Spatial–Temporal Evolution and Analysis of the Driving Force of Oil Palm Patterns in Malaysia from 2000 to 2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing and Platform
2.3. Methods
2.3.1. Oil Palm Planting Area Extraction
2.3.2. Calculation of the Center of Gravity of Oil Palm Planting Space
2.3.3. Curve Fitting
3. Results
3.1. Spatial-Temporal Distribution of Oil Palms in Malaysia
3.1.1. Classification Results
3.1.2. Classification Accuracy
3.2. Shift in the Center of Gravity of Oil Palm Planting
3.3. Relationship between Oil Palm Planted Area and Natural Environment, Socioeconomic, and Deforestation
4. Discussion
4.1. Oil Palm Planting Pattern
4.2. Factors Affecting the Spatial-Temporal Variation of Oil Palm Planting in Malaysia
4.2.1. Natural Environment
4.2.2. Social Development Status
4.2.3. Deforestation
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scanes, C.G. Human Activity and Habitat Loss: Destruction, Fragmentation, and Degradation. In Animals and Human Society; Academic Press: Milwaukee, WI, USA, 2018; pp. 451–482. Available online: https://www.sciencedirect.com/science/article/pii/B9780128052471000320?via%3Dihub (accessed on 1 April 2019).
- FAO. FAOSTAT Database Collections. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 March 2019).
- Sheil, D.; Casson, A.; Meijaard, E.; Van Noordwijk, M.; Gaskell, J.; Sunderland-Groves, J.; Wertz, K.; Kanninen, M. The Impacts and Opportunities of Oil Palm in Southeast Asia: What Do We Know and What Do We Need to Know; Center for International Forestry Research: Bogor, Indonesia, 2009; Volume 51, pp. 1–19. Available online: http://dlc.dlib.indiana.edu/dlc/handle/10535/5256 (accessed on 1 April 2019).
- Lu, X.; Yangjie, L. Space-time Evolution and Forecast of the Oil Palm Production and Trade in the World. World Geogr. Res. 2012, 21, 70–76. [Google Scholar]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Wicke, B.; Sikkema, R.; Dornburg, V.; Faaij, A. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 2011, 28, 193–206. [Google Scholar] [CrossRef]
- Koh, L.P.; Wilcove, D.S. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett. 2008, 1, 60–64. [Google Scholar] [CrossRef]
- Wicke, B.; Dornburg, V.; Junginger, M.; Faaij, A. Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenergy 2008, 32, 1322–1337. [Google Scholar] [CrossRef] [Green Version]
- Wakker, E.; Watch, S.; Rozario, J.D. Greasy Palms: The Social and Ecological Impacts of Large-Scale Oil Palm Plantation Development in Southeast Asia; AID Environment: Amsterdam, The Netherlands, 2004; p. 46. Available online: https://www.cabdirect.org/cabdirect/abstract/20056701996 (accessed on 1 March 2019).
- Shafri, H.Z.M.; Ismail, M.H.; Razi, M.K.M.; Anuar, M.I.; Ahmad, A.R. Application of lidar and optical data for oil palm plantation management in Malaysia. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XIII, Kyoto, Japan, 1 November 2012; Volume 8526, p. 852608. [Google Scholar] [CrossRef]
- Nooni, I.K.; Duker, A.A.; Van Duren, I.; Addae-Wireko, L.; Osei Jnr, E.M. Support vector machine to map oil palm in a heterogeneous environment. Int. J. Remote Sens. 2014, 35, 4778–4794. [Google Scholar] [CrossRef]
