Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources and Preprocessing
3. Methods
3.1. Sentiment Analysis of Weibo Text
3.1.1. Extended Weibo Text Emotion Dictionary
3.1.2. Scoring of Sentiment Words in Weibo Texts
3.1.3. Weibo Text Sentiment Weighting Calculation
3.2. GWR
3.3. Multiple Linear Regression
4. Results
4.1. Distribution of Emotional Points in the Waterfront
4.1.1. Score Distribution of Emotional Points
4.1.2. Spatial Distribution of Emotional Points
4.2. Gender Differences of Positive and Negative Emotions in Each Lake
4.3. Gender Differences in Comprehensive Emotions of Various Lakes
4.4. Verification of the Differences in the Performances of Men and Women’s Emotions in the Waterfront through POIs
4.4.1. Method Comparison
4.4.2. Lake Weight of Emotional Gender Differences
4.4.3. Spatial Component of Emotional Gender Differences in the Waterfront
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Li, J.; Ma, Y. Exploring the relationship between potential and actual of urban waterfront spaces in Wuhan based on social networks. Sustainability 2019, 11, 3298. [Google Scholar] [CrossRef] [Green Version]
- Hermida, M.A.; Cabrera-Jara, N.; Osorio, P.; Cabrera, S. Methodology for the assessment of connectivity and comfort of urban rivers. Cities 2019, 95, 102376. [Google Scholar] [CrossRef]
- Rigby, D.; Breen, A. The New Waterfront a Worldwide Urban Success Story; McGraw-Hill: Singapore, 1996. [Google Scholar]
- Gong, M.; Ren, M.; Dai, Q.; Luo, X. Aging-Suitability of Urban Waterfront Open Spaces in Gongchen Bridge Section of the Grand Canal. Sustainability 2019, 11, 6095. [Google Scholar] [CrossRef] [Green Version]
- Da, T.; Xu, Y. Evaluation on connectivity of urban waterfront redevelopment under hesitant fuzzy linguistic environment. Ocean Coast. Manag. 2016, 132, 101–110. [Google Scholar] [CrossRef]
- Sairinen, R.; Kumpulainen, S. Assessing social impacts in urban waterfront regeneration. Environ. Impact Assess. Rev. 2006, 26, 120–135. [Google Scholar] [CrossRef]
- Ali, S.M.; Nawawi, A.H. The Social Impact of Urban Waterfront Landscapes: Malaysian Perspectives. In Proceedings of the REAL CORP 2009, Sitges, Spain, 22–25 April 2009. [Google Scholar]
- Romero, V.P.; Maffei, L.; Brambilla, G.; Ciaburro, G. Modelling the soundscape quality of urban waterfronts by artificial neural networks. Appl. Acoust. 2016, 111, 121–128. [Google Scholar] [CrossRef]
- Shafaghat, A.; Keyvanfar, A.; Manteghi, G.; Lamit, H.B. Environmental-conscious factors affecting street microclimate and individuals’ respiratory health in tropical coastal cities. Sustain. Cities Soc. 2016, 21, 35–50. [Google Scholar] [CrossRef]
- Shafaghat, A.; Manteghi, G.; Keyvanfar, A.; Lamit, H.B.; Saito, K.; Ossen, D.R. Street geometry factors influence urban microclimate in tropical coastal cities: A review. Environ. Clim. Technol. 2016, 17, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.-C. Revitalising Singapore’s central city through gentrification: The role of waterfront housing. Urban Policy Res. 2006, 24, 181–199. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G. The Researches on Sustainable Development of Urban Waterfront. In Proceedings of the 2008 International Conference on Management Science and Engineering, Long Beach, CA, USA, 10–12 September 2008; pp. 10–12. [Google Scholar]
