The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning
Abstract
:1. C. elegans Vulval Development
2. VPC Fate Patterning
2.1. The Morphogen Gradient Model Becomes the Graded Signal Plus Lateral Signal Model.
2.2. The Sequential Induction Model
2.3. Mutual Antagonism
2.4. Reconciling the Sequential Induction and Graded Signal Models
2.5. Wnt Signaling
3. Trafficking-Dependent Regulation of Receptor Localization and Function
3.1. LET-23 Basolateral Localization System
3.2. Negative Regulators of LET-23 Function through Endocytosis, Trafficking, and Degradation
3.3. Regulation of LIN-12 Activity.
4. Upstream and Downstream Transcriptional Regulators in VPC Fate Patterning
4.1. Upstream: Repression of LIN-3 Expression by the SynMuv Genes
4.2. Downstream: 1°- and 2°-Promoting Transcriptional Complexes
5. Transcriptional Reprogramming of the VPC Signaling Network
6. Environmental and Genetic Regulators of Variability
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Horvitz, H.R.; Sulston, J.E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 1980, 96, 435–454. [Google Scholar] [PubMed]
- Sternberg, P.W. Vulval Development. The C. elegans Research Community, WormBook, doi:10.1895/wormbook.1.6.1. Available online: http://www.wormbook.org (accessed on 5 November 2018).
- Euling, S.; Ambros, V. Heterochronic genes control cell cycle progress and developmental competence of C. elegans Vulva Precursor Cells. Cell 1996, 84, 667–676. [Google Scholar] [CrossRef]
- Inouem, T.; Sherwood, D.R.; Aspöck, G.; Butler, J.A.; Gupta, B.P.; Kirouac, M.; Wang, M.; Lee, P.Y.; Kramer, J.M.; Hope, I.; et al. Gene expression markers for Caenorhabditis elegans vulval cells. Gene Expr. Patterns 2002, 2, 235–241. [Google Scholar] [CrossRef]
- Inoue, T.; Wang, M.; Ririe, T.O.; Fernandes, J.S.; Sternberg, P.W. Transcriptional network underlying Caenorhabditis elegans vulval development. Proc. Natl. Acad. Sci. 2005, 102, 4972–4977. [Google Scholar] [CrossRef] [PubMed]
- Ririe, T.O.; Fernandes, J.S.; Sternberg, P.W. The Caenorhabditis elegans vulva: A post-embryonic gene regulatory network controlling organogenesis. Proc. Natl. Acad. Sci. 2008, 105, 20095–20099. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Oz, H.S.; Wiland, D.; Gharib, S.; Deshpande, R.; Hill, R.J.; Katz, W.S.; Sternberg, P.W. C. elegans lin-18 is a ryk ortholog and functions in parallel to lin-17/frizzled in wnt signaling. Cell 2004, 118, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Kidd, A.R.; Muñiz-Medina, V.; Der, C.J.; Cox, A.D.; Reiner, D.J. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity. PLoS ONE 2015, 10, e0133226. [Google Scholar] [CrossRef] [PubMed]
- Minor, P.J.; He, T.-F.; Sohn, C.H.; Asthagiri, A.R.; Sternberg, P.W. Fgf signaling regulates wnt ligand expression to control vulval cell lineage polarity in C. elegans. Development 2013, 140, 3882–3891. [Google Scholar] [CrossRef]
- Farooqui, S.; Pellegrino, M.W.; Rimann, I.; Morf, M.K.; Müller, L.; Fröhli, E.; Hajnal, A. Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans. Dev. Cell 2012, 23, 494–506. [Google Scholar] [CrossRef]
- Mok, D.Z.L.; Sternberg, P.W.; Inoue, T. Morphologically defined sub-stages of C. elegans vulval development in the fourth larval stage. BMC Dev. Biol. 2015, 15. [Google Scholar] [CrossRef]
- Pellegrino, M.W.; Farooqui, S.; Frohli, E.; Rehrauer, H.; Kaeser-Pebernard, S.; Muller, F.; Gasser, R.B.; Hajnal, A. Lin-39 and the egfr/ras/mapk pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein. Development 2011, 138, 4649–4660. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.E.; Giddings, B.W.; Brooks, M.W.; Buday, L.; Sizeland, A.M.; Weinberg, R.A. Association of sos ras exchange protein with grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 1993, 363, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, I.; Rubin, G.M. Making a difference: The role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 1992, 68, 271–281. [Google Scholar] [CrossRef]
- Sulston, J.E.; Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1997, 56, 110–156. [Google Scholar] [CrossRef]
- Braendle, C.; Felix, M.A. Plasticity and errors of a robust developmental system in different environments. Dev. Cell 2008, 15, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Kimble, J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev. Biol. 1981, 87, 286–300. [Google Scholar] [CrossRef]
