of Tomorrow; Swan Sonnenschein & Co.: London, UK, 1902; ISBN 0571061893 9780571061891. [Google Scholar]
- le Corbusier; Etchells, F. The City of To-Morrow and Its Planning; Rodker, J., Ed.; Courier Corporation: Chelmsford, MA, USA, 1929. [Google Scholar]
- Batty, M. The New Science of Cities; MIT Press: Cambridge, MA, USA, 2013; ISBN 9780262019521.22. [Google Scholar]
- Batty, M. Big data, smart cities and city planning. Dialog Hum. Geogr. 2013, 3, 274–279. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Bakillah, M.; Hagenauer, J.; Zipf, A. Toward mapping land-use patterns from volunteered geographic information. Int. J. Geogr. Inf. Sci. 2013, 27, 2264–2278. [Google Scholar] [CrossRef]
- Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching Volunteered Geographic Information: Spatial Data, Geographic Research, and New Social Practice. Ann. Assoc. Am. Geogr. 2012, 102, 571–590. [Google Scholar] [CrossRef]
- Resch, B.; Summa, A.; Zeile, P.; Strube, M. Citizen-Centric Urban Planning through Extracting Emotion Information from Twitter in an Interdisciplinary Space-Time-Linguistics Algorithm. Urban Plan. 2016, 1, 114–127. [Google Scholar] [CrossRef]
- Crooks, A.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Stefanidis, A.; Smith, D.; Karagiorgou, S.; Efentakis, A.; Lamprianidis, G. Crowdsourcing urban form and function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [Google Scholar] [CrossRef]
- Netzband, M.; Stefanov, W.L.; Redman, C. (Eds.) Applied Remote Sensing for Urban Planning, Governance and Sustainability; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Thakuriah, P.; Tilahun, N.; Zellner, M. Introduction to Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 1–9. [Google Scholar]
- Wu, L.; Zhi, Y.; Sui, Z.; Liu, Y. Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data. PLoS ONE 2014, 9, e97010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagl, G.; Resch, B.; Hawelka, B.; Beinat, E. From Social Sensor Data to Collective Human Behaviour Patterns—Analysing and Visualising Spatio-Temporal Dynamics in Urban Environments; Jekel, T., Car, A., Strobl, J., Griesebner, G., Eds.; GI_Forum 2012 Geovizualisation; Herbert Wichmann Verlag, VDE VERLAG GMBH: Berlin/Offenbach, Germany, 2012; pp. 54–63. ISBN 978-3-87907-521-8. [Google Scholar]
- Jacobs-Crisioni, C.; Rietveld, P.; Koomen, E.; Tranos, E. Evaluating the Impact of Land-Use Density and Mix on Spatiotemporal Urban Activity Patterns: An Exploratory Study Using Mobile Phone Data. Environ. Plan. A Econ. Space 2014, 46, 2769–2785. [Google Scholar] [CrossRef]
- Calabrese, F.; Colonna, M.; Lovisolo, P.; Parata, D.; Ratti, C. Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE Trans. Intell. Transp. Syst. 2010, 12, 141–151. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; The MIT Press: Cambridge, MA, USA, 1960; ISBN 978-0-262-62001-7. [Google Scholar]
- Boeing, G. Spatial information and the legibility of urban form: Big data in urban morphology. Int. J. Inf. Manag. 2019, 102013. [Google Scholar] [CrossRef] [Green Version]
- Giap, T.K.; Thye, W.W.; Aw, G. A new approach to measuring the liveability of cities: The Global Liveable Cities Index. World Rev. Sci. Technol. Sustain. Dev. 2014, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.G.; Woo, W.T.; Tan, K.Y.; Low, L.; Aw, G.E.L. Ranking the Liveability of the World’s Major Cities: The Global Liveable Cities Index (GLCI); World Scientific: Singapore, 2012; ISBN 981-4417-32-7. [Google Scholar]