- Che, Y.; Yang, K.; Chen, T.; Xu, Q. Assessing a riverfront rehabilitation project using the comprehensive index of public accessibility. Ecol. Eng. 2012, 40, 80–87. [Google Scholar] [CrossRef]
- Cabezas, A.; Comín, F.A. Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain): Implications for their ecological restoration. Ecol. Eng. 2010, 36, 640–652. [Google Scholar] [CrossRef]
- Hillman, M.; Brierley, G. A critical review of catchment-scale stream rehabilitation programmes. Prog. Phys. Geogr. 2005, 29, 50–76. [Google Scholar] [CrossRef]
- Kohlmann, B.; Mitsch, W.J.; Hansen, D.O. Ecological management and sustainable development in the humid tropics of Costa Rica. Ecol. Eng. 2008, 34, 254–266. [Google Scholar] [CrossRef]
- Larson, M.G.; Booth, D.B.; Morley, S.A. Effectiveness of large woody debris in stream rehabilitation projects in urban basins. Ecol. Eng. 2001, 18, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Tian, Z.; Yang, Z.; Zhang, K. Housing development as an application of ecological engineering on streamside. Ecol. Eng. 2009, 35, 1190–1199. [Google Scholar] [CrossRef]
- Buijs, A.E. Public support for river restoration. A mixed-method study into local residents’ support for and framing of river management and ecological restoration in the Dutch floodplains. J. Environ. Manag. 2009, 90, 2680–2689. [Google Scholar] [CrossRef]
- Bash, J.S.; Ryan, C.M. Stream restoration and enhancement projects: Is anyone monitoring? Environ. Manag. 2002, 29, 877–885. [Google Scholar] [CrossRef]
- Sailunaz, K.; Alhajj, R. Emotion and sentiment analysis from Twitter text. J. Comput. Sci. 2019, 36, 101003. [Google Scholar] [CrossRef] [Green Version]
- Ciuccarelli, P.; Lupi, G.; Simeone, L. Visualizing the Data City: Social Media as a Source of Knowledge for Urban Planning and Management; Springer Science & Business Media: Berlin, Germany, 2014. [Google Scholar]
- Fujisaka, T.; Lee, R.; Sumiya, K. Discovery of user behavior patterns from geo-tagged micro-blogs. In Proceedings of the 4th International Conference on Uniquitous Information Management and Communication, Suwon, Korea, 14 January 2010; pp. 1–10. [Google Scholar]
- Guo, Y.; Goh, D.H.-L. “I Have AIDS”: Content analysis of postings in HIV/AIDS support group on a Chinese microblog. Comput. Hum. Behav. 2014, 34, 219–226. [Google Scholar] [CrossRef]
- Han, G.; Wang, W. Mapping user relationships for health information diffusion on microblogging in China: A social network analysis of Sina Weibo. Asian J. Commun. 2015, 25, 65–83. [Google Scholar] [CrossRef]
- Haeusler, M. Enabling low cost human presence tracking. In Proceedings of the International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA, Melbourne, ON, Australia, 30 March 2016; pp. 45–54. [Google Scholar]
- Wu, J.; Li, J.; Ma, Y. A Comparative Study of Spatial and Temporal Preferences for Waterfronts in Wuhan based on Gender Differences in Check-In Behavior. ISPRS Int. J. Geo-Inf. 2019, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Fairfield, J.D. The scientific management of urban space: Professional city planning and the legacy of progressive reform. J. Urban Hist. 1994, 20, 179–204. [Google Scholar] [CrossRef]
- Ford, G.B. The city scientific. Eng. Rec. 1913, 67, 551–552. [Google Scholar]
- LeGates, R.; Tate, N.J.; Kingston, R. Spatial thinking and scientific urban planning. Environ. Plan. B Plan. Des. 2009, 36, 763–768. [Google Scholar] [CrossRef]
