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Abstract: Automatic water body extraction method is important for monitoring floods, droughts,
and water resources. In this study, a new semantic segmentation convolutional neural network named
the multi-scale water extraction convolutional neural network (MWEN) is proposed to automatically
extract water bodies from GaoFen-1 (GF-1) remote sensing images. Three convolutional neural
networks for semantic segmentation (fully convolutional network (FCN), Unet, and Deeplab V3+) are
employed to compare with the water bodies extraction performance of MWEN. Visual comparison
and five evaluation metrics are used to evaluate the performance of these convolutional neural
networks (CNNs). The results show the following. (1) The results of water body extraction in
multiple scenes using the MWEN are better than those of the other comparison methods based on the
indicators. (2) The MWEN method has the capability to accurately extract various types of water
bodies, such as urban water bodies, open ponds, and plateau lakes. (3) By fusing features extracted at
different scales, the MWEN has the capability to extract water bodies with different sizes and suppress
noise, such as building shadows and highways. Therefore, MWEN is a robust water extraction
algorithm for GaoFen-1 satellite images and has the potential to conduct water body mapping with
multisource high-resolution satellite remote sensing data.

Keywords: convolutional neural network; water body extraction; GaoFen-1; multiple scales;
deep learning

1. Introduction

Water is the basic substance for human society’s production and development [1]. Surface water
bodies play important roles in Earth’s material and energy cycles [2,3]. Since satellite remote sensing
data can capture large-scale surface information in little time and with low costs, the data have
been used in water body surveys [4]. Multiple remote sensing data, including optical data [5] and
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radar data [6], have been used for water body information extraction. The current water information
extraction methods include the threshold method [7], machine learning [8,9], and deep learning [10,11],
etc. The threshold method is a conventional method for water body extraction. The threshold method
selects an appropriate threshold to distinguish water bodies and other objects in one or more bands [7].
Because the spectral characteristics of water in the near-infrared (NIR) band are significantly different
from those of other objects, the NIR band is very popular in threshold segmentation [12]. To further
highlight the difference between water bodies and surrounding features, water indexes have been
developed [13]. However, the water index method has some problems. One is that objects with similar
spectral characteristics, such as mountain shadows, cloud shadows, and highways, can be easily
confused with water bodies, which makes it difficult to select thresholds. In addition, the threshold
selected in large-scale water extraction may not be applicable to local areas [14]. With the development
of machine learning, traditional machine learning algorithms, such as decision tree (DT) [15], support
vector machine (SVM) [6], and random forest (RF) [9], have been widely used in water body extraction.
These algorithms perform classification by using artificially designed features, including spectral and
textural features. However, artificially designed features require considerable professional domain
knowledge and artificially designed features are usually based on a specific scale of images. A standard
way to extract artificially designed features from images at multiple scales is resampling the images
to different scales and extract features based on the images with different scales. Thus, the process
requires intensive computation with time consuming. In addition, different feature vectors are needed
for different images and the feature vectors have great impacts on the final classification results. These
issues make applying machine learning to water extraction challenging.

