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Abstract: Traditionally, the standards of spatial modeling are oriented to represent the quantitative
information of space. However, in recent years an increasingly common challenge is appearing:
flexibly and appropriately integrating quantitative information that goes beyond the purely geometric.
This problem has been aggravated due to the success of new paradigms such as the Internet of Things.
This adds an additional challenge to the representation of this information due to the need to represent
characteristic information of the space from different points of view in a model, such as WiFi coverage,
dangerous surroundings, etc. While this problem has already been addressed in indoor spaces with
the IndoorGML standard, it remains to be solved in outdoor and indoor–outdoor spaces. We propose
to take the advantages proposed in IndoorGML, such as cellular space or multi-layered space model
representation, to outdoor spaces in order to create indoor–outdoor models that enable the integration
of heterogeneous information that represents different aspects of space. We also propose an approach
that gives more flexibility in spatial representation through the integration of standards such as
OpenLocationCode for the division of space. Further, we suggest a procedure to enrich the resulting
model through the information available in OpenStreetMap.

Keywords: IndoorGML; open location code; OpenStreetMap; space representation; smart city;
smart building

1. Introduction

At present, the rise of new paradigms such as the Internet of Things (IoT) gives us the opportunity
to retrieve data from a wide variety of sources [1,2] to produce more advanced and powerful services
and applications. In the world of smart buildings and smart cities, we often find problems in which
space information is a necessity. However, the data we normally get from the kind of sources mentioned
above is not enough by itself. It is necessary to extract the heterogeneous information that data
represents in order to, for example, enrich spatial models.

The sources of information we can find range from sensors (light sensors, temperature sensors,
cameras, etc.) to people that collect data with their mobile devices. This source works concretely with
crowdsourced data [3–5], a kind of data that can be very useful for some platforms—for example,
in OpenStreetMap (https://www.openstreetmap.org) (OSM) for geographic information, in Waze
(https://www.waze.com/es/) for traffic status [6], or even for collecting more complex information

ISPRS Int. J. Geo-Inf. 2020, 9, 169; doi:10.3390/ijgi9030169 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0003-2893-0392
https://orcid.org/0000-0003-0343-8596
https://orcid.org/0000-0003-4700-5557
https://orcid.org/0000-0003-0773-5846
https://orcid.org/0000-0001-6132-1199
https://orcid.org/0000-0002-4540-4338
https://orcid.org/0000-0002-7372-1568
http://www.mdpi.com/2220-9964/9/3/169?type=check_update&version=1
https://www.openstreetmap.org
https://www.waze.com/es/
http://dx.doi.org/10.3390/ijgi9030169
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2020, 9, 169 2 of 21

via social networks [7,8]. The opportunity offered by these types of sources allows us to represent many
realities of the same space or time (e.g., in traffic, air quality, or temperature contexts). Particularly
in space representations, it is very interesting to incorporate information into the space models in
order to handle more complex tasks such as advanced navigation or context-sensitive reasoning.
Nonetheless, the fact that every platform generally has its own way of representation makes it
more difficult to combine and integrate space information from different sources. Furthermore,
the increasing complexity of location-based services (LBSs) [9] is emphasizing the limitations of the
present approaches [10,11] to combine the heterogeneous information we are talking about in the
same model. This is not a trivial problem [12,13], and it is necessary to rely on mechanisms to enable
the combination of decoupled aspects of the modeled space, going beyond the purely geometric or
topological information.

While neutral, open, and non-proprietary standards such as Industry Foundation Classes (IFC) or
City Geography Markup Language (CityGML) already exist in the community for the representation
of building information modeling (BIM) data, it has been demonstrated [14] that they are too oriented
to the modeling and representation of geometric and structural characteristics of the environment.

However, this is not the only problem that needs to be addressed. The lack of expressiveness
and granularity with which space is commonly described, divided, and represented is another
major challenge. This issue mainly concerns more complex services and systems such as advanced
driver-assistance systems (ADASs) or others that are common in smart cities, where it is evident that
the use of geographic coordinates is not sufficient to interpret and manipulate spatial information more
abstractly. It is therefore necessary to have the possibility of enriching this geographical information
and, at the same time, to be able to define spaces with different granularity that ranges from traditional
coordinates to more abstract divisions of space, such as areas of danger, demographics, illumination,
etc. that represent space from many points of view.

Is a fact that there is an increasing interest in new standards or mechanisms that support the
creation of spatial models in order to allow the representation of the space with flexibility in integrating
advanced and heterogeneous information. On the one hand, several standards have been proposed to
address these problems from an indoor perspective. One of those that best understands these needs
is the IndoorGML standard [15], which provides a simple but flexible way to describe indoor spaces
through the spatial organization that it employs and the way in which it represents different types of
information. On the other hand, there have been several attempts to achieve something similar for
outdoor spaces, like CityGML [16]. However, one of the main inconveniences of these approaches
is that they are not very flexible in terms of the information type that can be modeled, being very
oriented to a visual representation of the space.