- Light, J.S. From Warfare to Welfare: Defense Intellectuals and Urban Problems in Cold War America; JHU Press: Baltimore, MD, USA, 2003. [Google Scholar]
- Liang, X.; Gu, S.; Deng, J.; Gao, Z.; Zhang, Z.; Shen, D. Investigation of college students’ mental health status via semantic analysis of Sina microblog. Wuhan Univ. J. Nat. Sci. 2015, 20, 159–164. [Google Scholar] [CrossRef]
- Moreno, M.A.; Christakis, D.A.; Egan, K.G.; Jelenchick, L.A.; Cox, E.; Young, H.; Villiard, H.; Becker, T. A pilot evaluation of associations between displayed depression references on Facebook and self-reported depression using a clinical scale. J. Behav. Health Serv. Res. 2012, 39, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Yu, G.; He, F. An analysis of sleep complaints on Sina Weibo. Comput. Hum. Behav. 2016, 62, 230–235. [Google Scholar] [CrossRef]
- Yadollahi, A.; Shahraki, A.G.; Zaiane, O.R. Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. (CSUR) 2017, 50, 1–33. [Google Scholar] [CrossRef]
- Tripathi, V.; Joshi, A.; Bhattacharyya, P. Emotion analysis from text: A survey. Center Indian Language Technol. Surveys 2016. [Google Scholar]
- Sailunaz, K.; Dhaliwal, M.; Rokne, J.; Alhajj, R. Emotion detection from text and speech: A survey. Soc. Netw. Anal. Min. 2018, 8, 28. [Google Scholar] [CrossRef]
- Hernandez, M.; Pontes, J.d.J.A. Proceedings of the Workshop on Natural Language Processing in the 5th Information Systems Research Working Days (JISIC). In Proceedings of the Workshop on 4Natural Language Processing in the 5th Information Systems Research Working Days (JISIC), Quito, Ecuador, 20–24 October 2014. [Google Scholar]
- Chopade, C.R. Text based emotion recognition: A survey. Int. J. Sci. Res. 2015, 4, 409–414. [Google Scholar]
- Binali, H.; Wu, C.; Potdar, V. Computational approaches for emotion detection in text. In Proceedings of the 4th IEEE International Conference on Digital Ecosystems and Technologies, Dubai, UAE, 13–16 April 2010; pp. 172–177. [Google Scholar]
- Shivhare, S.N.; Khethawat, S. Emotion detection from text. arXiv 2012, arXiv:1205.4944. [Google Scholar]
- Jain, V.K.; Kumar, S.; Fernandes, S.L. Extraction of emotions from multilingual text using intelligent text processing and computational linguistics. J. Comput. Sci. 2017, 21, 316–326. [Google Scholar] [CrossRef]
- Kao, E.C.-C.; Liu, C.-C.; Yang, T.-H.; Hsieh, C.-T.; Soo, V.-W. Towards text-based emotion detection a survey and possible improvements. Proceedings of 2009 International Conference on Information Management and Engineering, Kuala Lumpur, Malaysia, 3–5 April 2009; pp. 70–74. [Google Scholar]
- Cassarino, M.; O’Sullivan, V.; Kenny, R.A.; Setti, A. Environment and cognitive aging: A cross-sectional study of place of residence and cognitive performance in the Irish longitudinal study on aging. Neuropsychology 2016, 30, 543. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Zare, H.; Guan, C.; Gaskin, D. The impact of rural-urban community settings on cognitive decline: Results from a nationally-representative sample of seniors in China. BMC Geriatr. 2018, 18, 323. [Google Scholar] [CrossRef]