Deep learning is a popular method in image processing during the past several years [16,17].
Convolutional neural networks (CNNs) have been used in scene classification [18], semantic
segmentation [19], and object detection [20,21]. The advantage of CNNs is to capture the features
from raw images directly by multiple convolutional layers [22], which can avoid the complex feature
processing. CNNs for semantic segmentation are capable of performing image classification at pixel
level, which is important for information extraction from remote sensing images. In CNNs, the shallow
convolutional layers are able to capture the pixel position information and the deep convolutional
layers are used to label the pixels [22]. The fully convolutional network (FCN) is the first end-to-end
CNN designed for semantic segmentation [19]. FCN extracts abstract features from the input image
and labels each pixel in the feature maps extracted by the last convolutional layer. However, FCN
loses information contained in low-level features extracted by shallow convolutional layers. In recent
years, many models, such as Unet [23] and Deeplab V3+ [24], have been developed to improve the
performance of CNNs for semantic segmentation in the field of computer vision. CNNs are gradually
being applied to water information extraction with remote sensing images. In [10], CNN was firstly
used for water body extraction in Landsat ETM+ images. The structure of the CNN contained only
two convolutional layers and a fully connected layer. The shallow structure allows it to capture only
low-level features which results in poor robustness in complex scenes. In addition, the input tile (19
× 19) is small in the CNN model. Thus, it cannot be used to extract features at large scales. With
the improvement of the spatial resolution of satellite images [25], various methods based on deep
learning have been proposed for water body extraction in high-resolution images. A CNN method
that combines the super pixel was proposed by Chen, Y, et al. [11]. The core idea is to combine artificial
designed features and CNN extraction features. However, the process reduces the fluidity of the
water extraction and misses some useful information during forward propagation. In recent years,
end-to-end CNNs, such as fully convolutional network (FCN) [26] and DeepWaterMap [27] have
been applied to water body extraction. These end-to-end CNNs greatly improved the accuracy and
efficiency of water body extraction. There are still challenges in the application of CNNs in water
body extraction: (1) In the process of forward propagation, the resolution of feature maps is reduced
due to the repeated max-pooling layers, which leads to the loss of detailed water body information.
(2) The receptive fields of pixels are different in the feature maps extracted by the convolutional layers at
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different depths, which allows these feature maps to contain feature information at different scales [22].
The combination of the features extracted at multiple scales in water body extraction still needs to
be explored.

This paper aims to propose an improved convolutional neural network (CNN), named multi-scale
water extraction convolutional neural network (MWEN), for water body extraction for GaoFen-1
images. For the first challenge, the encoder-decoder structure is used in the MWEN inspired by the
Unet [23]. The encoder extracts the features from the input images and obtains feature maps with low
resolution. The role of the decoder is to map the feature maps to the input resolution feature maps.
For the second challenge, a structure, named the multi-scale feature extractor (MTFE), is proposed
to capture features at multiple scales. Objects exist at various scales in remote sensing images and
geological correlations may exist between adjacent objects. Features extracted by CNNs at different
scales contain various information [28]. In the MTFE, four dilated convolutional layers with different
dilation rates are used to learn features from images with different receptive fields.

The structure of the remainder of this article is as follows. First, GaoFen-1 high-resolution remote
sensing satellite images in Beijing-Tianjin-Hebei region, Zhejiang province, and Tibet province in China
are collected for the dataset and preprocessed. Then, four CNNs are employed to extract water body
information. Finally, the accuracies of these algorithms are compared based on five accuracy metrics
and a visual comparison.

2. Materials and Methods

2.1. Data

In this study, 24 GaoFen-1 images (17 for training and 7 for testing) located in Beijing-Tianjin-Hebei
region, Zhejiang province, and Tibet province in China were collected as the experiment dataset
and these images are showed in Figure 1. Four multispectral bands with a spatial resolution of
8 m and panchromatic band with a spatial resolution of 2 m are included in GaoFen-1 images.
The radiation resolution of both the panchromatic band and multispectral bands is 16 bits. The spectral
and textural characteristics of the water bodies in different regions are quite different, and the
environments surrounding the water bodies are complex. To test the universality of these CNNs for
water body extraction, environment characteristics, such as spectral, textural, season, water environment
characteristics and confusing areas, such as shadows, highways, and ice are considered in the dataset.
The detail information of the dataset is shown in Table 1.

Table 1. Detailed information of dataset.