- McMorrow, J. Linear regression modelling for the estimation of oil palm age from Landsat TM. Int. J. Remote Sens. 2010, 22, 2243–2264. [Google Scholar] [CrossRef]
- Tan, K.P.; Kanniah, K.D.; Cracknell, A.P. Use of UK-DMC 2 and ALOS PALSAR for studying the age of oil palm trees in southern peninsular Malaysia. Int. J. Remote Sens. 2013, 34, 7424–7446. [Google Scholar] [CrossRef]
- Asari, N.; Suratman, M.N.; Jaafar, J. Modelling and mapping of above ground biomass (AGB) of oil palm plantations in Malaysia using remotely-sensed data. Int. J. Remote Sens. 2017, 38, 4741–4764. [Google Scholar] [CrossRef]
- Aziz, N.A.; Omar, W.; Kassim, R.; Kamarudin, N. Remote Sensing Measurement for Detection of Bagworm Infestation in Oil Palm Plantation. MPOB Inf. Ser. 2012, 502, 589–597. [Google Scholar]
- Khamis, A.; Ismail, Z.; Haron, K.; Mohammed, A.T. Nonlinear Growth Models for Modeling Oil Palm Yield Growth. J. Math. Stat. 2005, 1, 225–232. [Google Scholar] [CrossRef]
- Murphy, D.J. The future of oil palm as a major global crop: Opportunities and challenges. J. Oil Palm Res. 2014, 26, 1–24. [Google Scholar]
- Basiron, Y. Palm oil production through sustainable plantations. Eur. J. Lipid Sci. Technol. 2007, 109, 289–295. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, L.; Xu, Y.; Lu, H.; Cracknell, A.P.; Kanniah, K.; Gong, P. Mapping oil palm plantation expansion in Malaysia over the past decade (2007–2016) using ALOS-1/2 PALSAR-1/2 data. Int. J. Remote Sens. 2019, 40, 7389–7408. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C. Collaborative supercomputing for global change science. Eos Trans. Am. Geophys. Union 2011, 92, 109–110. [Google Scholar] [CrossRef]
- Avijit, G. The Physical Geography of Southeast Asia; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Hock, S.S. The Population of Peninsular Malaysia; Institute of Southeast Asian Studies, Singapore University Press: Singapore, 2007; p. 342. [Google Scholar]
- Köppen, W. The thermal zones of the Earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world. Meteorol. Z. 2011, 20, 351–360. [Google Scholar] [CrossRef]
- Cramb, R.A. Re-Inventing Dualism: Policy Narratives and Modes of Oil Palm Expansion in Sarawak, Malaysia. J. Dev. Stud. 2011, 47, 274–293. [Google Scholar] [CrossRef]
- Moore, R.; Hansen, M. Google Earth Engine: A New Cloud-Computing Platform for Global-Scale Earth Observation Data and Analysis. Available online: http://adsabs.harvard.edu/abs/2011AGUFMIN43C..02M (accessed on 1 November 2018).
- Bey, A.; Sánchez-Paus Díaz, A.; Maniatis, D.; Marchi, G.; Mollicone, D.; Ricci, S.; Bastin, J.-F.; Moore, R.; Federici, S.; Rezende, M. Collect earth: Land use and land cover assessment through augmented visual interpretation. Remote Sens. 2016, 8, 807. [Google Scholar] [CrossRef] [Green Version]
- NASAJPL. NASA Shuttle Radar Topography Mission Global 1 arc second number [Dataset]. NASA EOSDIS Land Processes DAAC. 2013. Available online: https://lpdaac.usgs.gov/products/srtmgl1v003/ (accessed on 1 January 2019).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Harris, N.; Goldman, E.; Gibbes, S. Spatial Database of Planted Trees (SDPT) Version 1.0. Global Forest Watch: 2015. Available online: https://www.globalforestwatch.org/ (accessed on 1 March 2019).
