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Abstract: Accessibility research of healthcare facilities is developing towards multiple transportation
modes (MTM), which are influenced by residential transportation choices and preferences. Due to
differences in travel impact factors such as traffic conditions, origin location, distance to the destination,
and economic cost, residents’ daily travel presents different residential transportation mode choices
(RTMC). The purpose of our study was to measure the spatial accessibility of healthcare facilities
based on MTM considering RTMC (MTM-RTMC). We selected the gravity two-step floating catchment
area method (G2SFCA) as a fundamental model. Through the single transportation mode (STM),
MTM, and MTM-RTMC, three aspects used to illustrate and redesign the G2SFCA, we obtained the
MTM-RTMC G2SFCA model that integrates RTMC probabilities and the travel friction coefficient.
We selected Nanjing as the experimental area, used route planning data of four modes (including
driving, walking, public transportation, and bicycling) from a web mapping platform, and applied
the three models to pediatric clinic services to measure accessibility. The results show that the
MTM-RTMC mechanism is to make up for the traditional estimation of accessibility, which loses sight
of the influence of residential transportation choices. The MTM-RTMC mechanism that provides
a more realistic and reliable way can generalize to major accessibility models and offers preferable
guidance for policymakers.

Keywords: spatial accessibility; multiple transportation modes; residential transportation mode choice;
web maps; route planning data; healthcare facility

1. Introduction

Spatial accessibility, which is influenced by the type and scale of service facilities, the spatial
population redistribution in the demand locations, and travel impedance (such as travel time, distance,
or travel expense), plays an essential part in planning urban service facilities and optimizing urban
traffic [1–6]. The accessibility of healthcare is a multifaceted field that involves primary healthcare [7],
access to healthcare in rural areas [8,9], the cross-border spatial accessibility of healthcare [10], the spatial
equity of multilevel healthcare [11], hospital care and emergency medical services [12,13], and mental
health in childhood and adolescence [14]. Travel impedance has been widely proven by scholars to be
a key factor affecting residents’ access to service facilities [15]. Nevertheless, the measurement of travel
impedance faces difficulties, so how to obtain more realistic travel impedance in multimodal, dynamic
traffic environments?

First, residents’ daily travel to healthcare is toward multimodal transportation. Traditional studies
have looked towards subjectively choosing specific travel modes [16], but an increasing number of
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scholars have begun to improve accessibility models considering the influence of different transport
modes [17]. The transportation modes mainly include driving, walking, public transportation, bicycling,
and combinations of these; among them, combination modes are usually adopted for long-distance
travel [18]. Diverse transportation modes have a significant impact on the traffic route and traffic
time [19], such as variations in travel route planning and time consumption in nine European cities
and the world’s 15 largest metropolises. An accessibility model with multiple transportation modes
(MTM) has been proposed to account for realistic variations in travel time and service reliability [20].
Assuming that residents have the same choice probability for each type of transportation mode to
different destinations, Mao and Nekorchuk [3] considered driving and public transportation modes to
estimate healthcare accessibility. Lin et al. [21] calculated the travel time for primary care providers by
car and public transportation based on StreetMap data. Based on the travel impedance data considered
in the MTM, many new accessibility models have been developed, such as the multimodal two-step
floating catchment area method (2SFCA) [3], a variable-width floating catchment area model [17],
multimodal 2SFCA incorporating the spatial access ratio [21], and multimodal accessibility-based
equity assessment [22].

Second, the speed of various modes of transportation is not a constant theoretical value.
A consistent collection of accessibility studies have calculated travel impedance by simulating a
single transportation mode with a theory-based speed based on a geographic information system
(GIS) road network dataset, for example, a walking speed of 4 km/h, a biking speed of 10 km/h,
and a driving speed on major urban roads of 50 km/h [23–25]. However, the existing literature is
heavily based on oversimplified assumptions that transit services operate at deterministic speeds [20].
Travel impedance data can be accessed from open data sources [26,27], including individual trip
survey data [3], web mapping services (Google Maps [17], Baidu Maps [28], Amap Maps [29]),
and location-based social media data [20], which enable advancements in revealing the characteristics
of human activities [30–32]. Georeferenced social media data provide fine-scale and dynamic big data
for accessibility research [33]. Web mapping services provide a more accurate approach for obtaining
travel impedance data between an origin and destination for MTM [25].

Third, individuals have different preferences for different modes of transportation. There have
been fewer experiments on how residential transportation mode choices (RTMC) influence facility
accessibility. RTMC refers to the selection of transportation modes by residents based on their activities,
travel time restrictions, destinations, and traffic conditions [34–36]. There are multiple transportation
modes between an origin–destination pair (OD), also called the demand point i to the supply point
j. The basic premise of RTMC assumes that people prefer to choose the most convenient and quick
transportation mode [20,37], which depends on the “limited rationality” of human decision-making [38].
In real life, traffic facility conditions, traffic location, distance from the destination, and economic cost
become influencing factors of RTMC [39]. The theories of RTMC mainly include utility maximization
theory [40], satisfaction evaluation theory [41], and effort-accuracy trade-off theory [42]. We need to
pay attention to the differences in residents’ choices of different traffic modes based on individual
factors: the factors that impact traffic for residents, such as the effect of disparities in travel time on
diverse transportation modes caused by the degree of urban congestion at different times.

In this paper, we will focus on the RTMC gap and consider the various transportation factors
to establish RTMC probabilities and redesign the gravity two-step floating catchment area method
(G2SFCA). The RTMC probabilities, which mainly depend on different transportation modes’ travel
impedance (Figure 1a), illustrate that different transportation modes from an origin location i (demand
location) to destination location j (supply location) have different probabilities w(mi) of being chosen
(Figure 1b). We selected the single transportation mode (STM) G2SFCA model as a fundamental model
and measured spatial accessibility to facilities with MTM-RTMC. We chose Nanjing as the experimental
area based on four types of route planning data for MTM from the web mapping platform; we then
applied three G2SFCA models to pediatric medical facilities to measure accessibility.
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Figure 1. Schematic diagram of multiple transportation modes-residential transportation mode choices
(MTM-RTMC). The RTMC probabilities, which mainly depend on different transportation modes’
travel impedance (Figure 1a), illustrate that different transportation modes from an origin location i
(demand location) to destination location j (supply location) have different probabilities w(mi) of being
chosen (Figure 1b).

The remainder of this paper is organized as follows. Section 2 describes the mathematical
accessibility models for the STM G2SFCA model (Section 2.2), the MTM G2SFCA model (Section 2.3),
and the MTM-RTMC G2SFCA model (Section 2.4) in detail. Additionally, we introduce two critical
parameters in the MTM-RTMC G2SFCA model, including the travel friction coefficient (Section 2.5)
and RTMC probabilities (Section 2.6). Section 3 introduces the background of the research area and
the primary status of the data used in this research. Section 4 discusses the value of the proposed
method and its results for measuring healthcare facility accessibility. In Sections 5 and 6, we generalize
the MTM-RTMC mechanism into five types of 2SFCA models and summarize the conclusions of
this research.