Our hypothesis is based on the adaptation of the descriptive power of the IndoorGML standard
to outdoor spaces in order to make it possible to face the two challenges mentioned: (i) the integration
of heterogeneous information into spatial models to describe different aspects of space and, at the
same time, (ii) the incorporation of a way to divide the space more flexibly and abstractly than
traditional GPS coordinates do. This work is based on the potential of IndoorGML to capture and
represent different kinds of information about the same space through its vision of cellular space
and multi-layered representation. First, we present a space division according to the needs thanks
to its vision of space as a set of cells. In addition, we also discuss the capacity to enhance this in
outdoor spaces with the use of standards that allow the space to be divided deterministically and
with variable granularity (e.g., the standard Open Location Code (OLC); https://github.com/google/
open-location-code). Finally, the multi-layered representation makes it possible to represent the
different types of information in a single model so that a certain region of the space can be described
simultaneously from different points of view, such as lighting, WiFi coverage, geometry,or topology
contexts. Although it has not been mentioned so far, note that through this proposal we manage
not only to face the challenges posed, but also to achieve a solution to represent indoor and outdoor
spaces together.

https://github.com/google/open-location-code
https://github.com/google/open-location-code
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Thus, the major contributions of this work are: (i) it provides an approach to take advantage of
the main benefits of cellular space and the multi-layered representation of the IndoorGML standard
for outdoor environments; (ii) the OLC standard is integrated in the proposed approach to achieve
a deterministic and flexible way to divide the space; and (iii) it specifies how to take advantage
of the large amount of information available on the OpenStreetMap platform to create the desired
spatial representation.

The remainder of the article is structured as follows: an overview about some of the most relevant
spatial modeling standards and works is given in Section 2. Next, the proposed approach is described
in Section 3, applying the IndoorGML standard to outdoor spaces. To conclude, a discussion of the
proposed approach is provided and validated in Section 4, and we outline directions for future work
in Section 5.

2. State-of-the-Art for Space Modeling

One of the most widely accepted standards in 3D city modeling and information exchange is City
Geography Markup Language (CityGML). It is an official standard of the Open Geospatial Consortium
(OGC) that was released as version 1.0 in 2008 [16] and as version 2.0 in 2012 [17]. This standard
defines both the object types that comprise the model and the relationships that will be established
between them within an urban environment. Toward this end, geometric, topological, semantic,
and appearance properties are considered. CityGML can simultaneously represent a 3D model with
different levels of detail (LoDs), ranging from a simple representation of buildings in 2.5D (LoD0) to
a more elaborate representation of the buildings’ interiors (LoD4). However, CityGML lacks some
important features for indoor space modeling and semantics. These features are critical for many
indoor spatial information applications [18]. Another important drawback to using CityGML is that it
is too 3D oriented, with unnecessary and complex information in many reasoning-oriented applications
and advanced services.

IFC [19] is an open specification data format aimed at providing an interoperability solution
across different software applications in the building industry. This format consists of a set of IFC
classes and objects that represent an information model for both geometric and alphanumeric features
in the building domain. It is a collection of more than 600 classes in continuous evolution. Among its
main strengths we can highlight the communication between the different agents involved in the
construction process, supporting the interaction between them through a standard format. In this
sense, the data of the building model is defined only once by each responsible agent, and is shared
by other intervening agents. All this results in an increase in quality, a reduction in costs, and the
assurance of information consistency in the project and construction phase. For these reasons, it
has been widely accepted in its application field. Nevertheless, IFC is a format based solely on the
description of geometric data of buildings, leaving aside the description of outdoor environments.

The limitations of IFC have led to the appearance of extensions or complements to, for example,
simplify the access control to different spaces in intelligent buildings [20] or to detect and correct
the redundancy of models based on IFC [21] through the proposal of some algorithms. It is worth
mentioning the Indoor Emergency Spatial Model (IESM) [22], which modifies the IFC classes to support
critical information relevant to emergency services, eliminating all unnecessary complexity. Even
though this work identifies and addresses some important shortcomings in terms of lack of semantics,
these are not fully covered yet, as the result is closely linked to the case of emergency management.
Moreover, the modeling of open spaces is very limited, once again because the focus is on supporting
emergency management.

Following a similar approach, another common line of work in this field is to combine the IFC
and CityGML standards to provide a comprehensive view of indoor–outdoor spaces and mutually
satisfy the shortcomings of both. For example, in [23] the Unified Building Model (UBM) is presented
as a solution in which both standards are combined to avoid the need of translation between them
and the loss of information. On the other hand, in [24] an extended indoor LoD (ILoD) specification is
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proposed to replace the CityGML LoD4 layer. This new layer aims to combine the advantages of IFC
and IndoorGML in order to offer an improved LoD specification for building models, unifying indoor
and outdoor spaces to meet the requirements of various applications. However, all these works still
present the shortcomings and weaknesses of CityGML and IFC discussed above.

Another de facto standard that has industry support and widespread adoption by leading
BIM vendors is the Green Building XML schema (gbXML) (http://www.gbxml.org/index.html).
This standard was developed to facilitate the exchange of building information stored in CAD-based
building information models, enabling interoperability between different building designs and
engineering analysis software tools. Because of its wide industry acceptance, suppliers of BIM software
(e.g., Revit, ArchiCAD) and energy analysis applications (e.g., EnergyPlus, e-QUEST) have supported
this standard, enabling the exchange of data through the Green Building Studio web service [25].
Compared to IFC, gbXML mainly focuses on facilitating the data conversion from BIM tools to
engineering analysis tools, especially building energy model (BEM) tools. As far as geometric data is
concerned, this standard only accepts rectangular shapes, which is enough to perform simulations on
most buildings [26]. However, this standard is too focused on energy analysis, excluding from its scope
important aspects such as outdoor space modeling, semantics, topology, navigability, etc.