- Cheng, Y. Research on Monitoring Oil Palm Plantation Changes in Malaysia. Master’s Thesis, Henan University, Kaifeng, China, 2017. [Google Scholar]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.C.; Fisher, J.B.; Malhi, Y. Evaluating the potential to monitor aboveground biomass in forest and oil palm in Sabah, Malaysia, for 2000–2008 with Landsat ETM+ and ALOS-PALSAR. Int. J. Remote Sens. 2012, 33, 3614–3639. [Google Scholar] [CrossRef]
- Wahid, B.; Nordiana, A.; Tarmizi, A. Satellite mapping of oil palm land use. MPOB Inf. Ser. MPOB TT 2005, 255, 1511–7871. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ying, L.; Chiwei, X.; Peng, L.; Luguang, J. Relationship of grain output and economic development from 1978 to 2013 in the major grain producing area of China. Resour. Sci. 2015, 37, 1891–1901. [Google Scholar]
- Zhi, X.; Xianjin, H.; Hao, M.; Yang, Z. Spatial structure and evolution of tea production in China from 2009 to 2014. Geogr. Res. 2017, 36, 109–120. [Google Scholar]
- Lishan, Q.; Yulan, W.; Jinguang, Z. Discussion on methods of curve fitting in experimental data processing. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2004, 31, 91–95. [Google Scholar]
- Lizhen, S. Research on the Principle and Its Application of Curve Fitting. Master’s Thesis, Changsha University of Science and Technology, Changsha, China, 2015. [Google Scholar]
- Jianhua, X. Econometric Geography; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Gaveau, D.L.A.; Sheil, D.; Husnayaen; Salim, M.A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Pirker, J.; Mosnier, A.; Kraxner, F.; Havlík, P.; Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Chang. 2016, 40, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Ordway, E.M.; Naylor, R.L.; Nkongho, R.N.; Lambin, E.F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Guanghe, W.; Naiang, W.; Shuangxi, H.; Lianshu, T.; Jianming, Z. Physical Geography, 3rd ed.; Higher Education Press: Beijing, China, 2004. [Google Scholar]
- Corley, R.H.V.; Tinker, P.B. The Oil Palm, 3th ed.; John Wiley & Sons Ltd: West Sussex, UK, 2015. [Google Scholar] [CrossRef]
- Suprayitno, E.; Aslam, M.; Harun, A. Zakat and SDGs: Impact zakat on human development in the five states of Malaysia. Int. J. Zakat. 2017, 2, 61–69. [Google Scholar]
- Saadatian, O.; Haw, L.C.; Mat, S.; Sopian, K. Perspective of sustainable development in Malaysia. Int. J. Energy Environ. 2012, 6, 260–267. [Google Scholar]
- Hassan, P.; Jusop, S.; Ismail, R.; Aris, A.Z.; Panhwar, Q.A. Soil and Water Quality of an Acid Sulfate Soil Area in Kelantan Plains, Malaysia and its Effect on the Growth of Rice. Asian J. Agric. Food Sci. 2016, 4, 124–144. [Google Scholar]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178. [Google Scholar] [CrossRef]
- McCarthy, J.F. Processes of inclusion and adverse incorporation: Oil palm and agrarian change in Sumatra, Indonesia. J. Peasant. Stud. 2010, 37, 821–850. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [Green Version]
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Mertz, O.; Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 2019, 5, 47–53. [Google Scholar] [CrossRef]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Bruhl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef]
- Carlson, K.M.; Heilmayr, R.; Gibbs, H.K.; Noojipady, P.; Burns, D.N.; Morton, D.C.; Walker, N.F.; Paoli, G.D.; Kremen, C. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl. Acad. Sci. USA 2018, 115, 121–126. [Google Scholar] [CrossRef] [Green Version]
Actual Number of Sample Points | Minimum Number of Sample Points | |||||
---|---|---|---|---|---|---|
2000 | 2005 | 2009 | 2015 | 2018 | ||