2. Materials and Methods

Several studies have used the 2SFCA method to estimate healthcare accessibility [16,43].
The generalized 2SFCA model is the fundamental accessibility model [44]. With changes in the
distance decay functions, the generalized 2SFCA model can evolve into many types, including the
enhanced 2SFCA model, the G2SFCA model, the kernel density 2SFCA model, and the Gaussian 2SFCA
model [15]. Among accessibility measurement models, the G2SFCA model has been widely used to
measure facility spatial accessibility [22]. The G2SFCA model considers the interaction between supply
and demand located in different areas [45]. The simulation-based G2SFCA model, which considers
the distance decay function as a continuous function, is one of the represented 2SFCA methods [25].
In this section, the generalized 2SFCA model, which is the basis of Sections 2 and 4.1, is reviewed first,
and three G2SFCA models are introduced to illustrate the implementation process for the improvement
and design of the MTM-RTMC G2SFCA model.

2.1. Review of the Traditional Generalized 2SFCA Model

In the accessibility methodology field, we can categorize the accessibility models into two categories,
place-based (i.e., residential community) and individual-based (i.e., residential individual) accessibility
models classified by the number of residents studied [15]. The place-based accessibility measures mainly
include cumulative opportunity models and gravity models [46] and the 2SFCA [47], and evaluate the
opportunities from demand locations to surrounding facilities considering the travel impedance [48].
Radke and Mu [49] presented earlier versions of the floating catchment area approach, and the 2SFCA
was further improved by Luo and Wang [47]. Wang [16] summarized the general form of the 2SFCA
model, the generalized 2SFCA model. First, the generalized 2SFCA model defines the catchment
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of the supply location j as an area comprised of all demand locations k within a threshold travel
impedance d0, and calculates the supply-demand-ratio X j within the catchment area (Equation (1)).
Second, the generalized 2SFCA model searches all j within d0 from i and summarizes the ratios X j
(Equation (1)) [16]. The population scale factor V j is the total serviceable population after the combined
effect of the distance decay functions f (dkj) (Equation (2)). V j can illustrate differences in the serviceable
population scale from different supply points [50]. The global accessibility value of all demand points
can be calculated from Equation (3).

Ai(Generalized) =
∑M

j=1
X j =

∑M

j=1

E j ∗ f (di j)

V j
(1)

V j =
N∑

k=1

Pk ∗ f (dkj) (2)

A(Generalized) =
∑N

k=1
Ai(Generalized) (3)

where
Ai(Generalized)—the spatial accessibility of the demand point i calculated by the generalized

2SFCA model;
A(Generalized)—all demand points sum value of spatial accessibility calculated by the generalized

2SFCA model;
Ej—the service resource supply capacity of supply point j;
dij—the travel impedance from demand point i to j;
M—the total number of supply points;
N—the number of demand points;
Pk—population number at demand point k;
Vj —the population-scale factor of j;
Xj—the supply-demand ratio of j.
The distance decay functions f (di j) and f (dkj) of the generalized 2SFCA model can be presented

as Equation (4); g(di j) is usually a specific constant.

f (di j) =

g(di j), di j ≤ d0

0, di j > d0
(4)

where
d0—the travel impedance effective threshold between i and j.

2.2. Review of the Traditional STM G2SFCA Model

The gravity model and the 2SFCA model belong to the same theoretical framework [47]. Both of
them consider the influence of destination scale, standpoint scale, and distance relationship between
destination and standpoint on accessibility. The STM G2SFCA model, also known as the potential
model or the potential energy model, is derived from Newton’s law of universal gravitation and was
proposed by Hansen [51]. Hansen introduced the concept of spatial accessibility when analyzing the
population distribution of the urban population and the spatial accessibility indicators of residential
land. Hansen also offered a model to calculate spatial accessibility, which was evaluated using the
potential indicators [52].
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The basic form of the STM G2SFCA model (Ai(stm), A(stm)) is consistent with the generalized
2SFCA model except for the distance decay function f (di j). The f (di j) of the STM G2SFCA model can
be generalized as Equation (5).

f (di j) =

d−βi j , di j ≤ d0

0, di j > d0
(5)

where
β—the coefficient of travel friction: the distance-decay parameter.

2.3. Designing the MTM G2SFCA Model

MTM provides a more realistic accessibility representation than single-mode methods [21].
Langford, Higgs, and Fry [43] proposed a multimodal 2SFCA method by incorporating both public
and private transportation modes using dedicated network datasets. In this paper, we adopt
the MTM mechanism to rebuild the population-scale factor V j (Equation (6)) and distance decay
function f (dkj(mr)) (Equation (8)) first, and acquire the accessibility of MTM (Equation (7)) second.
In Equation (8), the travel friction coefficients {β(m1), β(m2), . . . . . . β(mr)} vary by transportation mode,
which can specify the different travel impedance decay effects of accessibility [3]. More details of the
travel friction coefficients {β(m1), β(m2), . . . . . . β(mr)} are provided in Section 2.5. Because R types of
transportation modes are considered in Equations (6) and (7), the MTM results need to be divided
by R to avoid double counting. Summing all Ai(mtm), we can obtain A(mtm), the global value of the
research area (Equation (9)).

V j =
1
R
∗

N∑
k=1

R∑
r=1

Pk ∗ f (dkj(mr)) (6)

Ai(mtm) =
1
R
∗

M∑
j=1

R∑
r=1

E j ∗ f (di j(mr))

V j
(7)

f (di j(mr)) =

(di j(mr))
−β(mr), di j(mr) ≤ d0(mr)

0, di j(mr) > d0(mr)
(8)

A(mtm) =
∑N

k=1
Ai(mtm) (9)

where
Ai(mtm)—the MTM G2SFCA model’s spatial accessibility of i;
A(mtm)—all demand points sum of MTM G2SFCA model’s spatial accessibility value;
mr—the r type transportation mode, r ∈ (0, R]. Transportation modes include driving, walking,

public transportation, and bicycling;
β(mr)—the travel friction coefficient of transportation mode mr;
di j(mr)—the travel impedance for transportation mode mr from i to j;
d0(mr)—the travel impedance effective threshold of transportation mode mr between i and j.

2.4. Designing the MTM-RTMC G2SFCA Model

There is an underlying assumption that residents have the same probabilities of different situations
in Ai(mtm), which deviates from the reality of transportation. Therefore, we employed the RTMC
probabilities wk(mr) for transportation model mr to get closer to the reality of transportation (see
Equations (10) and (11)). Among them, the wi j(mr) that satisfies the constraints is

∑R
r=1 wi j(mr) = 1.