OpenStreetMap is “a collaborative project to create a free editable map of the world. Rather than
the map itself, the data generated by the project is considered its primary output” [27,28]. OSM has
been one of the most successful volunteered geographic information (VGI) projects to date. This has
made it possible, with the help of volunteers, to define the cartography of important parts of the
Earth’s terrain. Due to its great acceptance and the possibilities it offers, OpenStreetMap has recently
been used in many services (https://wiki.openstreetmap.org/wiki/List_of_OSM-based_services),
such as routing [29,30], disaster management [31,32], public transport [33,34], and location-based
services [35,36]. Regarding the quality of the crowdsourced geodata, recent research [37–39] has
shown that OSM is sufficiently complete and correct compared with some proprietary solutions.
There are different works that combine OpenStreetMap with other standards to reuse the large
amount of information available in OSM. In [40], for example, an attempt is made to automate the
process of generating models based on CityGML from the information provided by OpenStreetMap.
However, despite its acceptance in outdoor environment modeling, this solution can not be used
in indoor and building modeling. All existing ideas and ongoing projects are compiled in the
OpenStreetMap Wiki (https://wiki.openstreetmap.org/wiki/Indoor_Mapping#Tagging), suggesting
a provisional indoor schema (https://wiki.openstreetmap.org/wiki/Simple_Indoor_Tagging).
Despite all these attempts, the use of OpenStreetMap for indoor environments has not yet found
a definitive solution.

Finally, other popular standard for modeling building geometry is IndoorGML. As specified in
the definition of the standard, IndoorGML proposes “a data model and XML schema for indoor spatial
information which aims to provide a common framework of representation and exchange of indoor
spatial information” [15]. The standard suggests that the space be modeled as cellular spaces—that is,
a set of cells which are defined as the smallest organizational structural unit of indoor space. Each of
these cells can represent different types of space such as stairwells or elevators and are characterized by
not overlapping other cells and having common boundaries and a unique identifier. One of the main
advantages of IndoorGML is that it is not necessary to explicitly express the relationships between
different spaces that shape the building. It allows the representation of topological relationships
(e.g., adjacency and connectivity) among the different indoor entities through the node-relation graph
(NRG). In this way, NRG makes it possible to simplify and represent topological relationships abstractly
among 3D spaces in indoor environments, such as rooms within a building [41]. Other of the main
advantages of using IndoorGML as a data model is that it makes it possible to represent the same
space from different points of view through the mechanism of multi-layered representation. In this
multi-layered representation, each semantic interpretation layer results in a different decomposition of
the same indoor space, where each decomposition forms a separate layer of cellular space. An example

http://www.gbxml.org/index.html
https://wiki.openstreetmap.org/wiki/List_of_OSM-based_services
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of this can be found in Figure 1. In this example the space composed of two rooms is represented from
different points of view in different layers: the topology and the geometry of the building in the topology
layer (cells R1 and R2), the coverage of the cameras in the camera layer (cells V1 and V2), and Radio
Frequency Identification (RFID) coverage transmitters in the RFID layer (cells C1 and C2). As shown,
this way of representing the different entities and relationships allows great flexibility in the division
of the space and in the integration of different types of information. This approach also provides other
advantages, such as the possibility of obtaining new information, as can be found in [42].

R1

R2

C1

C2

V1

V2

R1

R2

Figure 1. Example of topology, camcorder coverage, and Radio Frequency Identification (RFID)
coverage layers of the same building [42].

Another of the advantages offered by IndoorGML is that it incorporates mechanisms that allow
reference to objects described in external datasets, such as those already mentioned CityGML or IFC.
This provides an extra level of flexibility since it will allow the resulting model to be independent of
a specific application domain. This feature, combined with some emerging industry standards such
as Indoor Mapping Data Format (IMDF) (https://register.apple.com/resources/imdf/), will greatly
enrich and enhance the models, since it provides a mobile-friendly, compact, and human-readable data
model for any indoor space, providing useful information about orientation, navigation, and discovery.

In Table 1 we review the main features of the surveyed standards and works. For this purpose,
their capacities in different aspects were evaluated for both indoor and outdoor spaces: support
for representing topology or geometry, support for navigation, if the representation of semantics
is allowed, the capacity to be flexible and customized, complexity of use, user acceptance, if any
support is received, and if it is a user-friendly solution. Each of these aspects are categorized with
four possible values: (1) Poor, (2) Medium, (3) Good, and (4) High. To summarize, we can see that
there are numerous standards and tools for the description, modeling, and representation of spaces.
However, these solutions focus either on indoor or outdoor spaces but do not support the modeling of
both worlds [22,24,43]. This is an important limitation when the same data model considers these two
types of environment. Furthermore, the minimum level of detail required is usually too high, mainly
focused on providing geometric and quantitative descriptions of the different elements that comprise
the space to be modeled. Although this level of detail may sometimes be necessary, it is desirable to
have a lightweight version. This level of detail, for example, is accessory when the model is intended
to describe whether two spaces are contiguous or whether there is a connection between them. For this
reason, there are works aimed at simplifying the most popular standards [44–47] in order to obtain
simpler models that are compliant with the standard. Of all the mentioned features, one of the most
interesting is the multi-layered representation proposed by the IndoorGML standard. However, this
standard is aimed at modeling indoor spaces, so it is not possible to apply its advantages to outdoor
spaces without some modifications or extensions. Having the flexibility given by this approach to
integrate heterogeneous information and the ability to understand space from different points of view
is a necessity, since the smart city or smart buildings paradigms demand more than the mere geometry
of space to enable true situational awareness and support for decision making. Finally, another of the
most interesting features is the large number of OpenStreetMap possibilities in terms of information

https://register.apple.com/resources/imdf/
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collection. For this reason, OpenStreetMap must be taken into account for the enrichment of space
models due to its VGI nature and the large number of tools available.

Table 1. Evaluation of the most representative indoor and outdoor properties of the main standards
and works. CityGML: City Geography Markup Language; gbXML: Green Building XML; IESM: Indoor
Emergency Spatial Model; IFC: Industry Foundation Classes; OSM: OpenStreetMap; UBM: Unified
Building Model.