- Sulston, J.E.; White, J.G. Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev. Biol. 1980, 78, 577–597. [Google Scholar] [CrossRef]
- Grimbert, S.; Tietze, K.; Barkoulas, M.; Sternberg, P.W.; Félix, M.-A.; Braendle, C. Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction. Dev. Biol. 2016, 416, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, P.W.; Horvitz, H.R. Pattern formation during vulval development in C. elegans. Cell 1986, 44, 761–772. [Google Scholar] [CrossRef]
- Sulston, J.E.; Horvitz, H.R. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Dev. Biol. 1981, 82, 41–55. [Google Scholar] [CrossRef]
- Ferguson, E.L.; Horvitz, H.R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics 1985, 110, 17–72. [Google Scholar] [PubMed]
- Ferguson, E.L.; Sternberg, P.W.; Horvitz, H.R. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature 1987, 326, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, I.S.; Sternberg, P.W.; Robert Horvitz, H. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 1983, 34, 435–444. [Google Scholar] [CrossRef]
- Sternberg, P.W.; Horvitz, H.R. The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell 1989, 58, 679–693. [Google Scholar] [CrossRef]
- Horvitz, H.R.; Sternberg, P.W. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature 1991, 351, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, I. Lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 1985, 43, 583–590. [Google Scholar] [CrossRef]
- Singh, N.; Han, M. Sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. Genes Dev. 1995, 9, 2251–2265. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Greenwald, I. The lateral signal for lin-12/notch in C. elegans Vulval Development Comprises Redundant Secreted and Transmembrane DSL Proteins. Dev. Cell 2004, 6, 183–192. [Google Scholar] [CrossRef]
- Li, J.; Greenwald, I. Lin-14 inhibition of lin-12 contributes to precision and timing of C. elegans Vulval Fate Patterning. Curr. Biol. 2010, 20, 1875–1879. [Google Scholar] [CrossRef]
- Aroian, R.V.; Koga, M.; Mendel, J.E.; Ohshima, Y.; Sternberg, P.W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the egf receptor subfamily. Nature 1990, 348, 693–699. [Google Scholar] [CrossRef]
- Hill, R.J.; Sternberg, P.W. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 1992, 358, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Serricchio, A.S.; Sternberg, P.W. Visualization of C. elegans transgenic arrays by GFP. BMC Genet. 2006, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tzou, P.; Hill, R.J.; Sternberg, P.W. Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. Genetics 1999, 153, 1257–1269. [Google Scholar] [PubMed]
- Katz, W.S.; Hill, R.J.; Clandinin, T.R.; Sternberg, P.W. Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell 1995, 82, 297–307. [Google Scholar] [CrossRef]
- Katz, W.S.; Lesa, G.M.; Yannoukakos, D.; Clandinin, T.R.; Schlessinger, J.; Sternberg, P.W. A point mutation in the extracellular domain activates let-23, the Caenorhabditis elegans epidermal growth factor receptor homolog. Mol. Cell. Biol. 1996, 16, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Berset, T. Notch inhibition of ras signaling through map kinase phosphatase lip-1 during C. elegans Vulval Development. Science 2001, 291, 1055–1058. [Google Scholar] [CrossRef]
- Burdine, R.D.; Branda, C.S.; Stern, M.J. EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. Development 1998, 125, 1083–1093. [Google Scholar]
- Yoo, A.S.; Bais, C.; Greenwald, I. Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 2004, 303, 663–666. [Google Scholar] [CrossRef]
- Yoo, A.S. Lin-12/notch activation leads to microrna-mediated down-regulation of vav in C. elegans. Science 2005, 310, 1330–1333. [Google Scholar] [CrossRef]
- Kenyon, C. A perfect vulva every time: Gradients and signaling cascades in C. elegans. Cell 1995, 82, 171–174. [Google Scholar] [CrossRef]