- Crowe, M.; Andel, R.; Wadley, V.G.; Okonkwo, O.C.; Sawyer, P.; Allman, R.M. Life-space and cognitive decline in a community-based sample of African American and Caucasian older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1241–1245. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Zhang, L.; Pan, X. Neighborhood Environments and Cognitive Decline Among Middle-Aged and Older People in China. J. Gerontol. Ser. B 2019, 74, e60–e71. [Google Scholar] [CrossRef]
- Xu, H.; Ostbye, T.; Vorderstrasse, A.A.; Dupre, M.E.; Wu, B. Place of residence and cognitive function among the adult population in India. Neuroepidemiology 2018, 50, 119–127. [Google Scholar] [CrossRef]
- Ochsner, K.N.; Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005, 9, 242–249. [Google Scholar] [CrossRef]
- Gray, J.R. Emotional modulation of cognitive control: Approach–withdrawal states double-dissociate spatial from verbal two-back task performance. J. Exp. Psychol. Gen. 2001, 130, 436. [Google Scholar] [CrossRef]
- Vuilleumier, P. How brains beware: Neural mechanisms of emotional attention. Trends Cogn. Sci. 2005, 9, 585–594. [Google Scholar] [CrossRef]
- Gray, J.R.; Braver, T.S.; Raichle, M.E. Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl. Acad. Sci. USA 2002, 99, 4115–4120. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.G.; Fragopanagos, N.F. The interaction of attention and emotion. Neural Netw. 2005, 18, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D. Neural mechanisms of autonomic, affective, and cognitive integration. J. Comp. Neurol. 2005, 493, 154–166. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.A. Landscape planning and stress. Urban For. Urban Green. 2003, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Stigsdotter, U.K.; Ekholm, O.; Schipperijn, J.; Toftager, M.; Kamper-Jørgensen, F.; Randrup, T.B. Health promoting outdoor environments-Associations between green space, and health, health-related quality of life and stress based on a Danish national representative survey. Scand. J. Public Health 2010, 38, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, R. View through a window may influence recovery. Science 1984, 224, 224–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braubach, M.; Egorov, A.; Mudu, P.; Wolf, T.; Thompson, C.W.; Martuzzi, M. Effects of urban green space on environmental health, equity and resilience. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer: Cham, Switzerland, 2017; pp. 187–205. [Google Scholar]
- Goonetilleke, A.; Yigitcanlar, T.; Ayoko, G.A.; Egodawatta, P. Sustainable Urban Water Environment: Climate, Pollution and Adaptation; Edward Elgar: Cheltenham, UK, 2014. [Google Scholar]
- Lee, A.C.K.; Jordan, H.C.; Horsley, J. Value of urban green spaces in promoting healthy living and wellbeing: Prospects for planning. Risk Manag. Healthc. Policy 2015, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Rostami, R.; Lamit, H.; Khoshnava, S.M.; Rostami, R.; Rosley, M.S.F. Sustainable cities and the contribution of historical urban green spaces: A case study of historical persian gardens. Sustainability 2015, 7, 13290–13316. [Google Scholar] [CrossRef] [Green Version]
- Resch, B.; Summa, A.; Sagl, G.; Zeile, P.; Exner, J.-P. Urban emotions—Geo-semantic emotion extraction from technical sensors, human sensors and crowdsourced data. In Progress in Location-Based Services 2014; Springer: Cham, Switzerland, 2015; pp. 199–212. [Google Scholar]
