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Abstract: Fine-scale population mapping is of great significance for capturing the spatial and
temporal distribution of the urban population. Compared with traditional census data, population
data obtained from mobile phone data has high availability and high real-time performance. However,
the spatial distribution of base stations is uneven, and the service boundaries remain uncertain,
which brings significant challenges to the accuracy of dasymetric population mapping. This paper
proposes a Grid Voronoi method to provide reliable spatial boundaries for base stations and to
build a subsequent regression based on mobile phone and building use data. The results show
that the Grid Voronoi method gives high fitness in building use regression, and further comparison
between the traditional ordinary least squares (OLS) regression model and geographically weighted
regression (GWR) model indicates that the building use data can well reflect the heterogeneity of
urban geographic space. This method provides a relatively convenient and reliable idea for capturing
high-precision population distribution, based on mobile phone and building use data.
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1. Introduction

High-precision mapping of urban population plays an essential role in urban research,
which is supportive for urban planning management [1], optimization of resource allocation [2],
and understanding of urban spatial structure [3]. The dasymetric mapping method [4–10] has become
the mainstream direction for high-precision population mapping, utilizing the correlation between
population data and auxiliary data to disaggregate population data into micro-spatial levels through
interpolation algorithm. With the rapid development of information technology in recent years, land
use data [11,12], remote sensing data [13–18], and point of interest (POI) data [19] have become auxiliary
data for dasymetric mapping, which has greatly improved the accuracy of population distribution.

However, the accuracy of dasymetric mapping is still susceptible to the resolution of source data and
the correlation between auxiliary data and micro-scale population distribution. Most traditional studies
take census data as the source population, which has the disadvantage of insufficient timeliness and
cannot meet the current planning management requirements for dynamic high-precision population
data [20]. Moreover, attributes of auxiliary data in different regions may be the same or similar,
which cannot reflect spatial heterogeneity, and brings challenges to the improvement of method accuracy.

Recently, a considerable amount of literature has proposed the application of mobile phone
data to study dynamic population distribution [21–25], commuting patterns [26,27], urban green
space accessibility [28], and the urban spatial structure [29–31]. Mobile phone data characterized
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by base stations can be more accurate and dynamic, reflecting the overall population distribution
pattern [21,28,32]. Many articles have used mobile phone data as aggregate source data for population
distribution calculation. However, there are still three main challenges with mobile phone data:
(1) the number of mobile phone users is restricted by the market size of the operator and cannot reflect
the real population; (2) the spatial distribution of mobile phone base stations is extensive and extremely
uneven; and (3) the boundary range that the base station serves people remains high in uncertainty [28].

Furthermore, building data is suggested as the more suitable ancillary data for dasymetric
population mapping, since buildings are the essential carrier of people’s daily living [19,33–35].
Though most often use footprint and level data of buildings [36], the dynamic population is largely
affected by buildings with different kinds of land use types. Thus, buildings with various functions
may directly affect the population size of the surrounding base station.

This paper proposed a combined method of Grid Voronoi and building use regression
(BUR) for fine-scale population mapping based on mobile phone data and land use integrated
building data. This paper also compared traditional ordinary least squares (OLS) regression and
geographically weighted regression (GWR) analysis to explore the correlation between buildings and
population distribution. The results show that both of these show high correlations, and GWR shows
little improvement, indicating that the building data can reflect the spatial heterogeneity. The mobile
phone population was rescaled based on the census data, to eliminate the impact of the market share
of operators, and the final grid population mapping of 1 km × 1 km was generated with the fine
resolution level of buildings, which provides valuable spatiotemporal data for the study of urban
structure characteristics.

2. Materials and Methods

2.1. Study Area

Wuhan is a city in Central China (Figure 1a), with a total land area of 8569.15 square kilometers.
It is located in the east of Jianghan Plain and the middle reaches of the Yangtze River. The Yangtze
River, the world’s third-largest river, and its largest tributary, the Han River, run across the city center,
dividing the central urban area of Wuhan into three parts, forming a pattern of three towns, Wuchang,
Hankou, and Hanyang, which stand at the top of each other across the river. The study area is the
Urban Development Zone (UDZ) of Wuhan. It is the main agglomeration area of urban functions,
and the controlled expansion area of urban space (Figure 1b).
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Figure 1. Map of the study area in Wuhan, China: (a) the geographic location of Wuhan, China;
(b) Urban Development Zone (UDZ) of Wuhan.
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2.2. Data and Preprocessing

The study used the call detail record (CDR) data of March 2016 in Wuhan city (Table 1). Steps are
as follows to obtain the mobile phone population in the corresponding period. We used the non-work
time population (defined as the resident population of a certain place) to build the building use
regression (BUR) model.