Support Type Characteristic OSM CityGML IFC IESM IndoorGML gbXML UBM

Indoor Support

Topology Medium Poor Poor Medium High Poor Poor
Geometry Poor High High High Good Good High

Navigation Poor Poor Poor Good High Poor Poor
Semantics Poor Good High Medium Good Medium Poor

Customizable Medium Good Medium Good High Poor Medium
Complexity Medium Medium Medium Medium Good Poor Medium
Acceptance Poor High High Poor Good High Poor

Support Poor High High Poor Poor High Poor
User friendly Medium Medium Medium Medium Good Medium Medium

Outdoor Support

Topology High Poor Poor Medium Poor Poor Poor
Geometry High High Poor Medium Poor Poor High

Navigation Good Medium Poor Medium Poor Poor Medium
Semantics High Good Poor Medium Poor Poor Good

Customizable High Medium Poor Medium Poor Poor Good
Complexity Medium Medium Poor Medium Poor Poor Medium
Acceptance High High Poor Medium Poor Poor Poor

Support High High Poor Medium Poor Poor Poor
User friendly Good Good Poor Medium Poor Poor Good

3. Applying IndoorGML to Outdoor Spaces

Based on the challenges, limitations, and strengths of existing approaches for space modeling
described in the previous paragraphs, here we propose a new use of the IndoorGML standard, applying
the concepts and relationships established by the standard to a different dimension—the outdoor
space. We present an approach that not only focuses on the application of IndoorGML to outdoor
spaces, but also proposes a solution to several of the challenges mentioned previously by combining
IndoorGML with other standards and tools such as Open Location Code and OpenStreetMap. On the
one hand, this approach combines the potential of cellular space of IndoorGML with the Open Location
Code standard, allowing a deterministic division of the space with a variable and flexible granularity.
On the other hand, through the multi-layered representation we propose a way to integrate different
types of information about an outdoor space regardless of their nature. This makes it possible to
represent the same region of space from different points of view, thus integrating all the desired
information into the same model.

Although more layers can be defined based on the information to be integrated into the model,
in this paper we propose two layers that are focused on the representation of aspects of interest in
outdoor spaces: (1) the olc-layer, which represents all the outdoor space according to the OLC standard
allowing this space to be divided without necessarily having to label it; and (2) the building-layer,
which contains more elaborate information such as existing buildings, streets, sidewalks, etc. While the
OLC standard is used in the first layer, for the second we propose a solution to integrate information
extracted from the OpenStreetMap platform. In this way it is possible to take advantage of the
numerous information available in OSM to greatly enrich our models.

An overview of the proposed process is shown in Figure 2. It is composed of two stages depending
on the space to be represented: indoor, outdoor, or both. Indoor space modeling is carried out by
directly applying the IndoorGML standard, making no contribution at this stage beyond the final
connection of the indoor model to the outdoor model in which it is included. The contribution of
this work mainly concerns the outdoor modeling stage, for which an adaptation of the IndoorGML
standard and its combination with other solutions is proposed.
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Figure 2. General process to obtain a comprehensive indoor, outdoor, or indoor– outdoor model.

Regarding the modeling of an outdoor space, it is important that this space has been previously
described in OSM format. Although in many situations this information will be available on the OSM
platform (https://www.openstreetmap.org/), it is possible that in other situations it is not available
or that it is simply incomplete. In these cases it will be necessary to manually complete it using the
mechanisms that OSM (https://www.openstreetmap.org/login?referer=%2Fedit) offers to this end,
or to do it locally using a tool like JOSM (https://josm.openstreetmap.de/). From this, geometric
and high-level information is extracted to build the model, such as the perimeter of buildings, areas,
sidewalks, roads, etc.

When the OSM model is available, the next step (square bounded by dashed lines in Figure 2)
entails the extraction of information from it and its integration in the model, as mentioned above.
The process designed for this purpose is divided into two main parts, which can be seen in Figure 3.
First, the squares bounded by dashed lines carry out the division, definition, and description of the
space using the standard Open Location Code to define the olc-layer. The second part of the diagram
describes how the building-layer is created to enrich the model with high-level information, including
buildings, roads, streets, sidewalks, etc., as well as their properties. Finally, it represents how to connect
both layers between them to get a joint vision of the space.

https://www.openstreetmap.org/
https://www.openstreetmap.org/login?referer=%2Fedit
https://josm.openstreetmap.de/
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Figure 3. Specific process for describing and creating a model of an outdoor area. OLC: Open
Location Code.

The olc-layer definition starts by specifying the space to be modeled stating, for example,
the corners of the area that bound it, the two opposite corners, or any other layout that clearly
identifies the area to be modeled. Then, the set of plus codes contained in the space is obtained.
These codes uniquely identify any area of the earth using the Open Location Code system.
This system, developed and implemented under free license by Google (https://github.com/google/
open-location-code), also offers a direct process to convert GPS coordinates to OLC or vice versa.
This work uses a plus code length of 11 digits. We can therefore represent areas of 1/32,000◦ by
1/40,000◦(approximately 3.4 m by 2.7 m). Next, a cell from the IndoorGML standard is created to
represent each of the OLC areas that conform the space to be modeled. The geometry of these cells is
determined by the corners of the OLC area they represent. Furthermore, other properties of the cell are
added, such as the name, identifier, surface that composes it, duality, etc. The name and the identifier
of a cell are formed using the following pattern: CELL_olc_code, where olc_code is the name of the
plus code represented by the cell. The field gml:description is used to denote that this cell is a space
defined by Open Location Code, as follows: Usage=olc. Cells are delimited by boundaries, some of

https://github.com/google/open-location-code
https://github.com/google/open-location-code
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them shared among them. Boundaries are uniquely identified by an id and characterized by their
geometry and their counterpart in the dual space (also known as duality). The identifier is formed
using the following pattern: Boundary-cell_olc_code-neighbour_olc_code, where cell_olc_code
is the cell identifier being processed at the moment, and neighbour_olc_code, the identifier of the cell
that shares that boundary. Since the same limit can be shared by several cells, a mechanism has to be
established to verify whether the limit has been previously defined for a previously processed cell. If so,
it would be enough to retrieve the identifier and associate it through the relation partialboundedBy.