- Thagard, P.; Schröder, T. Emotions as semantic pointers: Constructive neural mechanisms. In The Psychological Construction of Emotions; Guilford: New York, NY, USA, 2014. [Google Scholar]
- Thagard, P.; Aubie, B. Emotional consciousness: A neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience. Conscious. Cogn. 2008, 17, 811–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thagard, P. Hot Thought: Mechanisms and Applications of Emotional Cognition; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Kuehner, C. Gender differences in unipolar depression: An update of epidemiological findings and possible explanations. Acta Psychiatr. Scand. 2003, 108, 163–174. [Google Scholar] [CrossRef]
- Pigott, T.A. Gender differences in the epidemiology and treatment of anxiety disorders. J. Clin. Psychiatry 1999, 60, 4–15. [Google Scholar] [PubMed]
- Sloan, D.M.; Kornstein, S.G. Gender differences in depression and response to antidepressant treatment. Psychiatr. Clin. N. Am. 2003, 26, 581–594. [Google Scholar] [CrossRef]
- Kring, A.M.; Gordon, A.H. Sex differences in emotion: Expression, experience, and physiology. J. Personal. Soc. Psychol. 1998, 74, 686. [Google Scholar] [CrossRef]
- Labouvie-Vief, G.; Lumley, M.A.; Jain, E.; Heinze, H. Age and gender differences in cardiac reactivity and subjective emotion responses to emotional autobiographical memories. Emotion 2003, 3, 115. [Google Scholar] [CrossRef]
- Birditt, K.S.; Fingerman, K.L. Age and gender differences in adults’ descriptions of emotional reactions to interpersonal problems. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2003, 58, P237–P245. [Google Scholar] [CrossRef] [Green Version]
- Thayer, R.E.; Newman, J.R.; McClain, T.M. Self-regulation of mood: Strategies for changing a bad mood, raising energy, and reducing tension. J. Personal. Soc. Psychol. 1994, 67, 910. [Google Scholar] [CrossRef]
- Liu, L.; Peng, Z.; Wu, H.; Jiao, H.; Yu, Y.; Zhao, J. Fast identification of urban sprawl based on K-means clustering with population density and local spatial entropy. Sustainability 2018, 10, 2683. [Google Scholar] [CrossRef] [Green Version]
- Wuhan Municipal Bureau of Statistics. Wuhan Statistical Yearbook (2018); China Statistics Press: Beijing, China, 2018; Volume 8. [Google Scholar]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Duan, G.; Niu, R. Lake area analysis using exponential smoothing model and long time-series landsat images in Wuhan, China. Sustainability 2018, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Jiao, L.; Zhao, S.; Yuan, M.; Li, X.; Han, Y.; Zhang, B.; Dong, T. Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. Atmosphere 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Liu, W. Research on the Recognition and Spatial Regulation Strategy of Urban Waterfront Buffer Zone with the Case of Wuhan. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 10 June 2016. [Google Scholar]
- Zhang, S.Q.; Zhou, W.; Ouyang, C.P.; Rao, J.; Liu, Z.M.; Yang, X.H. Sentiment Analysis of Micro Blog Based on the Main Sentence and Syntactic Dependencies. J. Univ. South. China (Sci. Technol.) 2015, 23, 109–114. [Google Scholar]
- Turney, P.D.; Littman, M.L. Measuring praise and criticism: Inference of semantic orientation from association. ACM Trans. Inf. Syst. (TOIS) 2003, 21, 315–346. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Guo, S. On the Characteristics, Range and Classification of Adverbs of Degree. J. Shanxi Univ. 2003, 26, 71–74. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C. Local forms of spatial analysis. Geogr. Anal. 1999, 31, 340–358. [Google Scholar] [CrossRef]