V j =
N∑

k=1

R∑
r=1

wkj(mr) ∗ Pk ∗ f (dkj(mr)) (10)
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Ai(mtm− rtmc) =
M∑

j=1

R∑
r=1

wi j(mr)∗E j∗ f (di j(mr))

V j

st.
R∑

r=1
wi j(mr) = 1

(11)

To understand the master equation of the MTM-RTMC G2SFCA model (Equation (11)) more
intuitively, the expansion form of Ai(mtm− rtmc) is shown in Equation (12) without considering the
influence of d0(mr). Summing all Ai(mtm− rtmc), we can obtain A(mtm− rtmc), the global value of
the research area (Equation (13)). In the MTM-RTMC G2SFCA model, the process for calculating the
critical parameter wi j(mr) is shown in Section 2.6.

Ai(mtm− rtmc) =
M∑

j=1
(

wi j(m1)∗E j

di j(m1)
β(m1)∗V j

+
wi j(mr)∗E j

di j(mr)
β(mr)∗V j

+ . . .+
wi j(mR)∗E j

di j(mR)
β(mR)

∗V j
)

st.
R∑

r=1
wi j(mr) = 1

(12)

A(mtm− rtmc) =
∑N

i=1
Ai(mtm− rtmc) (13)

where
Ai(mtm− rtmc)—the MTM-RTMC G2SFCA model’s spatial accessibility of i;
A(mtm− rtmc)—all demand points sum of the MTM-RTMC G2SFCA model’s spatial

accessibility value;
wi j(mr)—the RTMC probabilities of transportation mode mr from i to j.

2.5. Travel Friction Coefficient β

The travel friction coefficient β requires additional data and work to define and might be
region-specific. Predefining the travel friction coefficient β for different transportation modes is also
crucial in the research of predecessors (Table 1) because it determines the rate of di j decay to calculate
MTM accessibility and MTM-RTMC accessibility [53]. A larger β value suggests that residents are more
discouraged by long-travel times when seeking healthcare facilities and thus have a higher tendency to
settle for facilities in nearby locations [47]. When studying bus and car modes, Mao and Nekorchuk [3]
ignored the influence of travel friction. They observed that ignoring the impact of residents’ choices of
transportation modes would lead to deviation from more realistic results. The travel friction coefficient
β reveals the general effect of travel impedance decay on spatial interactions. A greater β indicates
a faster distance decay effect such that movements are more likely to be impeded due to spatial
segregation [54].

Regardless of the impact of individual factors on the choice of individual residents’ transportation
modes, the overall travel of the residents’ group follows the fundamental assumptions as follows.
(1) Residents can choose one of the transportation modes. (2) The basic principles of RTMC are inclined
toward a transportation mode with a short-travel time and low economic cost. (3) The general average
speed characteristics of the four main transportation modes are walking at 4 km/h (lowest speed),
bicycling at 8 km/h (lower speed), public transportation at 40 km/h (medium speed), and driving at
70 km/h (high speed) [23–25]. (3) Considering the travel friction coefficient β in the distance decay
functions that enhance and suppress the travel impedance, β = 1 is the critical value point, with the
travel impedance threshold being 1 kilometer as the boundary dividing travel into the short and long
distances (Figure 2) (for travel impedance, the distance is selected as di j; refer to the content: choose
kilometer as the dimension, and the basis is discussed in detail in Section 4.1). (4) In short-distance
travel, the travel friction coefficient β of the distance decay functions has an enlarging effect on
travel impedance. In contrast, in long-distance travel, the travel friction coefficient β of the distance
decay functions has a shrinking effect on the travel impedance (Figure 2). When the distance to a
facility is minimal, that facility has an absolute advantage over other more remote service facilities.
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Adjacent service facilities have a leading role in neighboring demand points and are therefore worthy
of attention.

Table 1. Different travel friction coefficients β in the research of predecessors.

Researchers Selected β Value Transportation Mode Travel Impedance Research Area Scientific Question

[55,56] 2.0 Driving Travel time Rudong County,
Jiangsu Province, China

The accessibility of health
care facilities

Wang and
Tang [44] 0.6 to 1.8

Unqualified,
simulation-based on
GIS for obtaining the

shortest travel distance

Travel distance Chicago, America The highest equality
of accessibility

Yao et al. [57] 1.0 Unqualified Travel time

four districts (Chibuto,
Chokwè, Guíjà,

and Mandlakaze) of
Gaza Province in

southern Mozambique

Utilization of sexual and
reproductive health

(SRH) services

Tao, Cheng,
Dai, and

Rosenberg [45]
0.6 to 1.4

Unqualified,
simulation-based on
GIS for obtaining the
shortest travel time

Travel time Beijing, China
Spatial optimization of

residential care
facility locations

Barona and
Blaschke [58] 1 Unqualified,

travel distance Travel distance Quito, Ecuador
Healthcare

accessibility and
socioeconomic deprivation

Zhang, Cao,
Liu, and

Huang [53]
0.8

Unqualified,
simulation-based on
GIS for obtaining the

shortest travel distance

Travel distance Hongkong SAR, China

A multi-objective
optimization approach for

healthcare facility
location-allocation problems

Zhu, Huang,
Shi, Wu, and

Liu [54]
1.0 Unqualified,

travel distance Travel distance China Inferring spatial
interaction patterns

Hu and
Downs [59] 0.602

Unqualified, based on
Google Maps Distance

Matrix API
Travel time Tampa Bay Region,

Florida, America
Space-time job

accessibility

Chen and
Jia [15] 1.5 and 2.0

Unqualified, the
shortest path O-D cost

matrix between
demand points and
supply points using

the Network Analysis
module in ArcGIS 10.4.

Travel distance Arkansas, America

Supplemental Nutrition
Assistance Program

(SNAP) authorized food
retailers in the state

We can conclude the following principles:

(1) In short-distance travel, the travel times of the four main transportation modes are similar.
The residents tend to adopt low-cost transportation modes, such as walking or cycling, so the
travel speed and the travel friction coefficient β have a negative correlation. In short-distance
travel, the travel friction coefficient β in the high-speed transportation mode offers a relatively
smaller enhancement of the travel impedance as the speed of the transportation mode increases.
So, the travel friction coefficient β in the high-speed transportation mode is relatively low.

(2) For long-distance travel, the travel time of the four main transportation modes varies greatly.
The diversity of alternative transportation modes gradually decreases, and residents tend to
choose faster transportation modes, which can ensure shorter transit times. As the speed of the
transportation mode increases, the travel friction coefficient β of the high-speed transportation
mode has a relatively smaller effect on suppressing the travel impedance, so the travel friction
coefficient β of the high-speed transportation mode is relatively low.

In the MTM G2SFCA model and MTM-RTMC G2SFCA model, we assigned the travel friction
coefficients as 1.4, 1.2, 1.0, and 0.8 for walking, bicycling, public transportation, and driving, respectively,
which conforms to the suppressing effect on the speed of transportation modes.