The cells and their boundaries compose the primal space of the modeled area. The dual
space is where the cells are mapped to states and the boundaries as transitions between them.
Thus, there is a dual counterpart for each cell and boundary. An example of this can be
seen in Figure 4, in which the primary space is composed of two cells (CELL-X3XJ+54R and
CELL-X3XJ+54V) and a boundary (BOUNDARY-X3XJ+54R-X3XJ+54V), while its corresponding
dual entities will be the two states (STATE-X3XJ+54R and STATE-X3XJ+54V) and the transition
(T-X3XJ+54R-X3XJ+54V) between both states. When a cell represents a plus code area, the state
of that area is determined by the geometric center of the plus code area to which it is associated.
This state is univocally identified by the following pattern: STATE_olc_code, where olc_code
represents the plus code name of the cell whose state is being defined. The transitions between
states are established on the basis of the vicinity relation (sharing a boundary) between pairs of cells.
These transitions have a unique identifier with this pattern: T-cell_olc_code-neighbour_olc_code,
where cell_olc_code and neighbour_olc_code are the identifiers of the states connected by the
transition. The field connects of the IndoorGML standard is used to indicate the link between
two states. Thus, a transition has two properties to indicate the adjacent or neighboring states
(cells or OLC areas in their primal counterpart). The geometry of a transition is characterized
by the two points of the states it connects. The primal counterpart of the transition, for the case
in which each cell represents a plus code area, is given by the boundary between the two areas
or the boundary shared by the two cells. Thus, the identifier of the transition in the dual space
(pattern T-cell_olc_code-neighbour_olc_code) is determined by the identifier of the boundary of
the primal space previously described (pattern Boundary-cell_olc_code-neighbour_olcode).

Figure 4 shows an example of two OLC areas, X3XJ+54R and X3XJ+54V, located in Ciudad Real
(Spain). These two areas have been modeled as cells, one for each plus code area with the identifiers
CELL-X3XJ+54R and CELL-X3XJ+54V. These cells have the states STATE-X3XJ+54R and STATE-X3XJ+54V
as their dual-space counterparts. Both cells share the boundary BOUNDARY-X3XJ+54R-X3XJ+54V with
the transition T-X3XJ+54R-X3XJ+54V as its counterpart in dual space. The corresponding XML
description of the transition is also included.
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Figure 4. Example transition definition.

Next, the model is enriched with more abstract information through the creation of the
building-layer. To this end, the information available in OpenStreetMap is used—more specifically,
the way concept. This element is represented by an ordered list of nodes (between 2 and 2000),
which in turn represents a polyline. When used as a closed way, this is used to represent elements
such as buildings or forests. When defined as a open way, it represents elements such as roads
or rivers. A cell is created with the same geometry as the entity way to which it is associated.
An element way is defined by a set of OSM nodes with a given latitude and longitude. The process
of creating a cell with the same geometry as the element way to which it is associated therefore
consists of adding a point to the cell geometry for each OSM node that composes the element way.
The cell name and identifier follow the pattern: CELL_osmName, where osmName is the name of the
element way to which it is associated. The rest of the typical properties of an IndoorGML cell are
also added. The field gml:description of the IndoorGML standard is used to incorporate more
abstract information with a higher semantic load into the model. This information is extracted from the
properties (https://wiki.openstreetmap.org/wiki/Map_Features) of the element way like the intended
purpose of the building (education, sports, transport, emergencies, etc.) or ground base (paved, mud,
asphalt, etc.). Two concrete examples are shown below:

• <gml:description> area=yes surface=mud </gml:description>: these labels indicate that
the cell represents an area and that its surface is muddy.

• <gml:description> amenity=gas building=yes <?gml:description>: these labels indicate
that this cell represents a building and that it corresponds to a gas tank.

The state of the dual space is defined for every cell, univocally identified by the following pattern:
STATE_osmName, where osmName is the name of the element way to which it is associated. The state
corresponds to a representative point of the element way that is inside the area being represented.
The building-layer is comprised of cells representing specific areas such as buildings, parks, roads,
barriers, etc.

The next step is to connect the layer olc-layer to the building-layer. First, it is necessary to identify
which plus code areas lie within the geographical area defined by each element way. Then, they

https://wiki.openstreetmap.org/wiki/Map_Features
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are connected using the Inter-Layer relations defined in the IndoorGML standard. According to [15],
this type of relation connects different layers or spaces of a model. Thus, while Intra-Layer relations (i.e.,
transitions) denote adjacent cells within the same model space, Inter-Layer relations denote relations
between cells belonging to different space models.

The process proposed to calculate the set of plus codes that cover the area delimited by the way
element is represented in Figure 5. Starting from a point contained in the area defined by the geometry
of the element way, the 11-digit plus code containing that point is calculated. Next, the adjacent OLCs
(north, south, east, and west neighbors) are identified and added to a queue of elements. The OLCs
in this queue are processed to determine whether they are contained within the area defined by the
geometry of the way element. If so, their neighbors are added to the queue and the corresponding OLC
is added to the result. In other case, they are discarded. The final result contains the list of OLCs inside
the area of the geometry defined by the way element. For each of these OLCs, an InterLayerConnection
relation is created to link the state of the cell associated to the OLC and the state of the cell associated
to the way element.

