Spatiotemporal Varying Effects of Built Environment on Taxi and Ride-Hailing Ridership in New York City
Abstract
:1. Introduction
2. Related Literature
3. Methodology
3.1. The Basic Framework of the GTWR Model
3.2. Implementation of GTWR for Ridership Analysis
4. Data Preparation
4.1. Study Area
4.2. Taxis and TNC Data
4.3. Influencing Factors
5. Model Estimations and Performance
5.1. Selection of Independent Variables
5.2. Comparison of Model Accuracy
6. Discussion
6.1. Temporal Effects of Influencing Factors for TT and TNC Ridership
6.2. Spatial Effects of Influencing Factors for TT and TNC Ridership
6.3. The Efficiency of the Parallel-Based GTWR Model
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wallsten, S. The competitive effects of the sharing economy: How is uber changing taxis. Technol. Policy Inst. 2015, 22, 1–22. [Google Scholar]
- Rayle, L.; Shaheen, S.; Chan, N.; Dai, D.; Cervero, R. App-Based, on-demand Ride Services: Comparing Taxi and Ridesourcing Trips and User Characteristics in San Francisco University Of California Transportation Center (UCTC); University of California: Berkeley, CA, USA, 2014. [Google Scholar]
- Nie, Y.M. How can the taxi industry survive the tide of ridesourcing? Evidence from shenzhen, China. Transp. Res. Part C Emerg. Technol. 2017, 79, 242–256. [Google Scholar] [CrossRef]
- Wang, X.; He, F.; Yang, H.; Gao, H.O. Pricing strategies for a taxi-hailing platform. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 212–231. [Google Scholar] [CrossRef]
- Cramer, J.; Krueger, A.B. Disruptive change in the taxi business: The case of uber. Am. Econ. Rev. 2016, 106, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.V.; Krueger, A.B. An analysis of the labor market for uber’s driver-partners in the united states. ILR Rev. 2018, 71, 705–732. [Google Scholar] [CrossRef]
- Li, M.; Dong, L.; Shen, Z.; Lang, W.; Ye, X. Examining the interaction of taxi and subway ridership for sustainable urbanization. Sustainability 2017, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Varley, D.; Chen, J. What affects transit ridership? A dynamic analysis involving multiple factors, lags and asymmetric behaviour. Urban Stud. 2011, 48, 1893–1908. [Google Scholar] [CrossRef]
- Yang, Z.; Franz, M.L.; Zhu, S.; Mahmoudi, J.; Nasri, A.; Zhang, L. Analysis of washington, dc taxi demand using gps and land-use data. J. Transp. Geogr. 2018, 66, 35–44. [Google Scholar] [CrossRef]
- Castro, P.S.; Zhang, D.; Chen, C.; Li, S.; Pan, G. From taxi gps traces to social and community dynamics: A survey. ACM Comput. Surv. (CSUR) 2013, 46, 17. [Google Scholar] [CrossRef]
- Chiou, Y.-C.; Jou, R.-C.; Yang, C.-H. Factors affecting public transportation usage rate: Geographically weighted regression. Transp. Res. Part A Policy Pract. 2015, 78, 161–177. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from gps-enabled taxi data in shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Sadowsky, N.; Nelson, E. The impact of ride-hailing services on public transportation use: A discontinuity regression analysis. 2017. Economics Department Working Paper Series. 13. Available online: https://digitalcommons.bowdoin.edu/econpapers/13 (accessed on 26 May 2017).