2.6. Residential Transportation Mode Choice Probabilities wk(mr)

Many of the factors that affect the RTMC can be divided into macro and micro aspects (Figure 3).
The macro factors include urban area characteristics, municipal economic level, and development status
of urban transportation facilities, while the micro factors include individual resident attributes, family
attributes, accessibility, punctuality, comfort, safety, travel experience, real-time traffic information,
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travel purpose, departure time urgency, travel distance, etc. Differences in the macro factors lead
to overall differences between urban regions. The differences in micro factors lead to a diversity of
transportation modes for regional residents; for example, because the travel budget of high-income
residents is higher, the ownership rate of private cars and the ratio of travel by driving will be higher.
The RTMC presents a combination probability distribution, and the overall trend of this distribution is
consistent with the whole urban travel cost context.
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The travel cost refers to the total currency performance that residents invest in the travel process
and is reflected in monetary and non-monetary expenditures. The travel cost applied to residents
selecting a specific transportation mode can sum into the direct financial expenditure and the loss of
travel time during the entire travel process. The loss of travel time value is defined as the currency
performance of the individual’s time consumed during the entire travel process. The principle of
a shadow price is that if the time consumed had instead been invested in production activities,
a commodity of particular value would be created; in other words, the amount of value lost refers to
the amount of money lost from investing a certain amount of time in non-productive activities [60].
Residents tend to choose a transportation mode with lower travel costs (Figure 3).

The travel cost is mainly affected by traffic time, traffic distance, and the economic coefficient or
urgency. The larger the traffic time and traffic distance are, the higher the travel cost [40]. We calculated
RTMC probabilities wk(mr) considering the affecting factors. The RTMC probability calculation
explicitly includes four steps (Figure 4). The input data are the route planning data of MTM, and the
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output result is wk(mr) of different OD. We relied on the Z-score standardization and Softmax
function [61] dimension reduction to calculate the RTMC probabilities.
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Step 1: Building STDi j(mr) (Equation (14)). The STDi j(mr) is characterized by the degree of
physical connection in geospatial space.

STDi j(mr) =
√

hi j(mr) ∗ di j(mr) (14)

where
hi j(mr)—the travel time for transportation mode r from i to j;
di j(mr)—the travel distance for transportation mode r from i to j.
Step 2: Building Z′i j(mr) (Equation (15)). δr, which has a unit of dollar/(person.km), indicates

the economic cost factor for integrating different transportation modes. The economic cost factor
refers to the trade-offs between uses of resources [39,62]. The design of δr has a major adjustment
impact on the calculation of the RTMC probabilities. We used fixed vehicle costs and variable vehicle
costs as users’ money costs. Therefore, the indicators are average car: $0.15, diesel bus: $0.08, bike:
$0.03, walk: $0.01 [39,62]. For ease of calculation, we increased δr with 1 and established δr as
{Public Transportation = 1.08, Walking = 1.01, Driving = 1.15, Bicycling = 1.03}. δr is a negative indicator,
and the larger it is, the lower the RTMC probability value.

Z′i j(mr) =
1

STDi j(mr) ∗ δr
(15)

Step 3: Z-score standardization (Equation (16)). The Z-score standardization method,
which reduces the deviation of the selection probability difference caused by the large difference in
OD, was selected for standardization. The Z-score standardization method converts multiple sets of
data into unitless Z′∗i j (mr). The scores make the data standards uniform, improve data comparability,
and weaken data interpretability.

Z′∗i j (mr) =
Z′i j(mr) − µ

σ
(16)

where
σ—the standard deviation of the overall data;
µ—the mean of the overall data.
Step 4: RTMC probability wi j(mr) in Equation (17). The Softmax function, also known as the

normalized exponential function, is a generalization of logic functions in probability theory and related
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fields. It can contain any K dimension of vector Z and “compress” it to another K dimension vector σ(Z).
Therefore, every element has a range in (0, 1), and the sum of all elements is equal to 1. The Softmax
function is a gradient log normalization of a finite item discrete probability distribution, which has a
wide range of applications in a variety of probability-based multiclassification problem methods.

wi j(mr) = P(Z′∗i j (mr)) =
e
Z′∗i j (mr)∑R

r=1 e
Z′∗i j (mr)

st.
∑R

r=1 wi j(mr) = 1
(17)

among them, r ∈ (0, R].
For prominent expression of the calculation process for RTMC probabilities, we selected

two empirical OD flows, Yujinli Community to Nanjing Children’s Hospital of Guangzhou Office
(NCHGZ) (Figure 5a) and Yujinli Community to Yifu Hospital Affiliated to Nanjing Medical
University (YHANMU) (Figure 5b), to request the recommended paths of MTM from Amap Maps
(point-in-time: 8 October 2019). The detailed travel distances and time results can be seen in Table 2.
We calculated RTMC probabilities wk(mr) of the selected two empirical OD flows, and the wk(mr)

results are {Public Transportation = 0.052, Driving = 0.285, Walking = 0.069, Bicycling = 0.593} and
{Public Transportation = 0.193, Driving = 0.639, Walking = 0.039, Bicycling = 0.13}. Field visits show
that Yujinli’s location is far from the boarding point of public transportation, so Yujinli’s short-distance
trips are mainly via bicycle, while Yujinli’s long-distance trips are via automobile, which conforms to
the actual RTMC.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 28 
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Figure 5. The MTM trajectories of two selected empirical origin–destination pair (OD) flows. Figure 5a
is short trip from Yujinli Community to NCHGZ, and Figure 5b is long distance trip from Yujinli
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Table 2. The dij and f (dij) logbooks for two empirical OD flows (from Yujinli to NCHGZ and to Yifu
Hospital Affiliated to Nanjing Medical University (YHANMU)).

dij Unit
Yujinli to NCHGZ Yujinli to YHANMU

Coefficient of Variation
W B PT D W B PT D

travel
time

minute 42 15 31 14 321 120 71 75 1.1769
hour 0.71 0.25 0.52 0.23 5.35 2.0 1.18 0.75 1.2418

travel
distance

meter 3200 3400 4500 3900 21,100 23,000 28,600 23,100 0.7949
kilometer 3.2 3.4 4.5 3.9 21.1 23 28.6 23.1 0.7949
β 1.4 1.2 1.0 0.8 1.4 1.2 1.0 0.8

f (dij)

minute 0.0053 0.0388 0.0323 0.1211 0.0099 0.0217 0.0330 0.0316 0.9827
hour 1.6152 5.2780 1.9231 3.2405 0.2614 0.5743 0.8760 1.2588 0.8814
meter 0.0000 0.0001 0.0002 0.0013 0.0003 0.0003 0.0003 0.0003 1.1437

kilometer 0.1962 0.2303 0.2222 0.3366 0.0872 0.0814 0.0684 0.0811 0.6020

Comments: W: walking, B: bicycling, PT: public transportation, D: driving.
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3. Study Area and Data