Figure 5. Process for calculating the OLC cells that intersect with a way element.

The process of connecting layers also ensures consistency in the transitions established between
the states of the olc-layer. The building_layer contains information about those elements of type way
that, by definition, block the transit, such as buildings or barriers. During the connection of both layers
the transitions of the olc_layer established between states which correspond to non-navigable ways
are removed.

In the next step, it is necessary to connect the outdoor model with the indoor model of every
building included in the corresponding outdoor model. To do this, those cells containing the label
Usage=Entrance are identified for each indoor model. For each of these, the OLC areas that contain
it are calculated with an accuracy of 11 digits. Next, a transition is added which associates the state
corresponding to the cell of the indoor model to the state corresponding to the OLC area of the outdoor
model. Finally, it is only necessary to integrate all the information (cells, states, transitions, etc.) of the



ISPRS Int. J. Geo-Inf. 2020, 9, 169 12 of 21

indoor models of buildings in the resulting model. It is important to mention that before integrating
the building model it is necessary to check which is its coordinate reference system (CRS). In this
way, we can meet two possible situations. On the one hand, it is possible that the indoor space is
represented through the global CRS, so it will not be necessary to perform any type of conversion: all
information will simply be integrated directly into the resulting model. However, in some situations
the building model may be represented in its own local CRS. If this is the case, it will be necessary to
carry out the conversion through the following steps:

• First it will be necessary to have the origin point of the target CRS (or global CRS) Po(x0, y0, z0).
• Perform the scaling process through the rescaling factor R(sx, sy, sz).
• Perform the rotation process through the rotation angles A(α, β, γ), along x, y, z-axis.
• Perform the translation process through the translation vector T(tx, ty, tz).

Figure 6 illustrates a connection example and how, from it, you can obtain a single NRG (a graph
(V, E) where V is a set of nodes representing cells in the indoor space and E is the set of edges of
topological relationships between cells) describing the global connectivity of the model.

Figure 6. Process for the integration of indoor models in the outdoor model. NRG: node-relation graph.

4. Experimental Validation

The proposed work was experimentally validated by modeling an area combining indoor and
outdoor spaces, using for this purpose the methodology presented in this work. The indoor model was
the building of the Institute of Information Technologies and Systems of Ciudad Real (Spain), but its
representation was modified to incorporate a greater variety of details. Once this model was generated,
it was used by a routing system with the objective of calculating two types of routes in which different
types of information were taken into account. On the one hand, simpler routes were calculated
considering only the shortest path. On the other hand, the route system calculated more complex
routes taking into account properties available in the model, such as the type of surface. In this way,
the system prioritized those routes where the traversed surfaces favor navigability. Through this use
case we intended to validate the proposed approach to apply IndoorGML to outdoor environments and
demonstrate how the resulting model can be very useful in a real application, such as route calculation.

The selected space covered an area of 9877.7 m3, with a width of 103 m and a height of 95.9 m
with the following components:

• Buildings: The space contained a total of three buildings, defined by the identifiers Building_1,
Building_2, and Building_3. Building_1 is an office block, Building_2 is a school,
and Building_3 is a building used for gas storage.
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• Areas: The space contained a total of four areas, defined by the identifiers area_1, area_2, area_3,
and area_4. area_1 and area_2 are located in a grassy surface, area_3 in a surface with gravel,
and area_4 in a muddy surface.

• Paths: In the space a total of two paths can be found, defined by the identifiers path_1 and path_2.
Both paths are in asphalt surfaces.

• Walls: The space contained a total of three walls, defined by the identifiers wall_1, wall_2,
and wall_3.

As the scenario under consideration did not exist in OpenStreetMap, it was necessary to describe
it. To do so, we used JOSM (https://josm.openstreetmap.de/), free software for editing data in
OpenStreetMap. This editor described through nodes and elements of type way the geometry of the
different buildings and areas that were considered in this use case. Later, these entities were enhanced
with the properties supplied by OpenStreetMap. All entities had a common label, name=*, which was
used to name them accordingly. The rest of the tags are listed below:

• Buildings: To indicate that an entity in OpenStreetMap is a building, the key building
(https://wiki.openstreetmap.org/wiki/Key:building) should be used. So, we can simply use
building=yes or use a value to describe the type of the building, such as those used to indicate
the different types of buildings in the use case: building=office for offices or building=school
for school. The case of the gas tank is somehow more sophisticated, as it is also necessary to use
the tag amenity (https://wiki.openstreetmap.org/wiki/Key:amenity), thus the definition of this
entity was done with the key-value pairs building=yes and amenity=gas.

• Areas: To specify in OpenStreetMap that an element way (https://wiki.openstreetmap.org/
wiki/Key:area) represents an area, the key area=yes should be used. Additionally, to indicate
the surface of an element the key surface=* is used, where * would be replaced with the
corresponding value (https://wiki.openstreetmap.org/wiki/Key:surface). So the definition of
the different areas of the use case were defined as follows: area=yes and surface=grass for areas
area_1, area_2, and area_3; area=yes and surface=mud for area area_4.

• Paths: The key highway=* (https://wiki.openstreetmap.org/wiki/Key:highway) in
OpenStreetMap identifies any type of road, street or path. On the other hand, the key-value pair
highway=footway (https://wiki.openstreetmap.org/wiki/Tag:highway%3Dfootway) is used to
define paths that are used exclusively by pedestrians. Thus, the entities path_1 and path_2 are
defined by the following tags: highway=footway and surface=asphalt.