- Newton, P. Liveable and Sustainable? Socio-Technical Challenges for Twenty-First-Century Cities. J. Urban Technol. 2012, 19, 81–102. [Google Scholar] [CrossRef]
- Onnom, W.; Tripathi, N.K.; Nitivattananon, V.; Ninsawat, S. Development of a Liveable City Index (LCI) Using Multi Criteria Geospatial Modelling for Medium Class Cities in Developing Countries. Sustainability 2018, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Ley, A.; Newton, P.; Kallidaikurichi, S.; Yuen, B. Cretaing and Sustaining Liveable Cities. In Developing Living Cities; World Scientific Publisher Co Pte Lt.: Singapore, 2010; pp. 191–229. [Google Scholar]
- Kovacs-Gyori, A.; Cabrera-Barona, P.; Resch, B.; Mehaffy, M.W.; Blaschke, T. Assessing and Representing Livability through the Analysis of Residential Preference. Sustainability 2019, 11, 4934. [Google Scholar] [CrossRef] [Green Version]
- Pigliautile, I.; D’Eramo, S.; Pisello, A.L. Intra-urban microclimate mapping for citizens’ wellbeing: Novel wearable sensing techniques and automatized data-processing. J. Clean. Prod. 2021, 279, 123748. [Google Scholar] [CrossRef]
- Shorten, A.; Smith, J. Mixed methods research: Expanding the evidence base. Evid. Based Nurs. 2017, 20, 74–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaber, J.; Gaber, S.L. Utilizing Mixed-Method Research Designs in Planning: The Case of 14th Street, New York City. J. Plan. Educ. Res. 1997, 17, 95–103. [Google Scholar] [CrossRef]
- Kovacs-Gyori, A.; Ristea, A.; Havas, C.; Resch, B.; Cabrera-Barona, P. #London2012: Towards Citizen-Contributed Urban Planning through Sentiment Analysis of Twitter Data. Urban Plan. 2018, 3, 75–99. [Google Scholar] [CrossRef]
- Condeço-Melhorado, A.; Mohino, I.; Moya-Gómez, B.; García-Palomares, J.C. The Rio Olympic Games: A Look into City Dynamics through the Lens of Twitter Data. Sustainability 2020, 12, 7003. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, M.; He, Q.; Gao, J. Mining Transportation Information from Social Media for Planned and Unplanned Events, Buffalo, NY, USA, 2016. Available online: https://rosap.ntl.bts.gov/view/dot/30838 (accessed on 2 October 2020).
- Lee, R.; Sumiya, K. Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks—LBSN ’10, New York, NY, USA, 2 November 2010; Association for Computing Machinery (ACM): New York, NY, USA, 2010; pp. 1–10. [Google Scholar]
- Li, R.; Lei, K.H.; Khadiwala, R.; Chang, K.C.-C. TEDAS: A Twitter-based Event Detection and Analysis System. In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscatway, NJ, USA, 2012; pp. 1273–1276. [Google Scholar]
- Weng, J.; Yao, Y.; Leonardi, E.; Lee, F. Event Detection in Twitter. Development 2011, 2, 179–182. [Google Scholar] [CrossRef]
- Kovacs-Gyori, A.; Ristea, A.; Kolcsar, R.; Resch, B.; Crivellari, A.; Blaschke, T. Beyond Spatial Proximity—Classifying Parks and Their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data. ISPRS Int. J. Geo-Inf. 2018, 7, 378. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.V. Using Twitter data in urban green space research: A case study and critical evaluation. Appl. Geogr. 2017, 81, 13–20. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.P.; Chapman, L. Using Twitter to investigate seasonal variation in physical activity in urban green space. Geo: Geogr. Environ. 2017, 4, e00041. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.; Chapman, L. The value of Twitter data for determining the emotional responses of people to urban green spaces: A case study and critical evaluation. Urban Stud. 2019, 56, 818–835. [Google Scholar] [CrossRef]