3.1. Study Area

With an area of 6587 km2 and a population of 8,300,000, Nanjing (118◦18′ N, 31◦14′ E, 119◦18′ N,
32◦36′ E) is one of the most significant cities in China (Figure 6). Nanjing, the capital of Jiangsu
Province and the essential national gateway city for the central and western regions of the Yangtze
River Delta, is a famous historical and cultural city. In terms of population, as of 2016, the urbanization
rate of Nanjing was 82.29%. In terms of transportation, various transportation forms coexist and
are numerous. The number of buses and trolleybuses was 8395, and the number of taxis was 14,239.
The total length of the Nanjing metro was 381 km, ranking fifth in length worldwide at the end
of 2015. Additionally, the number of personal vehicles in Nanjing reached 2.54 million, and the
number of shared bicycles and e-bikes was as high as 650,000 and 3 million, respectively, at the end of
2018 (http://tjj.nanjing.gov.cn/tjxx/201904/t20190402_1495115.html). Finally, the traffic road network of
Nanjing is at the forefront for China, with a per capita road area of 21.81 square meters, far exceeding
the national average of 15.6 square meters [63]. In terms of medical services, the Nanjing medical and
healthcare system is ideal, comprehensive medical resources are abundant, and medical and health
conditions rank second only to Shanghai and Beijing. There are 241 public hospitals in Nanjing, of which
22 are level-three hospitals. Although the average number of pediatricians per 1000 people in Nanjing,
being 0.67, is higher than the average for China, it is still far below the number for the principal developed
countries, whose ratio reaches a standard of 0.85–1.3, which shows a significant gap of pediatric
resources. Therefore, considering the population, transportation, and medical services factors, Nanjing
was selected as a metropolitan research area with strong typicality. The results thus have reference
value for the medical service resource planning of China’s first-tier and second-tier metropolises.

To facilitate the research and reduce the influence of the modifiable areal unit problem [64],
we used the street block data of Nanjing as a spatial statistical unit. The street block data are the spatial
framework data for realizing unified cadastral management, and their division was comprehensively
considered based on organizational factors, natural geographical conditions, and public facilities [65].
There are 2265 street blocks in Nanjing. The street blocks in central urban areas demonstrate small
and dense areas, with some being smaller than 1 km2. In contrast, the street blocks in peripheral
urban areas are large areas and sparsely populated, with some being more than 20 km2. Therefore,
using street block data as a research unit can better characterize urban morphological characteristics.
It can achieve the essential morphological characteristics of “small difference within the class and large
difference between classes.”

3.2. Data

3.2.1. Route Planning Data of Multiple Transportation Modes

The route planning API of web maps is a new type of travel cost calculation [25]. Web maps
provide open-access route planning data for several independent or mixed transportation modes,
including driving, walking, and cycling [66]. This paper selected Amap Maps, which is one of the
most popular web mapping platforms in mainland China, as a data source. The Amap Maps route
planning service offers real-time navigation by producing tailor-made travel plans for users based
on destination, departure, and path policy settings that combine real-time traffic data with helping
users bypass congested sections and enjoy a more intimate and user-friendly travel experience [67].
The Application Programming Interface (API) is convenient, only requiring the latitude/longitude
coordinates of the origin points and destination points. The API-returned results (for requesting code,
see supplementary materials) allowed us to directly acquire detailed route files, including specific
routes, segmented routes, and corresponding travel costs (e.g., time and distance). The API-returned
results are the whole-path time and the distance cost. The travel time and distance by web maps API is
a historical average, which gives useful and credible predictions for research purposes. These returned

http://tjj.nanjing.gov.cn/tjxx/201904/t20190402_1495115.html
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values are more accurate because they consider the traffic conditions and congestion time loss using
real location data [26]. For ease of expression, we selected an empirical provider location, NCHGZ,
to show the travel time and distance from different street blocks requested from the route planning API
of Amap Maps (point-in-time: 8 October 2019) (Figure 7). Figure 7(a1,a2,a3,a4) present that the travel
distance of different transportation modes to NCHGZ is different, which results from that different
transportation modes choose different kinds of travel routes. The travel time variability of different
transportation modes has apparent differences, shown in Figure 7(b1,b2,b3,b4). The most variability
or fastest way is in driving, followed by public transportation, while walking and bicycling have
evolved as a series of concentric rings. The above illustrates that different transportation modes have a
significant impact on travel time and distance.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 28 
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3.2.2. Child Population Spatial Distribution Data

Fine-scale population spatial distribution data are one of the essential indicators for realizing
spatiotemporal accessibility [29]. In past studies, the demographic data of each administrative unit have
been commonly used to represent the population directly. The shortcomings were large data granularity,
discrete spatial distribution, and low accuracy. The development of information and communication
technology has provided technical support for obtaining more accurate spatial population distribution
data [68]. We adopted the statistical thermal map of the Suitable for Travel Platform to obtain spatial
population distribution data. The average value of WeChat thermal map data within this period was
used to indicate the regional population distribution.

To accurately obtain the spatial distribution data for the population of children in Nanjing from
the Suitable for Travel Platform, we should inspect the definition of a child and adopt the proportional
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conversion method. The age division defines the concept of a child as under the age of fourteen. At the
end of 2017, the census population from 0 to 14 years old was 904,000 in Nanjing, and the proportion
of children in the population was 10.85%. The population data requested from the Suitable for Travel
Platform in Nanjing returned a population of 7,769,000, which is slightly lower than the number for
the resident population from statistical sources, and thus this is considered to be a reasonable range.
Therefore, the number of children in Nanjing was obtained by multiplying 7,769,000 by 10.85%, and the
resulting number of children for use in our study was 843,200. To facilitate spatial display, we mapped
the child population spatial distribution data on fishnet cells using the natural breaks classification
method [69] (Figure 8). The spatial child population (for details, see supplementary materials) is
concentrated in the main residential areas of Nanjing, with high-value point-like and uneven spatial
distribution. The hotspots are centralized in the regions along with the arterial networks of the main
urban area.

3.2.3. Pediatric Clinic Services Data

Due to the particular features of pediatrics, pediatric clinic service (PCS) resources are facing high
scarcity, especially in developing countries [70,71]. In 2016, the State Health and Family Planning
Commission of China issued guidelines for strengthening the reform and development of children’s
medical and healthcare services (http://www.mohrss.gov.cn/SYrlzyhshbzb/shehuibaozhang/zcwj/yiliao/

201606/t20160601_241098.html). The spatial accessibility of PCS is one of the typical and meaningful
issues within research on the accessibility of healthcare services [72–74], which prompted us to choose
PCS as the research object.

Twenty-six hospitals in Nanjing have established pediatric services (Appendix A Table A1),
and the pediatric services of different hospitals currently have significant differences in the level of
services they provide. To effectively measure the pediatric scale of various hospitals and consider
the availability and accuracy of data, we estimated the pediatric scale of hospitals by the number
of pediatricians. The number of pediatricians was obtained from the Good Doctor website (https:
//haoping.haodf.com/keshi/3030000/faculty_jiangsu_nanjing.htm). The statistical results are expressed
in the form of spatialized drawings (Figure 6). The results showed that the total number of pediatric
doctors in Nanjing is 603. Overall, compared with 904,000 children, the average number of pediatricians
per 1000 people is approximately 0.67. According to data released by the 2015 China Health Statistics
Yearbook, in the past five years, there has been an average of 0.43 pediatricians per 1000 children.
Although the average number of pediatricians per 1000 people in Nanjing is higher than the average
for China, it is still far below the number for the principal developed countries, whose ratio reached a
standard of 0.85–1.3.