- Hochmair, H.H. Spatiotemporal pattern analysis of taxi trips in new york city. Transp. Res. Rec. J. Transp. Res. Board 2016, 2542, 45–56. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and temporal weighted regression (gtwr). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Chow, L.-F.; Zhao, F.; Liu, X.; Li, M.-T.; Ubaka, I. Transit ridership model based on geographically weighted regression. Transp. Res. Rec. 2006, 1972, 105–114. [Google Scholar] [CrossRef]
- Cardozo, O.D.; García-Palomares, J.C.; Gutiérrez, J. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Appl. Geogr. 2012, 34, 548–558. [Google Scholar] [CrossRef]
- Qian, X.; Ukkusuri, S.V. Exploring spatial variation of urban taxi ridership using geographically weighted regression. In Proceedings of the Transportation Research Board 94th Annual Meeting, Washington, DC, USA, 11–15 January 2015. [Google Scholar]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Exploring, modelling and predicting spatiotemporal variations in house prices. Ann. Reg. Sci. 2015, 54, 417–436. [Google Scholar] [CrossRef]
- Wu, J.; Yao, F.; Li, W.; Si, M. Viirs-based remote sensing estimation of ground-level pm2. 5 concentrations in beijing–tianjin–hebei: A spatiotemporal statistical model. Remote Sens. Environ. 2016, 184, 316–328. [Google Scholar] [CrossRef]
- Taylor, B.D.; Miller, D.; Iseki, H.; Fink, C. Analyzing the Determinants of Transit Ridership Using a Two-Stage Least Squares Regression on a National Sample of Urbanized Areas; University of California Transportation Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground pm 2.5 in china via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Chu, H.-J.; Kong, S.-J.; Chang, C.-H. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 1–11. [Google Scholar] [CrossRef]
- Wu, B.; Li, R.; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices. Int. J. Geogr. Inf. Sci. 2014, 28, 1186–1204. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Zhang, F.; Liu, R.; Zhou, Y. Extending geographically and temporally weighted regression to account for both spatiotemporal heterogeneity and seasonal variations in coastal seas. Ecol. Inform. 2018, 43, 185–199. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Ding, C.; Wang, Y. A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Comput. Environ. Urban Syst. 2018, 70, 113–124. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, B.; Zhu, S. Spatiotemporal influence of urban environment on taxi ridership using geographically and temporally weighted regression. ISPRS Int. J. Geo-Inf. 2019, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ji, Y.; Shi, Z.; Gao, L. The influence of the built environment on school children’s metro ridership: An exploration using geographically weighted poisson regression models. Sustainability 2018, 10, 4684. [Google Scholar] [CrossRef] [Green Version]
- Peruggia, M. Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.).(telegraphic reviews)(book review). J. Wildl. Manag. 2002, 67, 175–196. [Google Scholar]
- Sharma, G.; Martin, J. Matlab®: A language for parallel computing. Int. J. Parallel Program. 2009, 37, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Yazici, M.A.; Kamga, C.; Singhal, A. A big data driven model for taxi drivers’ airport pick-up decisions in New York city. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; pp. 37–44. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; McGraw-Hill Irwin: New York, NY, USA, 1996. [Google Scholar]