- Krishnamurthy, R.; Smith, K.L.; DeSouza, K.C. Urban Informatics: Critical Data and Technology Considerations. In Springer Geography; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 163–188. [Google Scholar]
- Allam, Z.; Dey, G.; Jone, D.S. Artificial Intelligence (AI) Provided Early Detection of the Coronavirus (COVID-19) in China and Will Influence Future Urban Health Policy Internationally. AI 2020, 1, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Darabi, H.; Choubin, B.; Rahmati, O.; Haghighi, A.T.; Pradhan, B.; Kløve, B. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. J. Hydrol. 2019, 569, 142–154. [Google Scholar] [CrossRef]
- Martí, P.; García-Mayor, C.; Serrano-Estrada, L. Taking the urban tourist activity pulse through digital footprints. Curr. Issues Tour. 2020, 1–20. [Google Scholar] [CrossRef]
- Han, S.Y.; Tsou, M.-H.; Knaap, E.; Rey, S.; Cao, G. How Do Cities Flow in an Emergency? Tracing Human Mobility Patterns during a Natural Disaster with Big Data and Geospatial Data Science. Urban Sci. 2019, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhang, L. Social media WeChat infers the development trend of COVID-19. J. Infect. 2020, 81, e82–e83. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Juhász, L.; Cvetojevic, S. Data Quality of Points of Interest in Selected Mapping and Social Media Platforms. Lect. Notes Geoinforma. Cartography 2017, 293–313. [Google Scholar] [CrossRef]
- Vargas-Muñoz, J.E.; Tuia, D.; Falcão, A.X. Deploying machine learning to assist digital humanitarians: Making image annotation in OpenStreetMap more efficient. Int. J. Geogr. Inf. Sci. 2020, 1–21. [Google Scholar] [CrossRef]
- Yang, K.; Varol, O.; Davis, C.A.; Ferrara, E.; Flammini, A.; Menczer, F. Arming the public with artificial intelligence to counter social bots. Hum. Behav. Emerg. Technol. 2019, 1, 48–61. [Google Scholar] [CrossRef] [Green Version]
- ISO 19115-1:2014 Geographic Information—Metadata—Part 1: Fundamentals. Available online: https://www.iso.org/standard/53798.html?browse=tc (accessed on 28 November 2020).
- Haklay, M. How Good is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef] [Green Version]
- Zielstra, D.; Hochmair, H.H. Comparative Study of Pedestrian Accessibility to Transit Stations Using Free and Proprietary Network Data. Transp. Res. Rec. J. Transp. Res. Board 2011, 2217, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, V.; Skopeliti, A. Measures and indicators of VGI quality: An overview. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 1, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Degrossi, L.C.; de Albuquerque, J.P.; Rocha, R.D.S.; Zipf, A. A taxonomy of quality assessment methods for volunteered and crowdsourced geographic information. Trans. GIS 2018, 22, 542–560. [Google Scholar] [CrossRef]
- Barron, C.; Neis, P.; Zipf, A. A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis. Trans. GIS 2014, 18, 877–895. [Google Scholar] [CrossRef]
- Bordogna, G.; Carrara, P.; Criscuolo, L.; Pepe, M.; Rampini, A. A linguistic decision-making approach to assess the quality of volunteer geographic information for citizen science. Inf. Sci. 2014, 258, 312–327. [Google Scholar] [CrossRef]
- Ballatore, A.; de Sabbata, S. Charting the Geographies of Crowdsourced Information in Greater London. Lect. Notes Geoinform. Cartogr. 2018, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Alivand, M.; Hochmair, H.H. Spatiotemporal analysis of photo contribution patterns to Panoramio and Flickr. Cartogr. Geogr. Inf. Sci. 2016, 44, 170–184. [Google Scholar] [CrossRef]