- Hamed, A.; Qiu, R.; Li, D. The importance of neutral class in sentiment analysis of Arabic tweets. Int. J. Comput. Sci. Inform. Technol. 2016, 8, 17–31. [Google Scholar]
- Koppel, M.; Schler, J. The importance of neutral examples for learning sentiment. Comput. Intell. 2006, 22, 100–109. [Google Scholar] [CrossRef]
- Lim, K.H.; Lee, K.E.; Kendal, D.; Rashidi, L.; Naghizade, E.; Winter, S.; Vasardani, M. The grass is greener on the other side: Understanding the effects of green spaces on Twitter user sentiments. In Proceedings of the Companion the Web Conference, Lyon, France, 23–27 April 2018; pp. 275–282. [Google Scholar]
- Plunz, R.A.; Zhou, Y.; Vintimilla, M.I.C.; Mckeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter sentiment in New York City parks as measure of well-being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Dodds, P.S.; O’Neil-Dunne, J.P.; Danforth, C.M.; Ricketts, T.H. Exposure to urban parks improves affect and reduces negativity on Twitter. arXiv 2018, arXiv:1807.07982. [Google Scholar]
Item | Weights | Examples | |
---|---|---|---|
Negative Words | −1 | No, not, none, nobody, little, few | |
Adverbs | Extreme | 2 | Extremely, most, very much, probably, absolutely, |
High | 1.75 | Pretty, very, particularly, quite, really, too, | |
Medium | 1.5 | More, seemingly, still, further, full, | |
Low | 0.5 | Moderately, slightly, a bit, somewhat, just, | |
Emoji | Very pos. | 2 | (Haha), (loving), (yeah), (awesome), (applaud), |
Positive | 1 | (Red envelope), (money), (shake hands), (kiss), | |
Negative | −1 | (Sleepy), (hen), (grievance), (fist), (sweat), (sweat), | |
Very neg. | −2 | (Crazy), (anger), (sad), (disappointed), (despise), | |
Rhetorical question | −2 | Why??, don’t??, so that??, even if??, |
Value | −3~−2 | −2~−1 | −1~0 | 0 | 0~1 | 1~2 | 2~3 | 3~4 | Sum |
---|---|---|---|---|---|---|---|---|---|
Male | 4 | 57 | 13,246 | 1645 | 55,337 | 16,852 | 718 | 2 | 87,861 |
Female | 4 | 257 | 29,049 | 1938 | 110,900 | 34,528 | 1755 | 2 | 178,434 |
Sum | 8 | 314 | 42,295 | 3583 | 166,237 | 51,380 | 2473 | 4 | -- |
Mood Value | Female | Male | Female/male | 2.8-. | ||
---|---|---|---|---|---|---|
−3~−2.5 | 1 | 50% | 1 | 50% | 1 | 0 |
−2.5~−2 | 3 | 50% | 3 | 50% | 1 | 0 |
−2~−1.5 | 13 | 81.25% | 3 | 18.75% | 4.33 | 0.63 |
−1.5~−1 | 244 | 81.88% | 54 | 18.12% | 4.52 | 0.64 |
−1~−0.5 | 4248 | 72.94% | 1576 | 27.06% | 2.70 | 0.46 |
−0.5~0 | 24,801 | 68% | 11,670 | 32% | 2.13 | 0.36 |
0–0.5 | 58,132 | 66.91% | 28,754 | 33.09% | 2.02 | 0.34 |
0.5–1 | 53,046 | 66.45% | 26,780 | 33.55% | 1.98 | 0.33 |
1–1.5 | 27,446 | 66.36% | 13,916 | 33.64% | 1.97 | 0.33 |
1.5–2 | 8634 | 66.82% | 4287 | 33.18% | 2.01 | 0.34 |
2–2.5 | 1807 | 69.74% | 784 | 30.26% | 2.30 | 0.39 |
2.5–3 | 57 | 66.28% | 29 | 33.72% | 1.97 | 0.33 |
Lakes | Female Positive Rank | Male Positive Rank | Lakes | Female Negative Rank | Male Negative Rank |
---|---|---|---|---|---|
Fruit Lake | 1 | 17 | Shai Lake | 1 | 5 |
Sand Lake | 2 | 1 | Houxiang River | 2 | 2 |
Ziyang Lake | 3 | 2 | Yangchun Lake | 3 | 3 |
Shai Lake | 4 | 3 | South Lake | 4 | 4 |
Longyang Lake | 5 | 14 | Moshui Lake | 5 | 8 |
Moon Lake | 6 | 5 | Yezhi Lake | 6 | 6 |