- King, D.A.; Peters, J.R.; Daus, M.W. Taxicabs for improved urban mobility: Are we missing an opportunity? In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Kamga, C.; Yazici, M.A.; Singhal, A. Hailing in the rain: Temporal and weather-related variations in taxi ridership and taxi demand-supply equilibrium. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Davidov, G. The status of uber drivers: A purposive approach. Span. Labour Law Employ. Relat. J. Forthcom. (2017) 2016. Forthcoming. [Google Scholar] [CrossRef]
- da Silva, A.R.; Fotheringham, A.S. The multiple testing issue in geographically weighted regression. Geogr. Anal. 2016, 48, 233–247. [Google Scholar] [CrossRef]
- Poulsen, L.K.; Dekkers, D.; Wagenaar, N.; Snijders, W.; Lewinsky, B.; Mukkamala, R.R.; Vatrapu, R. Green cabs vs. Uber in New York city. In Proceedings of the 2016 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 27 June–2 July 2016; pp. 222–229. [Google Scholar]
- Li, Z.; Fotheringham, A.S.; Li, W.; Oshan, T. Fast geographically weighted regression (fastgwr): A scalable algorithm to investigate spatial process heterogeneity in millions of observations. Int. J. Geogr. Inf. Sci. 2019, 33, 155–175. [Google Scholar] [CrossRef]
Type | 2015 | 2016 | 2017 | Total |
---|---|---|---|---|
Yellow | 146,112,989 | 131,165,043 | 113,496,706 | 390,774,738 |
72.28% | 59.80% | 47.46% | 59.15% | |
TNC | 36,910,806 | 69,131,726 | 106,676,500 | 212,719,032 |
18.26% | 31.52% | 44.60% | 32.20% | |
Green | 19,116,598 | 19,054,688 | 18,990,815 | 57,162,101 |
9.46% | 8.69% | 7.94% | 8.65% | |
Total | 202,140,393 | 219,351,457 | 239,164,021 | 660,655,871 |
Group | Label of Factor | Description | Min/Max | Avg |
---|---|---|---|---|
Weather | W1 | Number of snowy days in each month | 0/7 | 1.05 |
W2 | Average maximum temperature in each month (°C) | 0.08/30.50 | 17.78 | |
W3 | Average minimum temperature in each month (°C) | −8.9/22.10 | 9.74 | |
W4 | Average wind speed in each month (km/h) | 1.54/3.34 | 2.36 | |
Land use | LU1 | Percentage of land use for residential purpose in each TAZ (%) | 0/96.81 | 38.40 |
LU2 | Percentage of land use for commercial purpose in each TAZ (%) | 0/64.05 | 11.93 | |
LU3 | Percentage of land use for manufacturer purpose in each TAZ (%) | 0/92.29 | 9.47 | |
Transport | T1 | Length of road per km2 in each TAZ (/km) | 0/58.71 | 26.22 |
T2 | Number of subway station per km2 in each TAZ | 0/17.09 | 1.45 | |
T3 | Number of bus stop per km2 in each TAZ | 0/33 | 7.21 | |
T4 | Length of bike line per km2 in each TAZ (/km) | 0/16.07 | 3.55 | |
T5 | Number of CityRacks per km2 in each TAZ | 0/389 | 38.5 | |
Socioeconomic | SE1 | Number of residents with at least Bachelors’ degree per km2 in each TAZ | 0/35,295 | 5723 |
SE2 | Number of employed residents per km2 in each TAZ | 0/32,885 | 8474 | |
SE3 | Number of households with more than $75,000 annual income per km2 in each TAZ | 0/18,608 | 3062 | |
SE4 | Number of vehicle ownership per km2 in each TAZ | 0/2680 | 1379 | |
SE5 | Number of adults between the ages of 20 and 44 per km2 in each TAZ | 0/22,430 | 7040 | |
SE6 | Number of employees per km2 in each TAZ | 0/47,037 | 13,894 | |
SE7 | Average commuting time (minute) in each TAZ | 0/60.27 | 38.83 | |
SE8 | Percentage of commuting to work by public transportation (excluding taxicab) in each TAZ | 0/81.92 | 53.83 |