As the spatial distribution shows, hospitals containing pediatrics are mainly concentrated in the
Gulou District, which is the core urban area of Nanjing and has many vital departments, educational
resources, and commercial centers.

3.3. Ethical Consideration

Our research data, regarding georeferenced social media data, include route planning data
of MTM, child population spatial distribution data, and pediatric clinic services data. The crawler
program from the Amap Maps API (https://lbs.amap.com/) crawled the route planning data of the MTM.
The child population spatial distribution data were obtained from the Suitable for Travel Platform
(http://c.easygo.qq.com/eg_toc/map.html). The pediatric clinic services data were manually collected
from the Good Doctor website (https://haoping.haodf.com/). The increasing use of georeferenced social
media data has brought further privacy challenges, as well as some other social, legal, and ethical
issues [75]. Here, we need to declare that all data which were collected from the internet are open
source, ethically free, and privacy-free. In addition, the openness of data acquisition brings advantages
for our research method to be extended to other cities.

http://www.mohrss.gov.cn/SYrlzyhshbzb/shehuibaozhang/zcwj/yiliao/201606/t20160601_241098.html
http://www.mohrss.gov.cn/SYrlzyhshbzb/shehuibaozhang/zcwj/yiliao/201606/t20160601_241098.html
https://haoping.haodf.com/keshi/3030000/faculty_jiangsu_nanjing.htm
https://haoping.haodf.com/keshi/3030000/faculty_jiangsu_nanjing.htm
https://lbs.amap.com/
http://c.easygo.qq.com/eg_toc/map.html
https://haoping.haodf.com/
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4. Results

The experimental process was as follows. We designed a crawler program to obtain data
and calculate the spatial accessibility of pediatrics based on the three G2SFCA models (STM, MTM,
and MTM-RTMC). The data storage software selected in this experiment was MongoDB 2.7.0, the model
development language was Python 3.5, and the GIS mapping software was ArcGIS 10.2. In the process of
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model calculation, we need to clarify what di j refers to and its dimension (see Section 4.1). We compared
the differences between the V j of the three models, and the accessibility results of the three models
were compared to illustrate the impact of model improvement on accessibility.

4.1. dij Establishment

The content and dimension of di j in distance decay functions f (di j) have a significant impact on the
calculation of accessibility. Scholars have diverse and particular subjectivity about the referred content
and dimension of di j (Table 1). In most 2SFCA models, the travel impedance effective threshold d0 and
the distance impedance coefficient β are mathematically dependent, and so when d0 is determined,
β should be adjusted accordingly (Chen and Jia, 2019). To discuss the influence of di j, we again selected
the two empirical OD flows: Yujinli to NCHGZ (Figure 5a, relatively close), and Yujinli to YHANMU
(Figure 5b, relatively distant). The analysis results (see Table 2) show that the coefficient of variation
of f (di j) is 0. 6020, which is the smallest when the travel distance of di j is represented in kilometers.
This illustrates that when di j is expressed in kilometer units, the dispersion degree of f (di j) is the
lowest, which is consistent with the coefficient of variation of travel distance expressed in kilometers.

In this experiment, we selected public transportation as the transportation mode for the STM
G2SFCA model, the β value being 1, and the d0 being 100 km. In the MTM G2SFCA model and
MTM-RTMC G2SFCA model, we selected four transportation modes, including walking, bicycling,
public transportation, and driving, and the d0(mr) were 60 km, 80 km, 100 km, and 120 km, respectively.

4.2. Comparison of the Vij Estimates with the Three G2SFCA Models

In the STM G2SFCA model, MTM G2SFCA model, and MTM-RTMC G2SFCA model, the influence
factor V j gradually increases (Figure 9). The MTM-RTMC G2SFCA model shows significant
improvement compared with the STM G2SFCA model and MTM G2SFCA model, indicating that
RTMC significantly improves traffic accessibility. As traffic communication improves, V j increases,
which means that each hospital will have a larger potential population.
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β 1.4  1.2  1.0  0.8  1.4  1.2  1.0  0.8   

݂(݀) 

minute 0.0053  0.0388  0.0323  0.1211  0.0099  0.0217  0.0330  0.0316  0.9827 
hour 1.6152  5.2780  1.9231  3.2405  0.2614  0.5743  0.8760  1.2588  0.8814 
meter 0.0000  0.0001  0.0002  0.0013  0.0003  0.0003  0.0003  0.0003  1.1437 

kilometer 0.1962  0.2303  0.2222  0.3366  0.0872  0.0814  0.0684  0.0811  0.6020 
Comments: W: walking, B: bicycling, PT: public transportation, D: driving. 
In this experiment, we selected public transportation as the transportation mode for the STM 
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4.3. Comparison of the Accessibility Estimates from the Three G2SFCA Models

A direct comparison of the overall research area (Figure 10a–c) suggests that the three models
have the same spatial distribution characteristics, a binuclear aggregation distribution (for details,
see supplementary materials). The phenomenon of binuclear aggregation distribution is mainly related
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to the concentration of pediatric medical resources in NCHGZ and Nanjing Children’s Hospital of
Hexi Office (NCHHX): those attached to Nanjing Children’s Hospital in Nanjing. Considering the
number of pediatricians in each hospital, the number of pediatricians in Nanjing Children’s Hospital
consisting of NCHGZ and NCHHX is the largest, including 392 pediatricians, accounting for 65% of
the total number of pediatricians in Nanjing. The maximum number of outpatient visits in Nanjing
Children’s Hospital exceeded 11,000, and the number of outpatient clinics in the evening was over 1000.
The annual outpatient volume was 2,565,700. What is more, areas with a high accessibility value are
located in the downtown, which owns the developed road network condition and multiple convenient
transportation types. Good traffic conditions have been widely proven to be an essential factor in
improving accessibility in existing research [3,76,77].