Images Location Acquisition Times Water Types Major Confusing
Objects

a1-a8 Tibet province July, 2014 and
August, 2016

Plateau lake, Plateau river,
Saline lake

Cloud shadows,
Saline land

b1-b7 Beijing-Tianjin-Hebei
region

January, September
and October, 2019

Agricultural water, town
water, city water

Building shadows,
sports field,
highways.

c1-c9 Zhejiang province April, 2017 and
October, 2019

Agricultural water, town
water, woodland water,

city water

Mountain shadows,
wetland, roads
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2.2. Methods

The methods can be divided into four parts: image preprocessing, sample generation,
water information extraction, and accuracy assessment. In the image preprocessing part, the Rational
Polynomial Coefficient (RPC) model is used to geometrically correct these images [29]. Then,
the multispectral and panchromatic images fusion was conducted using PANSHARP method [30].
The image preprocessing part was conducted based on the PCI Geo Imaging Accelerator software.
The geometric errors of the images after preprocessing were within 1 pixel. In the second part, the water
bodies in the fused images are labeled. These images and labels are clipped to 512 × 512 pixels and
divided into a training dataset and a validation dataset. In the third step, MWEN (multi-scale water
extraction convolutional neural network), MWEN “without MTFE”, FCN, Unet, and Deeplab V3+

are employed to extract the water bodies. Finally, the accuracy comparison for different methods
are conducted using visual comparison and quantitative evaluation metrics. The flowchart is shown
in Figure 2.

2.2.1. Sample Generation

The labels in the dataset are from the fusion images and cover all water types mentioned in
Section 2.1. The labels consist of water areas and background areas. All the labels in the dataset
are binary images, where 1 represents water body and 0 represents background. All of the images
were labeled via visual interpretation. These images were divided into training images and test
images (17 for training and 7 for test). Both the training images and test images contain all water
types mentioned in Table 1. These training images and training labels were clipped to samples with
512 × 512 pixels. A training sample library containing 13,509 samples from training images was
obtained. The samples in the training sample library contains all water pixels in training images.
Some areas without surface water bodies are also contained in these samples. The training sample
library was divided into two parts. Ninety percent of the training samples were used as the training
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dataset and the remaining small part was used for the validation dataset. The role of the validation
dataset is to reflect the generalization ability of the model parameters and indicate whether the model
is overfitting during training process. Both the validation dataset and training dataset were from the
training images, which reduced the generalized representation of the validation dataset. To get a more
generalized training model, the samples from the images other than the training image are needed for
the validation dataset. In this study, a random part of each image in the test images was selected and
clipped to 512 × 512 pixels to enrich the validation dataset. The final validation dataset consisted of
1651 samples from test images and 1350 samples from the training images.
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2.2.2. Multi-Scale Feature Extractor

Dilated convolution was originally used for the wavelet transform [31] and has been used in
convolutional neural networks for semantic segmentation [32]. The convolution kernel with holes
(or gaps) is used in the dilated convolution. The number of gaps inserted in the kernel depends on
the dilation rate r. The dilation rate is prerequisite when a convolution kernel is defined. The dilated
convolution with filter dilation rates of 0, 1, and 2 are shown in Figure 3. The kernel with a dilation rate
of 0 is the same as the standard convolution kernel. The convolution kernels with different dilation
rates have different receptive fields. The combination of dilated convolutions with different dilation
rate kernels can capture the features at different scales.
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In remote sensing images, the sizes of water bodies are diverse and there are many confusing
objects in high-resolution images, such as building shadows, mountain shadows, and sports fields,
whose spectral characteristics are similar to those of water body. The combination of features extracted
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at multiple scales is important in dealing with these issues. In this study, a structure, named multi-scale
feature extractor (MTFE) is proposed. Dilated convolutions with various rates are used in the MTFE to
extract the features at multiple scales. The structure of the MTFE is given in Figure 5. An example of
feature extraction at multiple scales by dilated convolution with different rates is shown in Figure 4.
As we can see in Figure 4b, the standard convolution (dilated convolution with a rate of 0) can only
get the information of the surrounding 9 pixels, all of which lie in building shadows. It is difficult to
identify the pixel at the center of the convolution kernel because shadows and water bodies have similar
spectral characteristics. In the dilated convolutions with rates of 2, 4, and 8, the features are extracted
at different scales and the information of the buildings and woods is captured. The combination of
extracted features at these different scales is important for the distinction of building shadows.
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examples of dilated convolution with dilation rate 0, 2, 4, 8, respectively.