Oil palm | 542 | 547 | 571 | 590 | 653 | 361 |
Forest | 929 | 1002 | 1000 | 1140 | 1163 | 613 |
Water | 88 | 90 | 91 | 108 | 115 | 19 |
Others | 192 | 203 | 185 | 190 | 199 | 46 |
Total | 1751 | 1842 | 1847 | 2028 | 2130 | 1039 |
Classification Verification | Oil Palm | Forest | Water | Other | Total (Row) | |
---|---|---|---|---|---|---|
2000 | oil palm | 0.136 | 0.029 | 0.000 | 0.002 | 0.168 |
forest | 0.036 | 0.709 | 0.000 | 0.000 | 0.745 | |
water | 0.000 | 0.000 | 0.014 | 0.000 | 0.014 | |
other | 0.009 | 0.002 | 0.006 | 0.057 | 0.074 | |
total (column) | 0.182 | 0.740 | 0.019 | 0.059 | 1.000 | |
2005 | oil palm | 0.202 | 0.045 | 0.000 | 0.009 | 0.256 |
forest | 0.041 | 0.619 | 0.000 | 0.005 | 0.664 | |
water | 0.001 | 0.001 | 0.015 | 0.001 | 0.018 | |
other | 0.003 | 0.006 | 0.000 | 0.053 | 0.062 | |
total (column) | 0.247 | 0.671 | 0.015 | 0.067 | 1.000 | |
2009 | oil palm | 0.215 | 0.065 | 0.000 | 0.007 | 0.286 |
forest | 0.036 | 0.593 | 0.000 | 0.005 | 0.634 | |
water | 0.000 | 0.000 | 0.015 | 0.000 | 0.015 | |
other | 0.006 | 0.002 | 0.001 | 0.055 | 0.065 | |
total (column) | 0.257 | 0.660 | 0.016 | 0.067 | 1.000 | |
2015 | oil palm | 0.262 | 0.038 | 0.000 | 0.015 | 0.315 |
forest | 0.047 | 0.605 | 0.004 | 0.004 | 0.660 | |
water | 0.000 | 0.000 | 0.018 | 0.001 | 0.019 | |
other | 0.001 | 0.000 | 0.000 | 0.005 | 0.006 | |
total (column) | 0.310 | 0.643 | 0.021 | 0.025 | 1.000 | |
2018 | oil palm | 0.285 | 0.059 | 0.000 | 0.003 | 0.347 |
forest | 0.046 | 0.538 | 0.002 | 0.005 | 0.590 | |
water | 0.000 | 0.000 | 0.018 | 0.000 | 0.018 | |
other | 0.004 | 0.001 | 0.000 | 0.040 | 0.045 | |
total (column) | 0.334 | 0.598 | 0.020 | 0.048 | 1.000 |
2000 | 2005 | 2009 | 2015 | 2018 | ||
---|---|---|---|---|---|---|
Overall accuracy (OA) | 0.907 ± 0.026 | 0.883 ± 0.028 | 0.877 ± 0.029 | 0.888 ± 0.026 | 0.885 ± 0.025 | |
Producer’s accuracy (PA) | oil palm | 0.813 ± 0.023 | 0.792 ± 0.018 | 0.750 ± 0.026 | 0.831 ± 0.116 | 0.820 ± 0.019 |
forest | 0.951 ± 0.289 | 0.932 ± 0.103 | 0.936 ± 0.059 | 0.917 ± 0.206 | 0.912 ± 0.039 | |
water | 1.000 ± 0.001 | 0.842 ± 0.000 | 1.000 ± 0.245 | 0.923 ± 0.468 | 1.000 ± 0.252 | |
other | 0.769 ± 0.114 | 0.853 ± 0.151 | 0.857 ± 0.188 | 0.857 ± 0.224 | 0.891 ± 0.175 | |
User’s accuracy (UA) | oil palm | 0.804 ± 0.081 | 0.819 ± 0.073 | 0.832 ± 0.074 | 0.827 ± 0.056 | 0.833 ± 0.053 |
forest | 0.937 ± 0.026 | 0.902 ± 0.030 | 0.885 ± 0.030 | 0.935 ± 0.029 | 0.908 ± 0.028 | |
water | 0.870 ± 0.000 | 1.000 ± 0.168 | 0.950 ± 0.000 | 0.889 ± 0.104 | 0.958 ± 0.000 | |
other | 0.968 ± 0.134 | 0.881 ± 0.090 | 0.906 ± 0.093 | 0.778 ± 0.099 | 0.891 ± 0.091 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Fu, D.; Su, F.; Xiao, Y. Spatial–Temporal Evolution and Analysis of the Driving Force of Oil Palm Patterns in Malaysia from 2000 to 2018. ISPRS Int. J. Geo-Inf. 2020, 9, 280. https://doi.org/10.3390/ijgi9040280
Li W, Fu D, Su F, Xiao Y. Spatial–Temporal Evolution and Analysis of the Driving Force of Oil Palm Patterns in Malaysia from 2000 to 2018. ISPRS International Journal of Geo-Information. 2020; 9(4):280. https://doi.org/10.3390/ijgi9040280
Chicago/Turabian StyleLi, Wenhui, Dongjie Fu, Fenzhen Su, and Yang Xiao. 2020. "Spatial–Temporal Evolution and Analysis of the Driving Force of Oil Palm Patterns in Malaysia from 2000 to 2018" ISPRS International Journal of Geo-Information 9, no. 4: 280. https://doi.org/10.3390/ijgi9040280
APA StyleLi, W., Fu, D., Su, F., & Xiao, Y. (2020). Spatial–Temporal Evolution and Analysis of the Driving Force of Oil Palm Patterns in Malaysia from 2000 to 2018. ISPRS International Journal of Geo-Information, 9(4), 280. https://doi.org/10.3390/ijgi9040280