• We matched the mobile phone number and the user ID to eliminate all private information,
and then removed the invalid and noise data.

• We counted the base stations with the highest call frequency of users in the work time, non-work
time, and all-time (Table 2), matching the base station code and the user ID, and summarized the
number of users that the base station served at different periods.

Table 1. The call detail record data.

User ID The Starting Time of the User’s Call Base Station ID

2700000127588 2016-03-09-9.15.24.000000 5760859194
2700000131734 2016-03-09-9.15.18.000000 2872636812
2700000122631 2016-03-09-9.15.49.000000 2893525929

Table 2. Period details.

Time Period

work time Monday to Friday from 7:00 am to 7:00 pm
non-work time Monday to Friday from 7:00 pm to 7:00 am, and Saturday and Sunday

all-time Monday to Sunday

Based on the 2016 land use data of the UDZ of Wuhan, provided by Wuhan Planning
Institute (Figure 2a), we extracted nine types of land information: A (administrative and public
service land), B (commercial service facility land), R (residential land), MW (industrial and logistics
storage land), U (public facilities land), G (green land and square land), H (development and
construction land), E (non-construction land, including waters, agricultural and forest land, open
mining land, and abandoned land), and F (mixed land).
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data in 2016.

Based on the 2016 building vector data of the UDZ of Wuhan, provided by Wuhan Planning
Institute (Figure 2b), we edited the attribute table of building vector data and retained the attribute
information, such as building floor and area. According to the spatial scope of buildings, we assigned
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land properties to buildings to get the nine types of building use data: A (administration and public
service building), B (commercial facilities building), R (residential building), MW (Industrial and
logistics storage building), U (public facilities building), G (landscape building, such as green square),
H (development building), E (a small number of agricultural buildings), and F (mixed function
buildings).

2.3. Research Methods

2.3.1. The Grid Voronoi Method

The study created 1 km × 1 km grids in the Urban Development Zone of Wuhan city to reduce the
impact of the uneven spatial distribution of the original base stations, by aggregating the original base
station points (Figure 3c). The total number of base stations was 30,725 (Figure 3a). The minimum
value, maximum value, and average value in each grid were 0, 221, and 9, respectively (Figure 3b).
We summarized the total number of non-work time populations within each grid and removed grids
with zero population. The Grid Voronoi was generated by centroids of the retained grids, to define the
boundary of the base station service range (Figure 3d). The mobile phone population and the total area
of various buildings in each Voronoi were further summarized.
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2.3.2. Building Use Regression (BUR)

The research proposed a BUR model based on the land use regression (LUR) model. The LUR
model was put forward by Briggs in 1997 [37] and has become one of the main application models of
air pollution simulation research, by exploring the statistical linear correlation between the pollutant
concentration in a specific range around the pollution detection station and its environmental conditions.

The BUR proposed in this study was to establish the OLS regression model within the service
scope of the mobile base station to explore the correlation between population and building properties,
and to observe the ability of building data to reflect spatial attributes. The study constructed an OLS
regression model of base station population in non-work time and nine types of building data, and the
equation is as follows:

y = β0 + β1x1 + βx2 + . . .+ βnxn + ε(n ≤ 9) (1)

where y is the mobile population, xn is the area of nine types of buildings, β0 is the intercept, βn is the
regression coefficient of each factor, and ε is the random error.

In the BUR model, we used the scatter plot to detect the correlation between the non-work time
population and nine types of buildings, the VIF parameter (with the margin of 7.5) to eliminate the
collinearity of the explanatory variables, and the P-value to obtain the final explanatory variables that
pass the 1% significance level test. The study randomly selected 80% of the data as the training set and
the other 20% as the test set and used the R-square to test the fitting degree of the model.