2.2.3. Convolutional Neural Networks (CNNs) for Water Extraction

A multi-scale water extraction convolutional neural network (MWEN) for surface water
information extraction is proposed. The structure of the MWEN is shown in Figure 5. The MWEN
can be divided into three parts: encoder, multi-scale feature extractor (MTFE), and decoder. In the
first part, the input data are encoded by the encoder and feature maps with an output stride of 16 are
obtained. In the multi-scale feature extractor (MTFE) part, the feature maps from the encoder are fed
to four dilated convolutions with different rates. These dilated convolutions with different rates can
learn features at different scales. Then, the feature maps generated by these dilated convolutions are
concatenated and integrated by three convolutional layers. In the decoding part, the feature maps are
decoded by the decoder to obtain the water segmented images.
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To examine the importance of MTFE to the segmentation results, both of the MWEN structure
“with MTFE” and “without MTFE” were trained for water body extraction. The other three kinds
of convolutional neural networks (CNNs) used for semantic segmentation, the FCN [33], Unet [23],
and DeepLab V3+ [24], were also selected in this study for comparison. The water body extraction
process using CNNs contains three steps: data augmentation, forward propagation, and model training.

• Data augmentation: Date augmentation is performed before training. In this step, the input
samples are randomly processed in three ways, including flipping, zooming, and panning.
All samples in the training dataset are randomly processed before every training epoch, and the
number of training samples for every training epoch does not change. The data augmentation
results for the three samples are shown in Figure 6.
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Then, the data are normalized. The fused GF-1 data have a radiation resolution of 16 bits, with
DN values ranging from 0 to 65535. To improve the accuracy and training efficiency of convolutional
neural networks (CNNs), the input images are normalized. The normalization converses each input
image into a feature map with a mean of 0 and a variance of 1. The formulas are as follows:

µ =
1

w× h× c

w∑
i=1

h∑
j=1

c∑
z=1

DNi, j,z (1)

σ2 =
1

w× h× c

w∑
m=1

h∑
n=1

c∑
z=1

(DNm,n,z − µ)
2 (2)

DNm,n,z =
DNm,n,z − µ
√

σ2
(3)

where µ is the average of the input image array, and w, h, and c are the width, height, and the number
of channels of the input image, respectively. DNm,n,z is the DN value of the pixel in row n, column m,
and channel z. σ2 is the variance of the input image. DNm,n,z is the DN value of the pixel in row n,
column m, and channel z after normalization.
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• Forward propagation: The normalized sample is fed into the CNN and a feature map is obtained
after forward propagation. The output of the CNN is a feature map with a size of 512 × 512 ×
channels (where the channels are the number of classes). In this study, the number of channels is 2
(water bodies and backgrounds). Then, the feature map is activated by an activation function.
The log softmax function is used as the activation function and the argmax function [34] is used to
get the final water maps in this study. The formula of the activation function for each pixel in the
feature maps is as follows:

P(m) = log(
em

c∑
n=1

en
) (4)

where P(m) is the data value of the pixel in channel m. c is the number of classes (2 in this study to
reflect the water and background).

• Model training: The cross-entropy loss function [35] and the back propagation algorithm [36] are
used when training the CNNs. The mean cross-entropy and the sparse categorical accuracy [37]
are calculated between the labels and the predicted maps by the CNN forward propagation. To
minimize the cross entropy, the Adam optimizer [38] is applied to identify the weights and biases
in the back-propagation process. In this study, the weights of the CNNs model are trained on
training dataset and weights with the highest parse categorical accuracies on the validation dataset
are selected as the training results.