- Juhász, L.; Hochmair, H.H. User Contribution Patterns and Completeness Evaluation of Mapillary, a Crowdsourced Street Level Photo Service. Trans. GIS 2016, 20, 925–947. [Google Scholar] [CrossRef]
- Zielstra, D.; Hochmair, H.H. Positional accuracy analysis of Flickr and Panoramio images for selected world regions. J. Spat. Sci. 2013, 58, 251–273. [Google Scholar] [CrossRef]
- Foody, G.M.; See, L.; Fritz, S.; van der Velde, M.; Perger, C.; Schill, C.; Boyd, D.S. Assessing the Accuracy of Volunteered Geographic Information arising from Multiple Contributors to an Internet Based Collaborative Project. Trans. GIS 2013, 17, 847–860. [Google Scholar] [CrossRef] [Green Version]
- Flanagin, A.J.; Metzger, M.J. The credibility of volunteered geographic information. GeoJournal 2008, 72, 137–148. [Google Scholar] [CrossRef]
- Hung, K.-C.; Kalantari, M.; Rajabifard, A. Methods for assessing the credibility of volunteered geographic information in flood response: A case study in Brisbane, Australia. Appl. Geogr. 2016, 68, 37–47. [Google Scholar] [CrossRef]
- Hecht, B.J.; Gergle, D. On the “localness” of user-generated content. In Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work—CSCW ’10, Savannah, GA, USA, 6–10 February 2010; Association for Computing Machinery (ACM): New York, NY, USA, 2010; pp. 229–232. [Google Scholar]
- Johnson, I.L.; Sengupta, S.; Schöning, J.; Hecht, B. The Geography and Importance of Localness in Geotagged Social Media. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; Association for Computing Machinery (ACM): New York, NY, USA, 2016; pp. 515–526. [Google Scholar]
- de Longueville, B.; Ostländer, N.; Keskitalo, C. Addressing vagueness in Volunteered Geographic Information (VGI)-A case study. Int. J. Spat. Data Infrastruct. Res. 2010, 5, 463–1725. [Google Scholar]
- Rice, M.T.; Paez, F.I.; Mulhollen, A.P.; Shore, B.M.; Caldwell, D.R. Crowdsourced Geospatial Data: A Report on the Emerging Phenomena of Crowdsourced and User-Generated Geospatial Data; Defense Technical Information Center (DTIC): Fort Belvoir, VA, USA, 2012. [Google Scholar]
- Graham, M.; Zook, M. Augmented Realities and Uneven Geographies: Exploring the Geolinguistic Contours of the Web. Environ. Plan. A Econ. Space 2013, 45, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Senaratne, H.; Mobasheri, A.; Ali, A.L.; Capineri, C.; Haklay, M. A review of volunteered geographic information quality assessment methods. Int. J. Geogr. Inf. Sci. 2017, 31, 139–167. [Google Scholar] [CrossRef]
- Senaratne, H.; Bröring, A.; Schreck, T. Using Reverse Viewshed Analysis to Assess the Location Correctness of Visually Generated VGI. Trans. GIS 2013, 17, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Sui, D.Z. True lies in geospatial big data: Detecting location spoofing in social media. Ann. GIS 2017, 23, 1–14. [Google Scholar] [CrossRef]
- Neis, P.; Goetz, M.; Zipf, A. Towards Automatic Vandalism Detection in OpenStreetMap. ISPRS Int. J. Geo-Inf. 2012, 1, 315–332. [Google Scholar] [CrossRef]
- Juhász, L.; Hochmair, H.H. Cross-Linkage Between Mapillary Street Level Photos and OSM Edits. Lect. Notes Geoinf. Cartogr. 2016, 64, 141–156. [Google Scholar] [CrossRef]
- Juhász, L. Geo-Social Activity Research. Available online: https://research.jlevente.com/tool/ (accessed on 28 November 2020), (unpublished work).