Correlations | W1 | W2 | W3 | W4 | LU1 | LU2 | LU3 | T1 | T2 | T3 | T4 | T5 | SE1 | SE2 | SE3 | SE4 | SE5 | SE6 | SE7 | SE8 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | 1.00 | −0.79 | −0.79 | 0.73 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 |
W2 | −0.79 | 1.00 | 0.99 | −0.91 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
W3 | −0.79 | 0.99 | 1.00 | −0.92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
W4 | 0.73 | −0.91 | −0.92 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
LU1 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | −0.46 | −0.46 | −0.34 | −0.43 | −0.16 | −0.53 | −0.38 | −0.32 | −0.27 | −0.32 | 0.52 | −0.29 | −0.21 | 0.56 | −0.08 |
LU2 | 0.00 | 0.00 | 0.00 | 0.00 | −0.46 | 1.00 | −0.16 | 0.56 | 0.67 | 0.52 | 0.51 | 0.52 | 0.58 | 0.55 | 0.59 | −0.19 | 0.54 | 0.49 | −0.57 | −0.01 |
LU3 | 0.00 | 0.00 | 0.00 | 0.00 | −0.46 | −0.16 | 1.00 | −0.10 | 0.01 | −0.19 | 0.02 | 0.08 | −0.10 | −0.14 | −0.10 | −0.40 | −0.11 | −0.17 | −0.16 | 0.12 |
T1 | 0.01 | 0.00 | 0.00 | 0.00 | −0.34 | 0.56 | −0.10 | 1.00 | 0.47 | 0.45 | 0.63 | 0.38 | 0.52 | 0.59 | 0.52 | 0.04 | 0.62 | 0.57 | −0.50 | 0.28 |
T2 | 0.00 | 0.00 | 0.00 | 0.00 | −0.43 | 0.67 | 0.01 | 0.47 | 1.00 | 0.20 | 0.46 | 0.49 | 0.36 | 0.36 | 0.36 | −0.23 | 0.40 | 0.32 | −0.47 | 0.09 |
T3 | 0.00 | 0.00 | 0.00 | 0.00 | −0.16 | 0.52 | −0.19 | 0.45 | 0.20 | 1.00 | 0.43 | 0.38 | 0.63 | 0.70 | 0.61 | 0.13 | 0.69 | 0.72 | −0.37 | 0.26 |
T4 | 0.00 | 0.00 | 0.00 | 0.00 | −0.53 | 0.51 | 0.02 | 0.63 | 0.46 | 0.43 | 1.00 | 0.65 | 0.61 | 0.59 | 0.59 | −0.30 | 0.60 | 0.55 | −0.62 | 0.24 |
T5 | 0.00 | 0.00 | 0.00 | 0.00 | −0.38 | 0.52 | 0.08 | 0.38 | 0.49 | 0.38 | 0.65 | 1.00 | 0.60 | 0.56 | 0.59 | −0.22 | 0.56 | 0.52 | −0.56 | 0.13 |
SE1 | 0.00 | 0.00 | 0.00 | 0.00 | −0.32 | 0.58 | −0.10 | 0.52 | 0.36 | 0.63 | 0.61 | 0.60 | 1.00 | 0.92 | 0.99 | 0.04 | 0.84 | 0.84 | −0.62 | 0.15 |
SE2 | 0.01 | 0.00 | 0.00 | 0.00 | −0.27 | 0.55 | −0.14 | 0.59 | 0.36 | 0.70 | 0.59 | 0.56 | 0.92 | 1.00 | 0.90 | 0.22 | 0.98 | 0.98 | −0.52 | 0.36 |
SE3 | 0.00 | 0.00 | 0.00 | 0.00 | −0.32 | 0.59 | −0.10 | 0.52 | 0.36 | 0.61 | 0.59 | 0.59 | 0.99 | 0.90 | 1.00 | 0.05 | 0.82 | 0.82 | −0.62 | 0.11 |
SE4 | 0.01 | 0.00 | 0.00 | 0.00 | 0.52 | −0.19 | −0.40 | 0.04 | −0.23 | 0.13 | −0.30 | −0.22 | 0.04 | 0.22 | 0.05 | 1.00 | 0.19 | 0.30 | 0.41 | 0.13 |
SE5 | 0.01 | 0.00 | 0.00 | 0.00 | −0.29 | 0.54 | −0.11 | 0.62 | 0.40 | 0.69 | 0.60 | 0.56 | 0.84 | 0.98 | 0.82 | 0.19 | 1.00 | 0.98 | −0.51 | 0.44 |
SE6 | 0.01 | 0.00 | 0.00 | 0.00 | −0.21 | 0.49 | −0.17 | 0.57 | 0.32 | 0.72 | 0.55 | 0.52 | 0.84 | 0.98 | 0.82 | 0.30 | 0.98 | 1.00 | −0.44 | 0.43 |
SE7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | −0.57 | −0.16 | −0.50 | −0.47 | −0.37 | −0.62 | −0.56 | −0.62 | −0.52 | −0.62 | 0.41 | −0.51 | −0.44 | 1.00 | 0.13 |
SE8 | 0.01 | 0.00 | 0.00 | 0.00 | −0.08 | −0.01 | 0.12 | 0.28 | 0.09 | 0.26 | 0.24 | 0.13 | 0.15 | 0.36 | 0.11 | 0.13 | 0.44 | 0.43 | 0.13 | 1.00 |
Variable | TT | TNC | PoT | VIF | |||
---|---|---|---|---|---|---|---|
Coefficient | t-prob | Coefficient | t-prob | Coefficient | t-prob | ||
Intercept | 9.499 | 0.000 | 6.633 | 0.000 | 0.032 | 0.067 | - |
W1 | −0.090 | 0.116 | −0.248 | 0.000 | −0.047 | 0.000 | 1.077 |
LU1 | −0.679 | 0.000 | 0.553 | 0.000 | 0.179 | 0.000 | 2.665 |
LU2 | 3.330 | 0.000 | 3.549 | 0.000 | 0.029 | 0.050 | 3.714 |
LU3 | 2.955 | 0.000 | 3.172 | 0.000 | 0.036 | 0.006 | 1.971 |
T1 | −1.572 | 0.000 | −0.707 | 0.000 | 0.120 | 0.000 | 2.610 |