2.2.4. Accuracy Assessment

The performances of these convolutional neural networks (CNNs) are thoroughly evaluated
via visual comparison and five evaluation metrics. The visual comparisons contain the comparison
between MWEN “with MTFE” and “without MTFE” and the comparison between MWEN, FCN,
Unet, and Deeplab V3+ on regions with different types of surface water bodies and confusing objects.
Regarding the evaluation metrics, five evaluation metrics are used to evaluate the accuracy in this study,
including the Overall Accuracy (OA) [30], the True Water Rate (TWR), the False Water Rate(FWR),
the Water Intersection over Union (WIoU) [30], and the Mean Intersection over Union (MIoU) [39].
The definitions and formulas of these indicators are listed in Table 2.

Table 2. Five evaluation metrics for the accuracy assessment.

Evaluation Index Definition Formula

OA The ratio of the correctly classified number of
pixels and the total number of pixels OA = TP+TN

TP+TN+FP+FN × 100%

TWR
The ratio of the number of properly classified

water pixels and the number of labeled
water pixels

TWR = TP
TP+FP × 100%

FWR The ratio of the number of misclassified water
pixels and the number of labeled water pixels FWR = FP

FP+TP × 100%

WIoU
The ratio of the intersection and the union of

the ground truth water and the predicted
water area.

WIoU = TP
FN+TP+FP

MIoU The average IoU for all classes (water
and background) MIoU = 1

k+1

k∑
i=0

TP
FN+TP+FP

where TP, TN, FN, and FP represent the numbers of pixels of true water, true background, false background,
and false water, respectively.
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3. Results

3.1. Model Training

The training processes were conducted using Python3.6, Keras, and TensorFlow on a NVIDIA
Titan GPU with cuDNN 10.0 acceleration. The categorical accuracies on the training dataset and
validation dataset are calculated at the end of each training epoch. The weights with the highest
categorical accuracies are used for water extraction in next steps. The highest validation accuracies of
these models are shown in Table 3. The training accuracy and validation accuracy curves are shown in
Figure 7. The training and validation accuracy curves of these models grow slowly after the 15th epoch
and some even show downward trends after the 25th epoch. There is a large gap between the training
accuracy curve and the validation accuracy curve of the Deeplab V3+. The Deeplab V3+ appeared to
overfit when it is directly used in water body extraction from remote sensing images. The efficiency of
training models is affected by many factors. The efficiency of the CNNs are simply compared via the
number of trainable parameters and training time in this study. The efficiency comparison of these
CNNs are shown in Table 4. The FCN has the most parameters but less training time. The Deeplab
V3+ has the longest train time due to its complex and deep model structure. The MWEN and Unet
have fewer parameters and less training time.

Table 3. The highest validation accuracy of CNN models in training process.

CNN MWEN MWEN without MTFE FCN Unet Deeplab V3+

Highest validation accuracy 0.987 0.981 0.978 0.983 0.957
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and Deeplab V3+, respectively.

Table 4. The efficiency comparison of the various methods.

CNN Number of Trainable Parameters (Million) Training Time (s/epoch)

MWEN 3.72 1343
MWEN without MTFE 1.57 1161

FCN 5.71 1345
Unet 3.11 1366

Deeplab V3+ 4.11 2161
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3.2. Water Extraction Results on the Test Dataset

The results of the water body extraction using these CNNs on the test images are shown in Figure 8.
As can be seen from the figure, the water body prediction results of these CNNs are different. For
Regions a and g, more confusing objects are contained in these two regions than the others, which makes
the CNNs more prone to make mistakes. The roads and the building shadows are misclassified using
Unet and Deeplab V3+ in these two regions. For Regions e and f, there are some detailed water bodies
that are missed by the FCN and MWEN “without MTFE”. Although performances of these CNNs are
similar in Regions b, c, and d across these images, there are still differences in details. Some details are
derived from these results and shown in Section 3.3. Figure 8 shows that MWEN has the capability to
capture detailed water and suppresses noise better than the others.
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Figure 8. The results classified by the four CNNs on the test dataset. (a1–g1) are the original images,
(a2-g2), (a3-g3), (a4–g4), (a5–g5), (a6–g6), (a7–g7) are the water body information extracted by artificial
interpretation, MWEN, MWEN “without MTFE”, FCN, Unet, Deeplab V3+, respectively. The areas in
yellow circles are the areas water bodies greatly differ. Blue parts of the pictures represent the extracted
water bodies and black parts of the pictures represent the background.
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3.3. Accuracy Analysis