• Walls: The key barrier=* (https://wiki.openstreetmap.org/wiki/Key:barrier) establishes that
it is a physical structure that blocks or impedes movement through it, replacing the * with the
corresponding value. Thus, the entities wall_1, wall_2, and wall_3 of the use case were defined
by the following tag: barrier=wall.

Figure 7 shows the result modeled in OpenStreetMap for the proposed use case.

https://josm.openstreetmap.de/
https://wiki.openstreetmap.org/wiki/Key:building
https://wiki.openstreetmap.org/wiki/Key:amenity
https://wiki.openstreetmap.org/wiki/Key:area
https://wiki.openstreetmap.org/wiki/Key:area
https://wiki.openstreetmap.org/wiki/Key:surface
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Tag:highway%3Dfootway
https://wiki.openstreetmap.org/wiki/Key:barrier


ISPRS Int. J. Geo-Inf. 2020, 9, 169 14 of 21

Figure 7. View of the use case from the perspective of OpenStreetMap with JOSM.

Then, the proposed approach was applied to this OSM model to obtain a space representation
according to the IndoorGML standard, with two well-differentiated layers. The olc-layer was comprised
of 4251 states associated to their corresponding cells, describing the OLCs contained in the area defined
by the use case. The building-layer was composed of 12 states associated to their corresponding cells,
representing the different elements of type way contained in the OpenStreetMap model from the
previous step.

In addition to the layers, states, cells, and their corresponding boundaries, the resulting model
contained all the transitions identifying the connections between the different states and the relations
InterLayerConnection specifying which states of the layer olc-layer overlap with the states of the
layer building-layer. The resulting model is illustrated in Figure 8 using the IndoorGML-Viewer
(https://github.com/STEMLab/IndoorGML-Viewer). The different cells delimiting spaces OLC and
the buildings can be seen with navy blue lines, as well as the transitions (in pale blue) between states
(white dots).

Figure 8. View of the final model of the use case with the IndoorGML-Viewer.

To work with an indoor space, Building_1 was modeled, corresponding to a real office building
(Technology and Information Systems Building mentioned at the beginning of this section). This model
was made using the JIneditor (https://github.com/STEMLab/JIneditor), an open-source Java program
that provides tools for simple editing of IndoorGML data. Although JIneditor has been selected, there
are several tools recommended by OGC (http://www.indoorgml.net/resources/) that support the
editing of IndoorGML models, such as Infactory or InEditor. A screenshot of the building model is
shown in Figure 9.

https://github.com/STEMLab/IndoorGML-Viewer
https://github.com/STEMLab/JIneditor
http://www.indoorgml.net/resources/
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Figure 9. View of the indoor model of the main building of the use case with IndoorGML-Viewer.

As mentioned at the beginning of this section, the model was used in a routing system to generate
a point-to-point path to validate the proposed work. Figure 10 represents the simplest case, where the
route obtained to go from a room on the second floor of Building_1 to the entrance of Building_2
corresponds to the shortest path, in terms of the number of cells to be visited, without taking into
account any other aspects. To achieve this result the following procedure was followed. First we
created a graph where each state associated to the olc-layer was represented by a different node of the
graph. Additionally, for each transition between the states of this layer, a link was created in the graph
between the nodes that represent those same states. Note that when considering only the number
of covered cells, the weight of all edges was set to value one. Finally, in order to calculate the route,
the Dijkstra algorithm was used. Note also that since the NRG from which the graph was constructed
represents both indoor and outdoor connectivity, it was possible to calculate routes between any two
points of the model regardless of their nature, even from indoor to outdoor spaces and vice versa.

Figure 10. Indoor-to-outdoor route without taking surfaces into account.

Although the calculation of routes between indoor and outdoor points already constitutes
an advancement over the state-of-the-art, the true potential of the proposed approach lies in the
possibilities that result from the availability of higher-level information. In this case, routes can be
calculated considering more advanced aspects such as the type of area, the use of the building, or the
restrictions associated to reduced mobility. For example, the route shown in Figure 11 can be offered
to people in wheelchairs because it promotes firm surfaces such as asphalt over others such as grass.
To this end, it is only necessary to change the weight of the edges of the graph taking into account
the information provided in the model. In this case, the surfaces whose transitability is simpler (e.g.,
asphalt) have lower weights associated, while on the contrary, those surfaces that are less suitable for
transit (e.g., mud) have higher weights associated. Listing 1 shows the pseudocode of the process for
the construction of the new graph. As it can be observed, it is only necessary to assign a specific weight
to the edges of the graph according to the type of surface that corresponds with the cell of the osm-layer
in which the OLC cell represented by the node of the graph is contained.
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Listing 1: Pseudocode for the creation of the graph, taking surfaces into account.

surface_weighs = { asphal t : 1 , grass : 10 , mud : 100}
graph = newGraph ( )
olc−l a y e r = getLayer ( " olc−l a y e r " )

f o r each s t a t e in olc−l a y e r :
node = newNode( s t a t e )
graph . addNode ( node )

f o r each t r a n s i t i o n in olc−l a y e r :
s t a t e 1 , s t a t e 2 = t r a n s i t i o n . getConnectedStates ( )

interConnectedStateInOSMLayer1 = s t a t e 1 . I n t e r c o n n e c t e d S t a t e (osm−l a y e r )
interConnectedStateInOSMLayer2 = s t a t e 2 . I n t e r c o n n e c t e d S t a t e (osm−l a y e r )

sur face1 = interConnectedStateInOSMLayer1 . Surface ( )
sur face2 = interConnectedStateInOSMLayer2 . Surface ( )

weight = max( surface_weighs [ sur face1 ] , surface_weighs [ sur face2 ] )
graph . addEdge ( t r a n s i t i o n , weight )

Figure 11. Indoor-to-outdoor route taking the surfaces into account.