- Miller, H.J. A Measurement Theory for Time Geography. Geogr. Anal. 2005, 37, 17–45. [Google Scholar] [CrossRef]
- Huang, P.-C.; Lee, S.-S.; Kuo, Y.-H.; Lee, K.-R. A flexible sequence alignment approach on pattern mining and matching for human activity recognition. Expert Syst. Appl. 2010, 37, 298–306. [Google Scholar] [CrossRef]
- Keßler, C.; McKenzie, G. A geoprivacy manifesto. Trans. GIS 2017, 22, 3–19. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, G.; Keßler, C.; Andris, C. Geospatial Privacy and Security. J. Spat. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- McKenzie, G.; Janowicz, K.; Adams, B. A weighted multi-attribute method for matching user-generated Points of Interest. Cartogr. Geogr. Inf. Sci. 2014, 41, 125–137. [Google Scholar] [CrossRef]
- Juhász, L.; Hochmair, H.H. Cross-checking user activities in multiple geo-social media networks. In Proceedings of the 21st AGILE Conference on Geo-Information Science, Lund, Sweden, 12–15 June 2018. [Google Scholar]
- Juhász, L.; Hochmair, H.H. How do volunteer mappers use crowdsourced Mapillary street level images to enrich OpenStreetMap? In Proceedings of the 20th AGILE Conference on Geo-Information Science, Wageningen, The Netherlands, 9–12 May 2017. [Google Scholar]
- Haklay, M.; Basiouka, S.; Antoniou, V.; Ather, A. How Many Volunteers Does it Take to Map an Area Well? The Validity of Linus’ Law to Volunteered Geographic Information. Cartogr. J. 2010, 47, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Pei, S.; Muchnik, L.; Andrade, J.S., Jr.; Zheng, Z.; Makse, H.A. Searching for superspreaders of information in real-world social media. Sci. Rep. 2015, 4, srep05547. [Google Scholar] [CrossRef] [Green Version]
- Leung, Y.; Ma, J.-H.; Goodchild, M.F. A general framework for error analysis in measurement-based GIS Part 1: The basic measurement-error model and related concepts. J. Geogr. Syst. 2004, 6, 325–354. [Google Scholar] [CrossRef]
- Ahmouda, A.; Hochmair, H.H. Using Volunteered Geographic Information to measure name changes of artificial geographical features as a result of political changes: A Libya case study. GeoJournal 2017, 83, 237–255. [Google Scholar] [CrossRef]
- Griffin, G.P.; Jiao, J. Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. J. Transp. Health 2015, 2, 238–247. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Andersen, M. Social Media Use in 2018. Pew Res. Cent. 2018. Available online: https://www.pewinternet.org/wp-content/uploads/sites/9/2018/02/PI_2018.03.01_Social-Media_FINAL.pdf (accessed on 28 November 2020).
- Miller, H.J.; Goodchild, M.F. Data-driven geography. GeoJournal 2014, 80, 449–461. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Z. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Gosal, A.; Geijzendorffer, I.R.; Václavík, T.; Poulin, B.; Václavík, T. Using social media, machine learning and natural language processing to map multiple recreational beneficiaries. Ecosyst. Serv. 2019, 38, 100958. [Google Scholar] [CrossRef] [Green Version]
- Steiger, E.; Resch, B.; de Albuquerque, J.P.; Zipf, A. Mining and correlating traffic events from human sensor observations with official transport data using self-organizing maps. Transp. Res. Part C Emerg. Technol. 2016, 73, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Steiger, E.; Resch, B.; Zipf, A. Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. Int. J. Geogr. Inf. Sci. 2016, 30, 1694–1716. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Zhang, F. Mining urban perceptions from social media data. J. Spat. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times—dg.o ’11, College Park, MD, USA, 12–15 June 2011; Association for Computing Machinery (ACM): New York, NY, USA, 2011; pp. 282–291. [Google Scholar]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Pereira, G.V.; Parycek, P.; Falco, E.; Kleinhans, R. Smart governance in the context of smart cities: A literature review. Inf. Polity 2018, 23, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Hollands, R.G. Will the real smart city please stand up? City 2008, 12, 303–320. [Google Scholar] [CrossRef]