The base station population and the building data vary with different spatial locations,
demonstrating the existence of spatial non-stationarity. The global OLS model can only reflect
the average level of the study area, while geographically weighted regression [38] can solve the
problem of spatial heterogeneity. Consequently, the study further constructed the geographically
weighted regression model (Equation (2)) of the base station population and five types of building data
that passed the OLS regression test to explore the ability of building data to reflect spatial heterogeneity.
The equation is as follows:

yi = β0(ui, vi) +

p∑
k=1

βk(ui, vi)xik + εi(i = 1, 2, 3, 4, . . . , n) (2)

where (ui, vi) is the spatial coordinate of the ith position, and βk (ui, vi)xik is the kth model regression
parameter of the ith position, and εi is the random error of the ith position.

2.3.3. Grid Mapping and Population Check

With consideration of the existence of spatial heterogeneity, the market penetration rate of mobile
phone service operators between administrative units across the study area is different. The study
counted the ratio of the total non-work time mobile phone population in each complete administrative
area, based on the CDR data in Wuhan, to the permanent resident data in each complete administrative
area, based on the census data of 2016.

Based on the BUR and the market penetration rate of operators, the study calculated the predicted
population of grids (Equations (3) and (4)), and drew the non-work time population mapping of Wuhan
Urban Development Zone in 1 km resolution. The grid mapping paves the way for the exploration of
the population distribution characteristics. The equations are as follows:

Ya =
C
M

Ym (3)

Ym = βi + βAxA + βBxB + βHxH + βRxR + βMWxMW + ε (4)

where Ya is the grid population, C is the resident population data in the administrative district, M is
the mobile population data in the administrative district, Ym is the predicted grid mobile population,
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βi is the intercept, βA, βB, βH, βR, βMW are the coefficients of five types of buildings, xA, xB, xH, xR,

xMW are the various building area within grids, and ε is the random error.
Due to the lack of fine-grained population data, nine administrative areas that are completely

contained within the study area were selected for the population check. The study summarized the
predicted population of grids included in each administrative district, and performed validation
through the relative error (RE, Equation (5)) and the mean prediction error (MPE, Equation (6)) with
the census data of 2016 as a baseline.

RE =
A−C

C
× 100% (5)

MPE =

∑m
i=1(RE)i

m
(m = 9) (6)

where A is the total predicted population of the grid in the entire administrative district, C is the
resident population data of the entire administrative district, i is the ith statistical unit, and m is the
number of statistical units.

3. Results

3.1. Status Data Analysis

3.1.1. Distribution of Mobile Phone Population

Based on the original simple Voronoi’s 9722 research units, the number of Voronoi map units
generated by the grid base station was 1487. The spatial distribution of the mobile population (Figure 4)
and statistics (Table 3) show that the average population in each Voronoi unit is small, and the
spatial transition is stable. In contrast, the population distribution area of the Grid Voronoi unit is
more integrated.
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Table 3. Demographics of mobile phones in non-work time.

Min Max Sum Average Standard
Deviation Count

Voronoi 0 7693 6,562,621 708.12 993.86 9277
Grid Voronoi 0 48,752 6,562,621 4413.33 6517.70 1487

According to the area statistics of Voronoi units (Table 4), the standard deviation of the unit area
of Voronoi is lower than that of Grid Voronoi, while the range of Voronoi is far higher than that of
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Grid Voronoi. The main reason is due to the extremely uneven spatial distribution of the original
base stations. As the highly clustered base stations in the central urban area leads to a large number
of low-value area aggregation of the original Voronoi units, the range is too large and the average
area value is low, which reduces the fitting effect of building use regression. As is shown in Table 4,
Grid Voronoi reduces the range of the research unit and makes its distribution more stable, which is
conducive to the construction of an effective building use regression model.

Table 4. Unit area statistics.

Min (km2) Max (km2) Sum (km2)
Average

(km2)
Standard
Deviation Count

Voronoi 1.191 × 10−5 22.904 3261.612 0.352 1.074 9277
Grid Voronoi 0.949 23.004 3261.612 2.193 2.078 1487

3.1.2. Building Density Based on Grid Voronoi

Five types of significantly related building density statistical box plots (Figure 5) based on Grid
Voronoi diagrams show that the density parameters of R buildings are higher than those of other
buildings, from the average, maximum, and standard deviation of building density. It demonstrates
that the spatial distribution of R-type buildings is larger and more extensive than that of other types of
buildings. In contrast, the A, B, H, and MW buildings maintain a similar horizontal distribution.
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Figure 5. Box diagram of five types of building density.