- Simske, J.S.; Kirn, S.K. Sequential signalling during Caenorhabditis elegans vulval induction. Nature 1995, 375, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Beitel, G.J.; Clark, S.G.; Horvitz, H.R. Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction. Nature 1990, 348, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Chang, C. Caenorhabditis elegans sos-1 is necessary for multiple ras-mediated developmental signals. EMBO J. 2000, 19, 3283–3294. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.G.; Stern, M.J.; Horvitz, H.R. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 1992, 356, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Aroian, R.V.; Sternberg, P.W. The let-60 locus controls the switch between vulval and nonvulval cell fates in Caenorhabditis elegans. Genetics 1990, 126, 899–913. [Google Scholar] [PubMed]
- Han, M.; Golden, A.; Han, Y.; Sternberg, P.W. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 1993, 363, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kornfeld, K.; Guan, K.L.; Horvitz, H.R. The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase mek. Genes Dev. 1995, 9, 756–768. [Google Scholar] [CrossRef] [PubMed]
- Lackner, M.R.; Kornfeld, K.; Miller, L.M.; Horvitz, H.R.; Kim, S.K. A map kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 1994, 8, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, M.; Guan, K.L. Mek-2, a Caenorhabditis elegans map kinase kinase, functions in ras-mediated vulval induction and other developmental events. Genes Dev. 1995, 9, 742–755. [Google Scholar] [CrossRef]
- Selfors, L.M.; Schutzman, J.L.; Borland, C.Z.; Stern, M.J. Soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc. Natl. Acad. Sci. USA 1998, 95, 6903–6908. [Google Scholar] [CrossRef]
- Sieburth, D.S.; Sun, Q.; Han, M. Sur-8, a conserved ras-binding protein with leucine-rich repeats, positively regulates ras-mediated signaling in C. elegans. Cell 1998, 94, 119–130. [Google Scholar] [CrossRef]
- Kornfeld, K.; Hom, D.B.; Horvitz, H.R. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 1995, 83, 903–913. [Google Scholar] [CrossRef]
- Sundaram, M.; Han, M. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 1995, 83, 889–901. [Google Scholar] [CrossRef]
- Therrien, M.; Chang, H.C.; Solomon, N.M.; Karim, F.D.; Wassarman, D.A.; Rubin, G.M. KSR, a novel protein kinase required for RAS signal transduction. Cell 1995, 83, 879–888. [Google Scholar] [CrossRef]
- Sternberg, P.W. Lateral inhibition during vulval induction in Caenorhabditis elegans. Nature 1988, 335, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Greenwald, I. Spatial regulation of lag-2 transcription during vulval precursor cell fate patterning in Caenorhabditis elegans lag-2. Genetics 2011, 188, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Koga, M.; Ohshima, Y. Mosaic analysis of the let-23 gene function in vulval induction of Caenorhabditis elegans. Development 1995, 121, 2655–2666. [Google Scholar] [PubMed]
- Levitan, D.; Greenwald, I. LIN-12 protein expression and localization during vulval development in C. elegans. Development 1998, 125, 3101–3109. [Google Scholar]
- Deng, Y.; Greenwald, I. Determinants in the LIN-12/Notch Intracellular Domain That Govern Its Activity and Stability During Caenorhabditis elegans Vulval Development. G3 (Bethesda) 2016, 6, 3663–3670. [Google Scholar] [CrossRef]
- Shaye, D.D.; Greenwald, I. Endocytosis-mediated downregulation of lin-12/notch upon ras activation in Caenorhabditis elegans. Nature 2002, 420, 686–690. [Google Scholar] [CrossRef]
- Shaye, D.D. Lin-12/notch trafficking and regulation of dsl ligand activity during vulval induction in Caenorhabditis elegans. Development 2005, 132, 5081–5092. [Google Scholar] [CrossRef] [PubMed]
- Tiensuu, T.; Larsen, M.K.; Vernersson, E.; Tuck, S. Lin-1 has both positive and negative functions in specifying multiple cell fates induced by ras/map kinase signaling in C. elegans. Dev. Biol. 2005, 286, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Berset, T.A. The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes Dev. 2005, 19, 1328–1340. [Google Scholar] [CrossRef] [PubMed]
- Nakdimon, I.; Walser, M.; Fröhli, E.; Hajnal, A. Pten negatively regulates mapk signaling during Caenorhabditis elegans vulval development. PLoS Genet. 2012, 8, e1002881. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, I. LIN-12/Notch signaling in C. elegans. The C. elegans Research Community, WormBook, doi:10.1895/wormbook.1.10.1. Available online: http://www.wormbook.org (accessed on 5 November 2018).