Figure 12 presents the results of a battery of tests performed on the proposed use case. The purpose
of these tests was to verify that the model is fully applicable to the case of route calculation and check
if it brings real benefits in the quality of the routes. Toward this end, 10 pairs of OLC cells of the
model were randomly calculated, which would serve as the origin–destination of each of the tests.
For each of these pairs of cells, the calculation was executed 100 times for both variants (considering
surfaces and not considering them) and the mean of the obtained results was calculated. Each
variant was executed 100 times in order to obtain uniform results and correct deviations caused
by external issues to the execution of the algorithm (higher load in the PC, operating system, etc.).
The specification of the equipment in which the tests were performed corresponds to a basic equipment
(https://mega.nz/#!rR4UUapQ!-lf5ogm6-8V8sEidxpR-JLWUKYPyVX0D-2DQi2DBWX4). As can be
observed, the obtained times were below 200 ms, demonstrating that the proposed model is applicable,
at least in scenarios of similar characteristics where it is required to calculate routes.

https://mega.nz/#!rR4UUapQ!-lf5ogm6-8V8sEidxpR-JLWUKYPyVX0D-2DQi2DBWX4
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Figure 12. Performance for random tests, taking and not taking the surfaces into account.

5. Conclusions

The emergence of paradigms such as the Internet of Things (IoT), smart city, or smart buildings
demands more advanced space representation systems than those normally employed due to the large
variety of information that is generated. Toward this end, it is necessary to address the limitations
of standards that, to date, do not provide enough flexibility in the integration of heterogeneous
information, in the division of space, or that simply do not support the combined modeling of indoor
and outdoor spaces. Furthermore, these standards tend to focus on geometric aspects, with the low
level of semantic expressiveness that generally prevents a comprehensive interpretation of the space
or the impossibility of representing the same space from different points of view. Although these
problems have been tackled in isolation, it is necessary to find a solution capable of addressing all
these challenges as a whole.

The work presented in this paper proposes a comprehensive approach to the aforementioned
challenges, based on the application of the IndoorGML standard to outdoor spaces. The multi-layered
nature of IndoorGML is used to propose different levels of abstraction, thus incorporating the
advantages offered by other standards such as Open Location Code or OpenStreetMap. The Open
Location Code standard is used to represent the space to be modeled at the lowest abstraction level.
At the same time, the OpenStreetMap system divides the space according to more abstract entities, such
as streets, parks, gates, etc., while also incorporating associated semantics. Leveraging the mechanisms
offered by IndoorGML, all these layers are related through inter-layer relations, thus connecting
the different levels of abstraction and points of view according to the needs. Finally, the proposed
approach also supports the integration of IndoorGML models of buildings contained in the region of
the modeled space, resulting in a single model with indoor and outdoor information.

Ultimately, it is worth mentioning that, although the examples shown in the validation process
were applied to navigability issues, the combined description of indoor and outdoor spaces with
information that goes beyond the purely geometric level opens up many possibilities in the field of
intelligent cities and buildings. One feasible application could be the categorization of the space by
information implied in the explicit definition of the model. That is to say, for example, that knowing
that X, Y, and Z are different spaces, and some dangerous events have occurred in X and Y, we could
get a discretization of the space with divisions by the level of danger in which X and Y would appear
combined as a dangerous space. This information would be extracted without a specific layer about
that issue, even at the building level, because of the possibility of working with indoor and outdoor
spaces using the proposed approach. These advantages could also be applied to other fields that are
not directly related to smart cities and smart buildings where this ability to represent a space from
different points of view can open many possibilities. An example of this could be the management
of an industrial sea port for the transport of goods where, in addition to having the spatial and
geometric description of the exterior and the warehouses, it could also be very interesting to have
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additional layers of information that allow the same space to be represented but describing the type of
merchandise arranged in each place, the state of availability of the space, etc.

Going further, the modeling of the action range of certain devices as is done in IndoorGML and
structured according to the proposed model could be used by systems with certain spatio-temporal
reasoning capabilities to solve problems in common areas of smart cities and smart buildings. For this
reason, as a future work we would like to experiment by enriching models with new layers of
higher-level information to solve complex problems that require integrating and reasoning about
information of a very varied nature.

However, the approach proposed in this paper has some limitations that should be mentioned.
On the one hand, we find the drawback that although IndoorGML is a widely accepted standard by
the scientific community for modeling indoor environments, buildings are normally not modeled
in this format. Therefore, on many occasions we will have to generate the model ourselves through
the different existing alternatives: modeling the building manually using the tools provided by the
community or generating that model automatically from the building model if it exists previously.
The latter alternative also has limitations, since the tools to automatically generate IndoorGML models
from the most common standards such as IFC have significant shortcomings and limitations. On the
other hand, on certain occasions we may have the problem that the outdoor region we want to represent
is not initially modeled in OpenStreetMap, that it contains errors or that it is simply incomplete.
Therefore it would be necessary to model, correct, or complete this region of space ourselves. However,
as already mentioned throughout the text, several studies have shown that the quality of the data
available in OpenStreetMap is getting better and more abundant.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
OSM OpenStreetMap
IFC Industry Foundation Classes
CityGML City Geography Markup Language
BIM Building information modeling
LBS Location-Based Service
ADAS Advanced driver-assistance systems
GPS Global Positioning System
OLC Open Location Code
OGC Open Geospatial Consortium
LoD Level of detail
IESM Indoor Emergency Spatial Model
gbXML Green Building XML schema
BEM Building energy model
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VGI Volunteered geographic information
NRG Node-relation graph
UBM Unified Building Model
RFID Radio Frequency Identification
CRS Coordinate reference system
IMDF Indoor Mapping Data Format
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