Moshui Lake | 7 | 7 | Ziyang Lake | 7 | 13 |
East Lake | 8 | 10 | East Lake | 8 | 10 |
Huanzi Lake | 9 | 9 | Fruit Lake | 9 | 11 |
Simei Pond | 10 | 15 | Huanzi Lake | 10 | 7 |
North Lake | 11 | 4 | Small South Lake | 11 | 1 |
Yangchun Lake | 12 | 11 | Chestnut Lake | 12 | 17 |
Chestnut Lake | 13 | 13 | Sand Lake | 13 | 12 |
West Lake | 14 | 6 | Tazi Lake | 14 | 19 |
Machine Pond | 15 | 8 | North Lake | 15 | 14 |
Small South Lake | 16 | 12 | Simei Pond | 16 | 21 |
Lotus Lake | 17 | 16 | Moon Lake | 17 | 15 |
South Lake | 18 | 18 | Lotus Lake | 18 | 20 |
Yezhi Lake | 19 | 19 | West Lake | 19 | 16 |
Houxiang River | 20 | 20 | Machine Pond | 20 | 9 |
Tazi Lake | 21 | 21 | Longyang Lake | 21 | 18 |
Lakes | Female Attribute | Male Attribute | Whether the Attribute Is the Same |
---|---|---|---|
Chestnut Lake | BL | BL | Y |
East Lake | BL | BL | Y |
Fruit Lake | PL | BL | N |
Houxiang River | NL | NL | Y |
Huanzi Lake | BL | BL | Y |
Longyang Lake | PL | BL | N |
Lotus Lake | BL | BL | Y |
Machine Pond | BL | BL | Y |
Moon Lake | PL | PL | Y |
Moshui Lake | BL | BL | Y |
North Lake | BL | PL | N |
Sand Lake | PL | PL | Y |
Shai Lake | BL | PL | N |
Simei Pond | BL | BL | Y |
Small South Lake | BL | BL | Y |
South Lake | NL | NL | Y |
Tazi Lake | NL | NL | Y |
West Lake | BL | PL | N |
Yangchun Lake | BL | BL | Y |
Yezhi Lake | NL | NL | Y |
Ziyang Lake | PL | PL | Y |
Female Positive | Male Positive | Female Negative | Male Negative | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model1 | Model2 | Model3 | Model4 | Model5 | Model6 | Model7 | Model8 | Model9 | Model10 | Model11 | |
R2 | 0.878 | 0.907 | 0.850 | 0.899 | 0.921 | 0.964 | 0.977 | 0.801 | 0.888 | 0.913 | 0.943 |
R2 adj. | 0.871 | 0.896 | 0.842 | 0.887 | 0.917 | 0.960 | 0.973 | 0.791 | 0.876 | 0.897 | 0.929 |
DW | 2.336 | 2.314 | 2.603 | 2.680 | 1.863 | 2.141 | 2.068 | ||||
cons. | −4957.8 | 22,121,277.8 | 22,122,343.8 | 2.1 | 2,212,349.6 | 2,212,226.1 | 221,263.8 | 2,212,125.8 | 65.3 | 71.9 | 47.8 |
cul. | 22.97 *** | 32.76 *** | 11.06 *** | 17.30 *** | 1.56 *** | 2.81 *** | 2.77 ** | 0.657 *** | 1.17 *** | 1.52 *** | 1.73 *** |
(1.97) | (4.51) | (1.07) | (2.30) | (0.11) | (0.28) | (0.23) | (0.08) | (0.15) | (0.21) | (0.19) | |
res. | 22,125.50 ** | 22,123.50 *** | 22,120.285 ** | 22,120.23 *** | 22,120.44 *** | ||||||
(2.33) | (1.19) | (0.08) | (0.07) | (0.10) | |||||||
lei. | 22,122.21 *** | 22,121.70 *** | 22,120.804 ** | 22,121.43 ** | |||||||
(0.476) | (0.42) | (0.37) | (0.38) | ||||||||
sho. | 22,120.13 ** | ||||||||||
(0.04) | |||||||||||
inf. | 0.61 ** | ||||||||||
(0.21) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ling, C.; Wu, J. Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts. ISPRS Int. J. Geo-Inf. 2020, 9, 465. https://doi.org/10.3390/ijgi9080465
Ma Y, Ling C, Wu J. Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts. ISPRS International Journal of Geo-Information. 2020; 9(8):465. https://doi.org/10.3390/ijgi9080465
Chicago/Turabian StyleMa, Yue, Changlong Ling, and Jing Wu. 2020. "Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts" ISPRS International Journal of Geo-Information 9, no. 8: 465. https://doi.org/10.3390/ijgi9080465
APA StyleMa, Y., Ling, C., & Wu, J. (2020). Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts. ISPRS International Journal of Geo-Information, 9(8), 465. https://doi.org/10.3390/ijgi9080465