- Sundaram, M.V. Canonical rtk-ras-erk signaling and related alternative pathways. WormBook 2013, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Reiner, D.J. Ras effector switching as a developmental strategy. Small GTPases 2011, 2, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Zand, T.P.; Reiner, D.J.; Der, C.J. Ras effector switching promotes divergent cell fates in C. elegans Vulval Patterning. Dev. Cell 2011, 20, 84–96. [Google Scholar] [CrossRef]
- Gentry, L.R.; Martin, T.D.; Reiner, D.J.; Der, C.J. Ral small gtpase signaling and oncogenesis: More than just 15minutes of fame. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2014, 1843, 2976–2988. [Google Scholar] [CrossRef]
- Shin, H.; Kaplan, R.E.W.; Duong, T.; Fakieh, R.; Reiner, D.J. Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning. Cell Rep. 2018, 24, 2669–2681. [Google Scholar] [CrossRef]
- Hoyos, E.; Kim, K.; Milloz, J.; Barkoulas, M.; Pénigault, J.-B.; Munro, E.; Félix, M.-A. Quantitative variation in autocrine signaling and pathway crosstalk in the caenorhabditis vulval network. Curr. Biol. 2011, 21, 527–538. [Google Scholar] [CrossRef]
- Eisenmann, D.M.; Maloof, J.N.; Simske, J.S.; Kenyon, C.; Kim, S.K. The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development. Development 1998, 125, 3667–3680. [Google Scholar] [PubMed]
- Gleason, J.E.; Szyleyko, E.A.; Eisenmann, D.M. Multiple redundant wnt signaling components function in two processes during C. elegans vulval development. Dev. Biol. 2006, 298, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Green, J.L.; Inoue, T.; Sternberg, P.W. The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. Development 2007, 134, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Myers, T.R.; Greenwald, I. Wnt signal from multiple tissues and lin-3/egf signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 2007, 104, 20368–20373. [Google Scholar] [CrossRef] [PubMed]
- Green, J.L.; Inoue, T.; Sternberg, P.W. Opposing wnt pathways orient cell polarity during organogenesis. Cell 2008, 134, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Sawa, H.; Lobel, L.; Horvitz, H.R. The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the drosophila frizzled protein. Genes Dev. 1996, 10, 2189–2197. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, P.W.; Horvitz, H.R. Lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. Dev. Biol. 1988, 130, 67–73. [Google Scholar] [CrossRef]
- Mohler, W.A.; Shemer, G.; del Campo, J.J.; Valansi, C.; Opoku-Serebuoh, E.; Scranton, V.; Assaf, N.; White, J.G.; Podbilewicz, B. The type i membrane protein eff-1 is essential for developmental cell fusion. Dev. Cell 2002, 2, 355–362. [Google Scholar] [CrossRef]
- Walser, C.B. Distinct roles of the pumilio and fbf translational repressors during C. elegans vulval development. Development 2006, 133, 3461–3471. [Google Scholar] [CrossRef]
- Hoskins, R.; Hajnal, A.F.; Harp, S.A.; Kim, S.K. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development 1996, 122, 97–111. [Google Scholar]
- Kaech, S.M.; Whitfield, C.W.; Kim, S.K. The lin-2/lin-7/lin-10 complex mediates basolateral membrane localization of the C. elegans EGF Receptor LET-23 in Vulval Epithelial Cells. Cell 1998, 94, 761–771. [Google Scholar] [CrossRef]