According to the spatial visualization of five types of building density (Figure 6), the spatial
distribution of class A, B, and R buildings (Figure 6a–c) is centered on the Yangtze River line in the
main urban area. The building densities increase with decreasing distance from the central region.
Class H buildings (Figure 6d) are mainly distributed in the periphery of the Urban Development
Zone with slow development, and its overall density patterns show the low-level in the middle and
high-level all around. Class MW buildings (Figure 6e) mainly distribute near the peripheral part of the
central area, forming a multi-centered spatial structure, which is conducive to the development of the
industry and logistics transportation.
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3.2. Results of Regression Models

The scatter diagram of variables (Figure 7) shows the linear correlation between the independent
variables of nine types of buildings and the population in non-work time, and it shows that class A, B,
and R buildings and the population determine strong linear trends. Furthermore, five explanatory
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variables, class A, B, H, R, and MW buildings, are obtained through the collinearity test and 1%
significance level test (Table 5).
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Table 5. Parameter selection.

Probability [b] Robust_Pr [b] VIF

A 0.000000 0.000000 1.262068
B 0.000000 0.000000 1.448988
E 0.019296 0.037308 1.288854
F 0.396817 0.494394 1.043214
G 0.015922 0.147935 1.017504
H 0.000003 0.000000 1.320904
R 0.000000 0.000000 1.674151
U 0.001080 0.065658 1.094622

MW 0.000000 0.000000 1.053224

The adjusted R-square of the training set in the BUR regression model (Table 6) is 0.816,
which indicates that the five types of buildings (A, B, R, H, and MW) are significantly correlated
with the population. The R square of the data sampling validation set (Table 7) is 0.776, and the
mean absolute percentage error is 2.841. In general, the Grid Voronoi building use regression method
is feasible.
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Table 6. Building use regression (BUR) diagnostics 1.

Variable Coefficient Stand Error t-Value p-Value

Intercept 154.826 114.680 1.350 0.177
A 0.018 0.001 21.225 0.000
B 0.014 0.001 14.111 0.000
H 0.005 0.001 4.037 0.000
R 0.012 0.000 46.796 0.000

MW 0.005 0.001 7.132 0.000
1 Number of Observations: 1487; AICc: 27833.573. Multiple R-Squared: 0.816; Adjusted R-Squared: 0.816.
Note: A (administrative and public service building); B (commercial service facility building); H (development and
construction building); R (residential building); MW (industrial and logistics storage building).

Table 7. The validation set diagnostics.

R2 0.776
Mean Absolute Error 1770.032
Mean Squared Error 9364121

Root Mean Squared Error 3060.085
Mean Signed Difference 282.078

Mean Absolute Percentage Error 2.841

Based on the BUR, the study constructed a GWR model (Table 8) of the non-work time population
and five types of building data. The corrected R square is 0.828, which indicates that the GWR model
has a limited improvement on the regression level of the OLS model. In general, the building data
itself can reflect spatial heterogeneity.

Table 8. Geographically weighted regression.

Varname Variable

Bandwidth 9285.156
Sigma 2701.006
AICc 27753.206

R2 0.837
R2 Adjusted 0.828

The coefficient statistics of the five types of significant explanatory variables related to the
population (Figure 8) shows that the class R building coefficient fluctuates stably, since class R buildings
have a more balanced effect on the population distribution space. In terms of the range statistics
of coefficients, class A, H, R, and MW buildings always show positive spatial correlations with
the population. Class B buildings show a trend of alternating positive and negative correlations, with a
lower frequency of negative values. The medians of class A, B, and R buildings are higher, and those
of class H and MW buildings are lower. In general, coefficient values reflect the ability of the five types
of buildings to affect the population distribution.
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Coefficient spatial visualization further explains the influence mechanism of building properties
on population mobility and spatial distribution. Class A buildings (Figure 9a) have a significant
positive correlation impact on the population in Jiangxia District in the south, and Xinzhou District in
the northeast of the study area. In these areas, the public service and commercial facilities are relatively
complete, which can promote the population distribution to a certain extent.
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Jiangxia District has vigorously developed and improved commercial facilities in recent years,
hence class B buildings (Figure 9b) have a more apparent positive effect on population distribution in
this area.