T2 | 0.197 | 0.184 | −0.204 | 0.134 | −0.086 | 0.000 | 2.271 |
T3 | 1.381 | 0.000 | 0.528 | 0.000 | −0.150 | 0.000 | 2.161 |
T4 | 0.598 | 0.000 | 0.242 | 0.047 | −0.048 | 0.001 | 3.513 |
T5 | 1.360 | 0.000 | 2.231 | 0.000 | 0.142 | 0.000 | 2.336 |
SE1 | 1.193 | 0.000 | −1.007 | 0.000 | −0.438 | 0.000 | 3.258 |
SE4 | 3.014 | 0.000 | 3.626 | 0.000 | 0.123 | 0.000 | 2.244 |
SE7 | −12.495 | 0.000 | −7.268 | 0.000 | 0.789 | 0.000 | 3.838 |
SE8 | 6.752 | 0.000 | 3.832 | 0.000 | −0.367 | 0.000 | 1.630 |
AP | 0.146 | 0.420 | 0.440 | 0.008 | 0.059 | 0.004 | 1.199 |
T | −0.717 | 0.000 | 2.546 | 0.000 | 0.467 | 0.000 | 1.077 |
R2 | 0.8067 | 0.6729 | 0.7333 | ||||
R2adj | 0.8064 | 0.6724 | 0.7329 | ||||
RSS | 17692.73 | 14868.11 | 221.37 | ||||
RMSE | 1.2473 | 1.3680 | 0.1558 |
Variable | TT | TNC | PoT | ||||||
---|---|---|---|---|---|---|---|---|---|
LQ | MED | UQ | LQ | MED | UQ | LQ | MED | UQ | |
Intercept | 6.86 | 12.25 | 15.81 | 7.05 | 10.64 | 13.80 | −0.08 | 0.17 | 0.77 |
W1 | −0.14 | −0.02 | 0.08 | −0.61 | −0.09 | 0.14 | −0.09 | −0.01 | 0.01 |
LU1 | −3.30 | −0.66 | 1.96 | −1.67 | 0.27 | 2.84 | −0.04 | 0.14 | 0.38 |
LU2 | −1.79 | 1.25 | 6.25 | −0.87 | 1.76 | 6.44 | −0.14 | 0.08 | 0.34 |
LU3 | −2.27 | 1.97 | 6.43 | −1.19 | 2.22 | 5.68 | −0.12 | 0.08 | 0.37 |
T1 | −5.10 | −2.54 | 1.65 | −4.23 | −1.77 | 1.18 | −0.07 | 0.11 | 0.37 |
T2 | −1.08 | 1.31 | 6.43 | −1.01 | 0.74 | 5.50 | −0.48 | −0.09 | 0.07 |
T3 | −0.63 | 0.53 | 3.60 | −0.64 | 0.55 | 3.24 | −0.20 | −0.02 | 0.11 |
T4 | −4.33 | −0.12 | 2.97 | −2.60 | 0.06 | 2.41 | −0.21 | 0.01 | 0.29 |
T5 | −4.63 | 1.48 | 8.00 | −9.94 | 0.95 | 3.61 | −1.25 | −0.12 | 0.04 |
SE1 | −6.99 | 2.09 | 12.94 | −10.30 | 0.83 | 6.82 | −1.31 | −0.19 | 0.25 |
SE4 | −3.17 | 0.67 | 3.15 | −2.09 | 0.51 | 3.15 | −0.17 | 0.06 | 0.30 |
SE7 | −16.35 | −5.44 | 0.94 | −10.56 | −2.20 | 3.17 | −0.16 | 0.45 | 1.37 |
SE8 | −2.82 | 1.07 | 6.49 | −3.73 | −0.66 | 3.36 | −0.62 | −0.20 | 0.16 |
AP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
R2 | 0.9787 | 0.9404 | 0.9430 | ||||||
R2adj | 0.9787 | 0.9403 | 0.9329 | ||||||
RSS | 1948.0 | 2708.1 | 47.3015 | ||||||
RMSE | 0.4531 | 0.5259 | 0.0720 |
Percentage of Training Samples | Number of Training Samples | Basic GTWR | Parallel-Based GTWR | Time Reduction |
---|---|---|---|---|
10% | 913 | 13.2 | 5.7 | 57% |
30% | 2739 | 88.1 | 34.5 | 61% |
50% | 4565 | 199.6 | 101.2 | 49% |
100% | 9126 | 1314.4 | 652.3 | 50% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Huang, B.; Zhu, S. Spatiotemporal Varying Effects of Built Environment on Taxi and Ride-Hailing Ridership in New York City. ISPRS Int. J. Geo-Inf. 2020, 9, 475. https://doi.org/10.3390/ijgi9080475
Zhang X, Huang B, Zhu S. Spatiotemporal Varying Effects of Built Environment on Taxi and Ride-Hailing Ridership in New York City. ISPRS International Journal of Geo-Information. 2020; 9(8):475. https://doi.org/10.3390/ijgi9080475
Chicago/Turabian StyleZhang, Xinxin, Bo Huang, and Shunzhi Zhu. 2020. "Spatiotemporal Varying Effects of Built Environment on Taxi and Ride-Hailing Ridership in New York City" ISPRS International Journal of Geo-Information 9, no. 8: 475. https://doi.org/10.3390/ijgi9080475
APA StyleZhang, X., Huang, B., & Zhu, S. (2020). Spatiotemporal Varying Effects of Built Environment on Taxi and Ride-Hailing Ridership in New York City. ISPRS International Journal of Geo-Information, 9(8), 475. https://doi.org/10.3390/ijgi9080475