- Simske, J.S.; Kaech, S.M.; Harp, S.A.; Kim, S.K. Let-23 receptor localization by the cell junction protein lin-7 during C. elegans Vulval Induction. Cell 1996, 85, 195–204. [Google Scholar] [CrossRef]
- Whitfield, C.W.; Benard, C.; Barnes, T.; Hekimi, S.; Kim, S.K. Basolateral localization of the caenorhabditis elegans epidermal growth factor receptor in epithelial cells by the pdz protein lin-10. Mol. Biol. Cell 1999, 10, 2087–2100. [Google Scholar] [CrossRef] [PubMed]
- Haag, A.; Gutierrez, P.; Bühler, A.; Walser, M.; Yang, Q.; Langouët, M.; Kradolfer, D.; Fröhli, E.; Herrmann, C.J.; Hajnal, A.; Escobar-Restrepo, J.M. An in vivo egf receptor localization screen in C. elegans Identifies the Ezrin Homolog ERM-1 as a Temporal Regulator of Signaling. PLoS Genet. 2014, 10, e1004341. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, A.D.; Hardin, J. Epidermal Morphogenesis. The C. elegans Research Community, WormBook, doi:10.1895/wormbook.1.35.1. Available online: http://www.wormbook.org (accessed on 5 November 2018).
- Aroian, R.V.; Sternberg, P.W. Multiple functions of let-23, a Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction. Genetics 1991, 128, 251–267. [Google Scholar] [PubMed]
- Lee, J.; Jongeward, G.D.; Sternberg, P.W. Unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. Genes Dev. 1994, 8, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.-L.; Baum, P.D.; Gu, M.; Jorgensen, E.M.; Clark, S.G.; Garriga, G. C. elegans ap-2 and retromer control wnt signaling by regulating mig-14/wntless. Dev. Cell 2008, 14, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Casanova, J.E. Regulation of arf activation: The sec7 family of guanine nucleotide exchange factors. Traffic 2007, 8, 1476–1485. [Google Scholar] [CrossRef]
- Ishizaki, R.; Shin, H.-W.; Mitsuhashi, H.; Nakayama, K. Redundant roles of big2 and big1, guanine-nucleotide exchange factors for adp-ribosylation factors in membrane traffic between the trans-golgi network and endosomes. Mol. Biol. Cell 2008, 19, 2650–2660. [Google Scholar] [CrossRef]
- Manolea, F.; Claude, A.; Chun, J.; Rosas, J.; Melancon, P. Distinct functions for arf guanine nucleotide exchange factors at the golgi complex: Gbf1 and bigs are required for assembly and maintenance of the golgi stack and trans-golgi network, respectively. Mol. Biol. Cell 2007, 19, 523–535. [Google Scholar] [CrossRef]
- Morinaga, N.; Tsai, S.-C.; Moss, J.; Vaughan, M. Isolation of a brefeldin a-inhibited guanine nucleotide-exchange protein for adp ribosylation factor (arf) 1 and arf3 that contains a sec7-like domain. Proc. Natl. Acad. Sci. 1996, 93, 12856–12860. [Google Scholar] [CrossRef] [PubMed]
- Skorobogata, O.; Escobar-Restrepo, J.M.; Rocheleau, C.E. An agef-1/arf gtpase/ap-1 ensemble antagonizes let-23 egfr basolateral localization and signaling during C. elegans Vulva Induction. PLoS Genet. 2014, 10, e1004728. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, B.P. Regulation of EGFR endocytic trafficking by rab proteins. Histol. Histopathol. 2006, 21, 987–993. [Google Scholar] [PubMed]