To analyze the universality of the MWEN method, different water types are analyzed. The accuracy
comparisons via the evaluation metrics are shown in Section 3.3.1, the comparisons between MWEN
“with MTFE” and “without MTFE” are shown in Section 3.3.2, and the accuracy comparisons via the
visual comparison between MWEN, FCN, Unet, and Deeplab V3+ are shown in Sections 3.3.3 and 3.3.4.

3.3.1. Accuracy Comparisons via the Evaluation Metrics

To quantitatively analyze the water body extraction accuracy, the metrics mentioned in 2.2.3
were calculated based on the water maps predicted by the CNNs and the ground truth. Results are
summarized in Table 5. As can be seen from the table, the MWEN outperforms the others in the OA,
FWR, WIoU, and MIoU [30]. Deeplab V3+ is one of the best CNNs for semantic segmentation. In this
study, Deeplab V3+ performs poorly in the OA, FWR, WIoU, and MIoU, but it performs the best in the
TWR. Deeplab V3+ may be suitable for datasets with complex scenes, but it appears to be overfitting
when training for water extraction.

Table 5. Water body extraction accuracies of the various methods.

CNN OA (%) TWR (%) FWR (%) WIoU MIoU

MWEN 98.62 92.34 0.61 0.880 0.932
MWEN without MTFE 98.35 91.58 0.86 0.863 0.916

FCN 98.52 91.40 0.62 0.870 0.927
Unet 98.18 92.82 1.16 0.849 0.914

Deeplab V3+ 91.82 96.92 8.81 0.566 0.737

3.3.2. Performance Comparison for MWEN and MWEN “Without Multi-Scale Feature
Extractor (MTFE)”

Feature maps extracted by CNN at different scales contain various information. In this study,
the multi-scale feature extractor (MTFE) is proposed to capture the features at multiple scales. In order
to examine the importance of features extracted by MTFE for water extraction, results containing
ponds and rivers with different sizes, and building shadows are derived from the result water maps
mentioned in Section 3.2. The comparisons between the MWEN “with MTFE” and “without MTFE”
are shown in Figure 9.

For the pools with different sizes in Figure 9a, both of the MWEN “with MTFE” and “without
MTFE” can identify larger ponds, but the latter has obvious disadvantages for addressing the smaller
pool information in Figure 9(a4). Moreover, tiny rivers cannot be identified by the MWEN “without
MTFE” in Figure 9(b4,c4). Regarding confusing objects, the highway and some building shadows
are mixed by the MWEN “without MTFE” in Figure 9(d4,e4). This may result from the relevance
information between objects, such as the relationship between buildings and shadows, being ignored
by MWEN “without MTFE”. The relevance information may be contained in the features extracted by
the convolution kernel with a large expansion rate. Figure 9 shows that MTFE plays an important role
in extracting water bodies with various sizes and suppressing noise.

3.3.3. Performance Comparison for Different Water Types

Different surface water bodies, including open ponds, plateau rivers and lakes, city waters and
agricultural water bodies, are taken from the results to assess the universality of the MWEN algorithm.
The performances of the MWEN are compared with those of the FCN, Unet, and Deeplab V3+ based
on the visual inspection. The performance comparison is shown in Figure 10.