- Söderström, O.; Paasche, T.; Klauser, F. Smart cities as corporate storytelling. City 2014, 18, 307–320. [Google Scholar] [CrossRef]
- Kitchin, R. The ethics of smart cities and urban science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160115. [Google Scholar] [CrossRef] [PubMed]
- Portugali, J.; Haken, H.; Benenson, I.; Omer, I.; Alfasi, N. Self-Organization and the City; Springer Series in Synergetics; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2012; ISBN 9783662040997. [Google Scholar]
- Bettencourt, L.M.A. The Kind of Problem a City Is: New Perspectives on the Nature of Cities from Complex Systems Theory. Decod. City 2014. [Google Scholar] [CrossRef]
- Theraulaz, G.; Bonabeau, E. A Brief History of Stigmergy. Artif. Life 1999, 5, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Mehaffy, M.; Elmlund, P. Smart cities: Missing the stigmergy? In Spatial Knowledge as a Tool for Strategic and Data-Based Regional Policy; Regional Science Academy and Université de Lyon: Lyon, France, 2020. [Google Scholar]
- Latour, B. On actor-network theory: A few clarifications. Soz. Welt 1996, 4, 369–381. [Google Scholar]
- Edelenbos, J.; Hirzalla, F.; van Zoonen, L.; van Dalen, J.; Bouma, G.; Slob, A.; Woestenburg, A. Governing the Complexity of Smart Data Cities: Setting a Research Agenda; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 35–54. [Google Scholar]
- Ostrom, E. Beyond Markets and States: Polycentric Governance of Complex Economic Systems. Am. Econ. Rev. 2010, 100, 641–672. [Google Scholar] [CrossRef] [Green Version]
- Kounadi, O.; Resch, B. A Geoprivacy by Design Guideline for Research Campaigns That Use Participatory Sensing Data. J. Empir. Res. Hum. Res. Ethic 2018, 13, 203–222. [Google Scholar] [CrossRef] [Green Version]
Assessment Method | Extrinsic | Intrinsic | |
---|---|---|---|
Comparison Reference Dataset | Authoritative | Non-Authoritative | None |
Measures | |||
Quantitative measures (completeness, consistency, positional/temporal/thematic accuracy) | x | x | (x) |
Qualitative indicators (purpose, usage, lineage) | x | ||
Proxy quality indicators (trustworthiness, credibility, text content quality, vagueness, local knowledge, experience, recognition, reputation) | (x) | (x) | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovacs-Györi, A.; Ristea, A.; Havas, C.; Mehaffy, M.; Hochmair, H.H.; Resch, B.; Juhasz, L.; Lehner, A.; Ramasubramanian, L.; Blaschke, T. Opportunities and Challenges of Geospatial Analysis for Promoting Urban Livability in the Era of Big Data and Machine Learning. ISPRS Int. J. Geo-Inf. 2020, 9, 752. https://doi.org/10.3390/ijgi9120752
Kovacs-Györi A, Ristea A, Havas C, Mehaffy M, Hochmair HH, Resch B, Juhasz L, Lehner A, Ramasubramanian L, Blaschke T. Opportunities and Challenges of Geospatial Analysis for Promoting Urban Livability in the Era of Big Data and Machine Learning. ISPRS International Journal of Geo-Information. 2020; 9(12):752. https://doi.org/10.3390/ijgi9120752
Chicago/Turabian StyleKovacs-Györi, Anna, Alina Ristea, Clemens Havas, Michael Mehaffy, Hartwig H. Hochmair, Bernd Resch, Levente Juhasz, Arthur Lehner, Laxmi Ramasubramanian, and Thomas Blaschke. 2020. "Opportunities and Challenges of Geospatial Analysis for Promoting Urban Livability in the Era of Big Data and Machine Learning" ISPRS International Journal of Geo-Information 9, no. 12: 752. https://doi.org/10.3390/ijgi9120752
APA StyleKovacs-Györi, A., Ristea, A., Havas, C., Mehaffy, M., Hochmair, H. H., Resch, B., Juhasz, L., Lehner, A., Ramasubramanian, L., & Blaschke, T. (2020). Opportunities and Challenges of Geospatial Analysis for Promoting Urban Livability in the Era of Big Data and Machine Learning. ISPRS International Journal of Geo-Information, 9(12), 752. https://doi.org/10.3390/ijgi9120752