- Barbieri, M.A.; Roberts, R.L.; Gumusboga, A.; Highfield, H.; Alvarez-Dominguez, C.; Wells, A.; Stahl, P.D. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J. Cell Biol. 2000, 151, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Dinneen, J.L.; Ceresa, B.P. Continual expression of rab5(q79l) causes a ligand-independent egfr internalization and diminishes egfr activity. Traffic 2004, 5, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Lanzetti, L.; Rybin, V.; Malabarba, M.G.; Christoforidis, S.; Scita, G.; Zerial, M.; Di Fiore, P.P. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 2000, 408, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Martinu, L. Endocytosis of epidermal growth factor receptor regulated by grb2-mediated recruitment of the rab5 gtpase-activating protein rn-tre. J. Biological Chem. 2002, 277, 50996–51002. [Google Scholar] [CrossRef] [PubMed]
- Tall, G.G.; Barbieri, M.A.; Stahl, P.D.; Horazdovsky, B.F. Ras-activated endocytosis is mediated by the rab5 guanine nucleotide exchange activity of rin1. Dev. Cell 2001, 1, 73–82. [Google Scholar] [CrossRef]
- Skorobogata, O.; Rocheleau, C.E. Rab-7 antagonizes let-23 egfr signaling during vulva development in Caenorhabditis elegans. PLoS ONE 2012, 7, e36489. [Google Scholar] [CrossRef]
- Skorobogata, O.; Meng, J.; Gauthier, K.; Rocheleau, C.E. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling. Mol. Biol. Cell 2016, 27, 3771–3779. [Google Scholar] [CrossRef] [Green Version]
- Jongeward, G.D.; Clandinin, T.R.; Sternberg, P.W. sli-1, a negative regulator of let-23-mediated signaling in C. elegans. Genetics 1995, 139, 1553–1566. [Google Scholar] [PubMed]
- Yoon, C.; Lee, J.; Jongeward, G.; Sternberg, P. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 1995, 269, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.H.; Chang, C.; Hopper, N.A.; Lesa, G.M.; Sternberg, P.W. Requirements of multiple domains of sli-1, a Caenorhabditis elegans homologue of c-cbl, and an inhibitory tyrosine in let-23 in regulating vulval differentiation. Mol. Biol. Cell 2000, 11, 4019–4031. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, B.; Ahmad, G.; Nadeau, S.; Zutshi, N.; An, W.; Scheffe, S.; Dong, L.; Feng, D.; Goetz, B.; Arya, P.; et al. Protein tyrosine kinase regulation by ubiquitination: Critical roles of cbl-family ubiquitin ligases. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2013, 1833, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Thien, C.B.; Langdon, W.Y. Cbl: Many adaptations to regulate protein tyrosine kinases. Nat. Rev. Mol. Cell Biol. 2001, 2, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Lesa, G.M.; Sternberg, P.W. Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor. Mol. Biol. Cell 1997, 8, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Hopper, N.A.; Lee, J.; Sternberg, P.W. ARK-1 inhibits EGFR signaling in C. elegans. Mol. Cell 2000, 6, 65–75. [Google Scholar] [CrossRef]
- Struhl, G.; Fitzgerald, K.; Greenwald, I. Intrinsic activity of the lin-12 and notch intracellular domains in vivo. Cell 1993, 74, 331–345. [Google Scholar] [CrossRef]
- Greenwald, I.; Kovall, R. Notch Signaling: Genetics and Structure. The C. elegans Research Community, WormBook, doi:10.1895/wormbook.1.10.2. Available online: http://www.wormbook.org (accessed on 5 November 2018).