For the open pools in Figure 10a, the comparison shows that all four CNNs are able to extract the
large open pools. The smaller open pools are missed when using the FCN in Figure 10(a4). The results
for agricultural waters show that detailed boundary information is missing by the FCN and Deeplab
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V3+ in Figure 10(b4,c4,c6). Rough boundaries and mixing between water and wetlands appear when
using the Unet in Figure 10(c5). Regarding plateau rivers and lakes, it can clearly be seen that the parts
of rivers and lakes are missing by the FCN and Deeplab V3+ in Figure 10(d4,d6,e4,e6). The results for
small puddle and tiny rivers in city demonstrate that the small puddle and tiny rivers are missed by
the FCN and Unet in Figure 10(f4,g4,g5). Affected by urban buildings and other objects, the results
extracted by the Unet and Deeplab V3+ contain more noises in Figure 10(f5,f6,g6).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 19 
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Figure 10. Typical surface water classification results. a(1) is the original image with open pools,
and a(2–6) represent the water body information extracted from a(1) by artificial interpretation, MWEN,
FCN, Unet, DeepLab V3+, respectively. Additionally, b, c, d, e, f, g give the experimental results of
water body extraction from different images with agricultural water, plateau river, plateau lakes, small
water bodies, and tiny rivers, respectively. Blue parts of the pictures are the extracted water bodies and
black parts of the pictures are the backgrounds.

From Figure 10, it can be seen that MWEN performs better than the other algorithms. The FCN
loses much detailed information for surface water body, which leads to blurred boundaries and the
absence of small water bodies. Unet and Deeplab V3+ can better extract detail information of the water
body compared with FCN but may be confused with objects with spectral characteristics to similar
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water. Figure 10 shows that the MWEN has the ability to extract different types of water bodies and
the universal performance is better than other.

3.3.4. Performance Comparison for Confusing Areas

In high-resolution remote sensing images, some objects have spectral features or texture features
similar to those of water bodies. It is a challenge to distinguish water bodies from these objects. To
examine the reliability of these CNNs in distinguishing water bodies from confusing areas, the water
body extraction results for confusing areas, such as building shadows, sports fields, and highways, are
shown in Figure 11.
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Figure 11. The results of the four methods for confusing regions. a(1) is the original image with building
shadows, and a(2–6) represent the water body information extracted from a(1) by artificial interpretation,
MWEN, FCN, Unet, DeepLab V3+, respectively. Additionally, b, c, d, e give the experimental results of
water body extraction from different images with playgrounds, shade net, highways and mountain
shadows, respectively. Blue parts of the pictures are the water bodies and black parts of the pictures are
the backgrounds.

For the building shadows shown in Figure 11a, the MWEN, FCN, and Unet can better suppress
noise, while Deeplab V3+ does not remove the building shadows, which may be caused by overfitting
during training. Figure 11b demonstrates that all of these CNNs cannot clearly remove the noises from
the sports field, but the MWEN and FCN perform better than the others. For the areas in Figure 11c,d,
the Unet and Deeplab V3+ obviously mix the surface water body and other objects. For the mountain
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shadow area in Figure 11e, all four CNNs can clearly remove the noise. The performance comparison
in confusing areas shows that the noises from the sports field, shade net and highway still exist in
the results based on Unet and Deeplab V3+. The MWEN and FCN achieve better performances in
suppressing the noise than the others.

4. Discussion

With the improvement in the temporal and spatial resolution of remote sensing data [25],
many meaningful works have been conducted on water body information extraction with
high-resolution remote sensing data [40,41]. Deep learning has been a hot topic in recent years [42],
and it shows great promise in water body extraction with high-resolution remote sensing data. In this
study, a new CNN named MWEN is proposed for water body extraction for GaoFen-1 images.
The extraction accuracy of water bodies on the test dataset is evaluated by five evaluation metrics and
visual comparison. The results show that MWEN has the ability to extract water bodies with different
sizes and can accurately capture the boundaries of water bodies. In addition, MWEN can suppress
noise better than Unet and Deeplab V3+.