For the convenience of discussion, a series of local zoom maps were made for the core urban
areas and external urban areas, as shown in Figure 10(a1,b1,c1,a2,b2,c2). For the main urban areas
(Figure 10(a1,b1,c1)), the accessibility results of the MTM model and the MTM-RTCM model are
significantly higher than those of the STM model, indicating that MTM is conducive to enlarging the
coverage of high accessibility value. Because residents have more alternative modes of transportation,
they tend to choose lower-cost modes. Additionally, there are some low-value areas in the core
urban areas, mainly because these areas represent traffic barriers, such as water areas, green park
space, undeveloped land, etc. In the external urban areas (Figure 10(a2,b2,c2)), there are significant
differences in the radiated areas. However, they show the same level of accessibility values for
the three models, shown as Figure 10(c2) > Figure 10(a2) > Figure 10(b2), indicating that the
external urban areas also follow the basic principle of choosing a lower-cost mode of transportation.
However, Figure 10(a2) > Figure 10(b2) shows that public transport plays a dominant role in the
external urban areas, which is directly related to the traffic facilities and the spatial distance from
medical facilities. The private car ownership rate in the external urban areas is lower than that in the
core urban areas, and the spatial distance from medical facilities in the external urban areas is much
higher than that in the core urban areas. These characteristics illustrate the significant influence of
MTM-RTCM on accessibility.

The value of the STM G2SFCA model was significantly affected by the distribution conditions
of the traffic network, which shows a distribution along with the main traffic network and with low
accessibility overall. The global value of the STM G2SFCA model was 124.48. The value of the MTM
G2SFCA model was presented based on concentric circle radiation, and the overall accessibility was
dual-core. The global value of the MTM G2SFCA model was 129.67. The MTM-RTMC G2SFCA model
offered concentric circular radiation, with a broader radiation range than MTM. The overall accessibility
presented dual cores. The global value of the MTM-RTMC G2SFCA model was 132.53. Because the
MTM-RTMC mechanism reduced the travel time of the overall area, the MTM-RTMC G2SFCA model
improved accessibility and enlarged the accessibility radiation range. By choosing a more suitable
transportation mode for their travel needs, residents can reduce the travel time to various healthcare
facilities and improve the accessibility of the overall demand points.

To better reflect the changes in accessibility brought by the three models, the growth rates of

the global value calculated by A(mtm)−A(stm)
A(stm)

∗ 100% and A(mtm−rtmc)−A(mtm)
A(mtm)

∗ 100% were increased by
4.1% and 2.2%, respectively. In the MTM-RTMC G2SFCA model, the closer the demand point was
to the healthcare facilities, the more healthcare accessibility was weakened due to the low-speed
transportation mode being prioritized. In contrast, the farther the demand point was from the
healthcare facilities, the more significantly the healthcare accessibility of the MTM-RTMC G2SFCA
model was enhanced compared to the STM G2SFCA model and the MTM G2SFCA model due to
the improvement of transportation accessibility and convenience. The growth of accessibility has
an immediate effect on the accessibility of the whole region. Examining the standard deviation in
Table 3, the standard deviation of the MTM-RTMC G2SFCA model is the lowest, which signifies that
the MTM-RTMC mechanism promotes the fairness of healthcare facilities and reduces the accessibility
gap between demand points.
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Table 3. The summary statistics of STM, MTM, and MTM-RTCM G2SFCA models’ results.

STM MTM MTM-RTMC

Minimum 0 0.01243 0.00905
Maximum 0.42209 0.48843 0.36014

Sum 124.48 129.67 132.53
Mean 0.055 0.057 0.059

Standard deviation 0.049652 0.049644 0.041231

5. Discussion

5.1. The Potential Application of This MTM-RTCM Mechanism

A concern of this MTM-RTCM mechanism is its extension to the gravity model of spatial
accessibility, of which 2SFCA is a special case [16,47]. Five major 2SFCA models include the generalized
2SFCA (base model) (Figure 11(a1)), enhanced 2SFCA (Figure 11(b1)), G2SFCA (Figure 11(c1)), kernel
density 2SFCA (Figure 11(d1)), and Gaussian 2SFCA (Figure 11(e1)). Luo and Qi [77] proposed an
enhanced 2SFCA method to identify more underserved areas by dividing a catchment into different
weighted zones. Dai [78,79] integrated the 2SFCA method with a Gaussian function and kernel density
function to measure accessibility while continuously discounting accessibility. Considering the strong
subjectivity, the di j catchment threshold classification standard of the generalized 2SFCA model and
the enhanced 2SFCA model is difficult to determine. The parameter β of the G2SFCA model establishes

https://figshare.com/s/7fc7a00e868a9c71ac37
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subjectivity, while the kernel density 2SFCA model and Gaussian 2SFCA model calculation are clear,
with no adjustment.

Following similar patterns from the MTM-RTCM mechanism, the MTM-RTMC mechanism can
be generalized to five major 2SFCA models through improved distance decay functions (Table 4).
The improved distance decay functions expand traditional single transportation types to multiple
transportation types, which means that the mathematical morphology of the improved distance decay
functions evolves into 3-dimensional space (Figure 11(a2,b2,c2,d2,e2)). The master equation of different
2SFCA models with the MTM-RTMC mechanism continues to keep pace with Equation (11).

5.2. Implications and Theoretical Thinking of the Proposed Method

The MTM-RTCM mechanism can offer pragmatic implications for policy initiatives regarding the
influence of MTM-RTCM on new services allocation, especially in residential service planning policy.
Traditional methods of residential service planning policy are based on the irrelative spatial unit to set
new locations of service facilities. However, we assume a more reasonable way is that the whole city,
as an organic whole, constructs dynamic zones of services based on the road network and MTM-RTMC,
which will promote the services locations to be efficient and intensive throughout the city. Typical
application directions include optimizing healthcare services location-allocation problems based on
MTM-RTCM [53,80] and improving the spatial equity of multilevel healthcare in the metropolis based
on MTM-RTCM [11].

Table 4. List of MTM-RTMC mechanisms improving the distance decay function of five 2SFCA models.

Model Name The Distance Decay Function The Improved Distance Decay
Function with MTM

Generalized 2SFCA f (di j) =

θ1, di j ≤ d0

0, di j>d0

f (di j(mr)) =θ1(mr), di j(mr) ≤ d0(mr)

0, di j(mr)>d0(mr)

Enhanced 2SFCA f (di j) =


θ1, di j ∈ d1

θ2, di j ∈ d2

. . . , . . .

θU, di j ∈ dU

f (di j(mr)) =
θ1(mr), di j(mr) ∈ d1(mr)

θ2(mr), di j(mr) ∈ d2(mr)

. . . , . . .