The distribution of the correlation coefficient of the class R buildings (Figure 9c) generally shows
a high level in the middle of the main city center and gradually decreases outwards, which indicates
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that the positive contribution value of residential buildings in the central city area to the population
distribution is more evident than that in other regions.

Since the growth rate of construction in Jianghan District and the north of Hongshan District is
increasing, the correlation coefficient of class H buildings (Figure 9d) decreases outwards centered on
these regions. As a whole, the class H buildings show a positive impact on population distribution.

Huangpi District in the northwest is mainly engaged in industrial development, namely logistics
and warehousing, and is also the location of Tianhe Airport. Therefore, the positive correlation
between class MW buildings (Figure 9e) and population in the region is more significant than that in
other regions.

3.3. Grid Mapping and Population Check

The administrative district population check based on the operator’s market penetration rate
(Table 9) shows that the MPE of the predicted population data is 9.72%. Among the nine administrative
region samples used for verification, the absolute value of RE of the predicted population is less than
30%, and the numbers of administrative regions below 5%, 15%, and more than 15% are 3, 8, and 1,
respectively. The absolute value of RE of the predicted population in Caidian District is the highest,
with the relatively higher predicted population value. The reason may be that the regional residential
development has been fast in recent years, while the occupancy rate is low. Consequently, the biased
population distribution appears in the region. In general, the proposed building use regression model
can well improve the spatial granularity of population distribution, with high accuracy and feasibility.

Table 9. Grid population check based on the operator’s market proportion.

Name Resident
Population

Mobile
Population

Predicted
Non-Work

Time
Population

RE (%) MPE
(%)

Caidian 719,900 393,577 934,861 29.86

9.72

Dongxihu 541,100 429,287 516,816 −4.49
Hanyang 648,500 488,036 705,456 8.78
Hongshan 1,609,900 1,276,304 1,760,632 9.36
Jiang’an 961,300 664,761 994,017 3.40
Jianghan 729,500 528,006 686,765 −5.86
Qiaokou 867,100 488,553 773,192 −10.83
Qingshan 526,800 277,512 589,607 11.92
Wuchang 1,274,000 864,964 1,313,014 3.06

Hannan 131,600 66,682 86,470
Jiangxia 894,600 780,585 916,490
Huangpi 967,100 515,291 391,201
Xinzhou 894,800 342,955 461,990

The further grid population mapping (Figure 10) shows the highly clustering pattern, mainly
centered on Wuchang, Hankou, and Hanyang, the central urban regions within the Third Ring Road,
and with the Yangtze River as the center for linear expansion. In this area, the water body plays a
crucial role in separating the population distribution in the city, and the location of the new Yangtze
River City, with Chenjiaji as the starting area, is more conducive to optimizing the Yangtze River axis
and promoting the overall balanced development of Wuhan.
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On the right bank of the Yangtze River, outside the Third Ring Road, the Zhifang area in
Jiangxia District, the northern Guanggu area in Hongshan District and the Thomson Lake area,
have gradually achieved the coordinated development, with densely distributed population. In contrast,
the southern end of Jiangxia District has a small population, due to its slow economic development.
Qingshan District, which is the seat of Wuhan Iron and Steel Group, and Xinzhou District in the
northeast, with comprehensive public service facilities such as colleges and universities, have relatively
large populations.

On the left bank of the Yangtze River, outside the Third Ring Road, the southern Hougong Lake
area and the Triangular Lake area are gradually developing close connections with the Hanyang
District in the north, with a dense population. In the west, people mainly concentrate in the Caidian
District, with relatively complete public service facilities. However, it is less connected to the main
urban area, and has not achieved continuous development. In the north, the population density around
the Jinyin Lake area in the Dongxihu District and the southern region in Huangpi District are high,
due to the dense distribution of universities, airports, and other facilities.