The different performance in water body extraction may relate to the structures of these CNNs. FCN
has been applied to water body extraction in previous research [26]. The FCN based methods extract
features by several convolutional layers from the image and then perform water body segmentation
based only on the low-resolution feature maps extracted by the last convolutional layer. The water
maps are mapped to the original image resolution by upsampling. However, the upsampling process
is not sensitive to the details in the image, which leads to small water bodies to be ignored and
the boundaries of water bodies are smoothed. The Unet combines the structure of the encoder and
decoder, and features at multiple scales are fused through skip connection between the encoder and
decoder [23]. This is good for extracting the accurate boundaries of water bodies and capturing
detailed information in the image. However, the Unet fuses too many low-level features extracted by
the shallow convolutional layers. These low-level feature maps may be related to mistakes for noises
that have similar spectral characteristics with water bodies. Deeplab V3+ is one of the state-of-the-art
CNNs in the field of computer vision [24]. Deeplab V3+ uses ASPP pyramids to extract features at
multiple scales and uses a decoder to restore the resolution of the feature maps. The Deeplab V3+ does
not perform well in this study, which may be related to its complex structure. It may be suitable for
pixel-level segmentation in complex scenes. It is prone to overfit in water body extraction. Motivated
by the Unet [23] and Deeplab V3+ [24], the MWEN is proposed in this study. In the MWEN, the MEFT
structure is proposed for capturing features at multiple scales and the encoder-decoder structure is
used to restore the resolution. Compared with Deeplab V3+, the MWEN contains fewer convolutional
layers and fewer trainable parameters, which effectively suppresses overfitting. The structure of
MWEN makes it perform better in water body extraction for high-resolution images. Although MWEN
obtains good accuracy on the test images, there are factors that affect the classification accuracy.

One is that new challenges appear in high-resolution image water extraction compared to
mid-resolution images. The noise in water extraction based on medium resolution images, such as
mountain shadows [42], can be easily distinguished in high-resolution images. Small water bodies may
be difficult to extract in medium-resolution images, but they can be easily identified in high-resolution
images. However, building shadows, highways, dark lawns, and dark roofs may result in new errors.
In this study, the MWEN performs better in suppressing noise compared to the Unet and Deeplab V3+,
but it does not completely remove the noise, such as noise from sports fields. In addition, very detailed
water information is contained in high-resolution images, which brings new challenges for more
accurate water body extraction.

The other is the dataset. The CNN with trained weights can perform well on images similar to the
samples in the sample library. Its applicability to images that are quite different from the samples in
the sample library needs further study. A dataset based on high-resolution remote sensing images
containing multiple types of water bodies and easily confused areas, such as shadows, is needed.
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Although the dataset proposed in this article contains common water bodies and easily confused areas,
which can meet some data requirements in certain areas, the sample library needs to be enriched in
the future.

5. Conclusions

Convolutional neural networks have been shown to have strong image classification and semantic
segmentation abilities for remote sensing images. A new convolutional neural network named the
MWEN for water body extraction for GF-1 high-resolution satellite images is proposed in this study.
Three CNNs that conduct semantic segmentation in computer vision field are employed for comparison.
The performances of the water body extraction results are evaluated based on five evaluation metrics
and visual comparisons. The conclusions are as following:

(1) The performance of the MWEN is better than that of the FCN, Unet, and DeepLab V3+ when
extracting surface water according to the visual comparison. The quantitative metrics show that results
of the MWEN on the OA, TWR, FWR, WIoU, and MIoU are better than those of the others.

(2) The comparison between MWEN “with MTFE” and “without MTFE” demonstrates that the
combination of features extracted at multiple scales is important to water extraction. The MTFE is
helpful for dealing with confusing areas and water bodies with different sizes.

(3) Compared with the FCN and Unet, the results of the MWEN show that it can accurately
extract water bodies in different scenes, such as the details of city water and plateau lakes. In addition,
the MWEN has the ability to suppress noises, such as mountain shadows, highways, vegetation
shadows, and dark lawns.

With the further enrichment of dataset, the MWEN has the application potential in large scale
surface water mapping with high resolution satellite images, which can provide data support for
surface water resource survey.
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