θU(mr), di j(mr) ∈ dU(mr)

G2SFCA f (di j) =

d−βi j , di j ≤ d0

0, di j > d0

f (di j(mr)) =(di j(mr))
−β(mr), di j(mr) ≤ d0(mr)

0, di j(mr) > d0(mr)

Kernel Density 2SFCA f (di j) =
3
4 ∗

[
1− (

di j

d0
)

2
]
, di j ≤ d0

f (di j(mr)) =
3
4 ∗[

1− (
di j(mr)

d0(mr)
)

2
]
, di j(mr) ≤ d0(mr)

Gaussian 2SFCA f (di j) =
e(−1/2)∗(dij/d0)

2
−e−1/2

1−e−1/2 , di j ≤ d0

f (di j(mr)) =

e(−1/2)∗(dij(mr)/d0(mr))2
−e−1/2

1−e−1/2 , di j(mr) ≤

d0(mr)

From the view of the method innovation perspective, our methodology shares the same basic
design concept with Tahmasbi’s et al. [22] research comparing the most similar and nearby multimodal
accessibility studies. Tahmasbi et al. took into account the effects of different income groups in Isfahan,
Iran, but the traffic travel times of different transportation modes were still based on the simulation
calculation of GIS software, which failed to take into account the effects of various traffic factors
on resident travel and preference. Such comparison intuitively shows where we have innovated
and where we need to improve. From the view of the knowledge discovery of a PCS perspective,
what motivates the phenomenon that pediatrics in Nanjing is showing an aggregate developmental
effect? The two highest scored regions and three subcenters with relatively high accessibility values are
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in Nanjing. The phenomenon is also different from the patient-centered medical home, an approach to
providing comprehensive primary care for children and youth in developed countries, such as the US
and UK [81]. The deeper reason behind this phenomenon that we suspect should be directly related to
the complexity of pediatric specialties, the difficulty of pediatrician training, and sensitivity to pediatric
treatment [71]. We hold an opinion that medical collectivization [82], high-level hospitals in the region
collaborating with other health services, and community-based primary care may be conducive to the
PCS development of quality and equity.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 22 of 28 
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6. Conclusions

In this paper, we attempted to fill a gap in the knowledge of MTM-RTMC by presenting the
accessibility influence of PCS for Nanjing, one of the Chinese megacities. We integrated the MTM-RTMC
mechanism into the G2SFCA model and generalized it to five significant types of 2SFCA models.
The MTM-RTMC G2SFCA model has a considerable effect on the traditional estimation of travel
impedance, which depends on whether the MTM-RTMC mechanism enriches a single transportation
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mode to multiple transportation modes of inhabitants. The MTM-RTMC mechanism provides a more
reliable way than the STM to measure accessibility between demand locations to provider locations by
the choice mechanism of multiple transportation modes, especially in far distant places, such as suburbs
and the countryside. The MTM-RTMC mechanism, which works in dynamic traffic environments in
modern cities, can be helpful for policymakers to measure the accessibility of service provision.

The MTM-RTMC mechanism, which has been carried out on the preliminary proof, is proposed
to improve the accessibility calculation to portray real residents’ travel characteristics more accurately.
However, there are still research questions to be addressed. How can RTMC probability differences be
characterized by comprehensive factors, such as transportation service facilities provision, weather
conditions, seasonal conditions, regional topography features, commuting timetables, and regional
transportation characteristics (for example, Hanoi in Vietnam is a city where the main form of
transportation is the motorcycle)? It is a challenge for future related research. We believe that more
factors can be considered in combination with the research method applied through the humanistic
geography questionnaire. We will commence experimental analysis and comparison of five major
2SFCA models with the MTM-RTMC mechanism in future research. More importantly, based on the
government’s transportation big data platform that can collect daily travel data of individuals, we will
verify the consistency between the estimated MTM-RTMC probabilities and real travelers’ preferences
of different transport modes.

Supplementary Materials: The data supporting the findings are available in “figshare.com” with the private link
https://figshare.com/s/185e7f9682f791527cdc. We have provided the code, including that initializing the list of OD
flows, requesting real-time route planning time and distance from Amap maps, and calculating the accessibility
results of the three models. The code can be run in Python IDE (such as “PyCharm 2017”). The research data,
including “rtmcp_mtm_gm.json” data and “street_block_mock_data.shp” data, provided the necessary data for
accessibility calculations and spatial symbolization. Considering the state secrecy of the street block data, we used
the ArcGIS buffer method and ArcGIS feature envelope to polygon method to generate mock data consistent
with the street block data morphology and properties. The “rtmcp_mtm_gm.json” data can be opened using
the software “MongoDB 3.2,” and the “street_block_mock_data.shp” data can be opened using the software
“ArcGIS 10.2.” All of those research data were collected from web open-source approaches and did not involve
any personally sensitive information, except the street block shapefile. So, the ethical approval is in low risk.
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Appendix A

Table A1. Hospitals in Nanjing offering pediatric services.

ID Hospital Name Abbreviation Longitude Latitude Number of Pediatricians Hospital Level

1
Nanjing Children’s

Hospital Guangzhou
Road Office

NCHGZ 118.7742 32.0527 157 3

2 Nanjing Children’s
Hospital Hexi Office NCHHX 118.7026 31.9840 235 3

3 Jiangsu Provincial
People’s Hospital JPPH 118.7600 32.0500 26 3

4 Affiliated Hospital of
Southeast University AHSU 118.7720 32.7020 13 3

https://figshare.com/s/185e7f9682f791527cdc
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Table A1. Cont.

ID Hospital Name Abbreviation Longitude Latitude Number of Pediatricians Hospital Level

5 Taikang Xianlin
Gulou Hospital TXGH 118.9330 32.0950 6 3

6
Second Affiliated Hospital

of Nanjing
Medical University

SAHNMU 118.7390 32.0810 26 3

7 Jiangsu Maternal and Child
Healthcare Hospital JMCHH 118.7360 32.0600 23 3

8 Nanjing Maternal and
Child Healthcare Hospital NMCHH 118.7710 32.0410 14 3

9 Nanjing Jiangbei
People’s Hospital NJPH 118.7520 32.2370 3 3

10
Jiangning Hospital

affiliated to Nanjing
Medical University

JHANMU 118.8440 31.9500 8 3

11 Nanjing Gaochun
People’s Hospital NGPH 118.8650 31.3220 20 2

12 Nanjing Qixia
District Hospital NQDH 118.8820 32.1220 2 2

13 Nanjing First Hospital NFH 118.7870 32.0220 8 3
14 Nanjing Mingji Hospital NMH 118.7200 31.9810 6 3

15
Nanjing Integrated

Traditional Chinese and
Western Medicine Hospital

NITCWMH 118.8530 32.0350 9 3

16
Jiangsu Hospital of

Integrated Chinese and
Western Medicine

JHICWM 118.8040 32.0990 6 3

17 Lishui District
People’s Hospital LDPH 119.0270 31.6320 6 3

18 Liuhe District
People’s Hospital LDPH 118.8400 32.3420 9 2

19 Nanjing Pukou Hospital NPH 118.7140 32.1060 4 2

20 Jiangsu Province
Provincial Hospital JPPH 118.7360 32.0670 2 3

21 Nanjing Branch of
Changzheng Hospital NBCH 118.7440 32.0930 1 3

22 Nanjing Pukou District
Central Hospital NPDCH 118.6320 32.0500 3 2

23 Nanjing Red Cross Hospital NRCH 118.7870 32.0280 1 2
24 Nanjing Municipal Hospital NMH 118.7890 32.0560 1 2

25 Yifu Hospital Affiliated to
Nanjing Medical University YHANMU 118.8880 31.9330 8 3

26 Bayi Hospital of Eastern
Theater General Hospital BHETGH 118.7880 32.0360 6 3
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