4. Discussion

The application of spatiotemporal sources like mobile phone data for mapping human population
distribution in the urban area is mushrooming. Mobile phone data has a significantly high
penetration rate across the urban area, which represents relatively reliable information on real-time
population patterns. The CDR data paves the way for achievements in fine-scale dasymetric
population mapping. A variety of approaches have been published. For instance, Deville et al. [22]
introduced explicit estimations of national-scale population densities with the usage of mobile phone
data in Portugal and France. Kubíček et al. [39] proposed a building level dasymetric approach to
evaluate the spatiotemporal distribution of population derived from mobile phone data in Brno,
Czech Republic. However, there are some challenges that are usually less acknowledged or ignored.
This study pays attention to one of the challenges: the extremely uneven configuration of base stations
with their high-uncertain serving scopes. Based on Voronoi, the theoretical coverage scopes of base
stations, the study proposes source and target zones of the spatial disaggregation of mobile phone
data, similar to [40], in which a multi-temporal, function-based dasymetric interpolation method
was proposed. Specifically, we differ in the following aspects: (1) We generate the Grid Voronoi
diagrams by aggregating base stations into 1 km grids. Compared with simple Voronoi diagrams, Grid
Voronoi can improve the overall spatial distribution of base stations and reduce the negative impact of
excessively large simple Voronoi unit area differences; (2) We further develop the building data at the
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administrative level. Individual buildings are finely-divided into nine more detailed types by land use
data, and the corresponding areas are obtained. (3) The OLS regression model and the GWR model
are constructed from the spatial homogeneity and spatial heterogeneity, to discuss the ability of the
building data to reflect spatial heterogeneity.

The empirical findings show that the applied Grid Voronoi building regression model, with careful
consideration of the built environment attributes, is of high accuracy and feasibility. The model can refine
the population from the CDR data to desired target zones (1 km grids). The R-square values of the training
set and verification set are 0.816 and 0.776, respectively. Moreover, the selected five types of buildings are
A (administrative and public service building), B (commercial service facility building), H (development
and construction building), R (residential building), and MW (industrial and logistics storage building),
respectively. The coefficient R is far above others, since the main activities and mobilities of human
beings are around residential buildings during the non-work time. The population evaluation of the
BUR method is further verified by the population check, based on the market penetration of operator
services. The absolute value of RE is generally less than 30%, and the MPE is 9.72%, demonstrating the
applicability of the BUR model to obtain population distribution information in Wuhan.

The study did not further discuss how to apply the Grid Voronoi building use regression model
for social issues. The more timely and reliable population distribution map over time can be provided
through the BUR model by decomposing mobile phone data into detailed grid population data.
Consequently, the integration of climate data [41], crime data [42], location data [39] of drinking water
tanks, and other urban social spatial data with grid population can offer the possibility to perform
object-oriented risk assessments.

In general, this study remains challenging and limited. Firstly, although the study uses the
detailed continuous-time mobile phone population data, including the total population in work time,
non-work time, and all-time, it is only within one month. The long-term detailed call data will be able
to provide a more accurate reference for the spatiotemporal population distribution in the city. Then,
in terms of scope on a larger scale, it remains difficult for data acquisition and quantity, as well as
requirements for computers with high software calculation capabilities.

Furthermore, the Grid Voronoi building use regression model proposed by the research can be
expanded in the following aspects in the future: (1) further constructions of work time and all-time
building regression models with the population derived from mobile phone data to deeply understand
the spatiotemporal population dynamic distribution in urban space; (2) with the constantly increasing
availability of semantic 3D city models [43], the vertical attribute can be included into the attributes of the
building data to study the correlation between different building space volumes and population distribution
from a three-dimensional perspective; and (3) empirical researches on the potential combinations of different
scale grids with building data and mobile phone data in BUR models, as well as their impact on results.

5. Conclusions

High-precision population mapping is a crucial component of the fine model of urban development.
This study contributes a proposition for the application of a Grid Voronoi building use regression model
to attain the gridded human spatial population in the development area of Wuhan. We redefine the
service scope area of base stations by aggregating stations into 1 km grids to reduce the negative impact
of excessively large simple Voronoi unit area differences. In the BUR, population derived from mobile
phone data, which can reflect relatively reliable information on real-time population distribution,
and land use integrated building data are used for the training set, with census data for verification.
As the empirical finding shows, the GWR model has a limited level of improvement on the OLS
regression model, demonstrating that the building data itself can well reflect spatial heterogeneity.

In general, the building use regression model can reveal the close correlation between population
distribution, building area, and usage characteristics, and provide the fresh and ideal perspective for drawing
high granularity population maps. The fine-scale dasymetric population mapping is of great significance
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for the effective identification of urban population spatial distribution characteristics, the discovery of
urban problems, and the improvement of urban management, as well as the formulation of urban policies.
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