- Brou, C.; Logeat, F.; Gupta, N.; Bessia, C.; LeBail, O.; Doedens, J.R.; Cumano, A.; Roux, P.; Black, R.A.; Israël, A. A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Mol. Cell 2000, 5, 207–216. [Google Scholar] [CrossRef]
- Crittenden, S.L.; Troemel, E.R.; Evans, T.C.; Kimble, J. GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 1994, 120, 2901–2911. [Google Scholar]
- Tax, F.E.; Thomas, J.H.; Ferguson, E.L.; Horvitz, H.R. Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics 1997, 147, 1675–1695. [Google Scholar] [PubMed]
- Wen, C.; Metzstein, M.M.; Greenwald, I. SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development 1997, 124, 4759–4767. [Google Scholar] [PubMed]
- Jarriault, S.; Greenwald, I. Evidence for functional redundancy between C. elegans ADAM proteins SUP-17/Kuzbanian and ADM-4/TACE. Dev. Biol. 2005, 287, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sherrington, R.; Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Greenwald, I. Hop-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with sel-12 presenilin and to facilitate lin-12 and glp-1 signaling. Proc. Natl. Acad. Sci. 1997, 94, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- De Souza, N.; Vallier, L.G.; Fares, H.; Greenwald, I. Sel-2, the C. elegans neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells. Development 2007, 134, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, E.J.A.; Wu, G.; Kitajewski, J.; Greenwald, I. Sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the cdc4 family of proteins. Genes Dev. 1997, 11, 3182–3193. [Google Scholar] [CrossRef]
- De la Cova, C.; Greenwald, I. SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron. Genes Dev. 2012, 26, 2524–2535. [Google Scholar] [CrossRef]
- Ceol, C.J.; Horvitz, H. A New Class of C. elegans synMuv Genes Implicates a Tip60/NuA4-like HAT Complex as a Negative Regulator of Ras Signaling. Dev. Cell 2004, 6, 563–576. [Google Scholar] [CrossRef]
- Ceol, C.J. Identification and classification of genes that act antagonistically to let-60 ras signaling in Caenorhabditis elegans vulval development. Genetics 2006, 173, 709–726. [Google Scholar] [CrossRef]
- Andersen, E.C.; Saffer, A.M.; Horvitz, H.R. Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates. Genetics 2008, 179, 2001–2012. [Google Scholar] [CrossRef] [PubMed]
- Myers, T.R.; Greenwald, I. Lin-35 rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans. Dev. Cell 2005, 8, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Herman, R.K.; Hedgecock, E.M. Limitation of the size of the vulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis. Nature 1990, 348, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Levitan, D.; Greenwald, I. Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development 1998, 125, 3599–3606. [Google Scholar] [PubMed]
- Cui, M.; Chen, J.; Myers, T.R.; Hwang, B.J.; Sternberg, P.W.; Greenwald, I.; Han, M. Synmuv genes redundantly inhibit lin-3/egf expression to prevent inappropriate vulval induction in C. elegans. Dev. Cell 2006, 10, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Saffer, A.M.; Kim, D.H.; van Oudenaarden, A.; Horvitz, H.R. The caenorhabditis elegans synthetic multivulva genes prevent ras pathway activation by tightly repressing global ectopic expression of lin-3 egf. PLoS Genet. 2011, 7, e1002418. [Google Scholar] [CrossRef] [PubMed]
- Fay, D.S.; Yochem, J. The SynMuv genes of Caenorhabditis elegans in vulval development and beyond. Dev. Biol. 2007, 306, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.G.; Lu, X.; Horvitz, H.R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 1994, 137, 987–997. [Google Scholar] [PubMed]
- Davison, E.M.; Saffer, A.M.; Huang, L.S.; DeModena, J.; Sternberg, P.W.; Horvitz, H.R. The lin-15a and lin-56 transcriptional regulators interact to negatively regulate egf/ras signaling in Caenorhabditis elegans vulval cell-fate determination. Genetics 2010, 187, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.S.; Tzou, P.; Sternberg, P.W. The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development. Mol. Biol. Cell 1994, 5, 395–411. [Google Scholar] [CrossRef]
- Andersen, E.C.; Horvitz, H.R. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development. Development 2007, 134, 2991–2999. [Google Scholar] [CrossRef] [PubMed]
- Ceol, C.J.; Horvitz, H.R. Dpl-1 dp and efl-1 e2f act with lin-35 rb to antagonize ras signaling in C. elegans Vulval Development. Mol. Cell 2001, 7, 461–473. [Google Scholar] [CrossRef]
- Couteau, F. A heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline and vulval development. EMBO Rep. 2002, 3, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Horvitz, H.R. Lin-35 and lin-53, two genes that antagonize a C. elegans Ras Pathway, Encode Proteins Similar to Rb and Its Binding Protein RbAp48. Cell 1998, 95, 981–991. [Google Scholar] [CrossRef]
- Poulin, G.; Dong, Y.; Fraser, A.G.; Hopper, N.A.; Ahringer, J. Chromatin regulation and sumoylation in the inhibition of ras-induced vulval development in Caenorhabditis elegans. EMBO J. 2005, 24, 2613–2623. [Google Scholar] [CrossRef] [PubMed]
- Solari, F.; Ahringer, J. Nurd-complex genes antagonise ras-induced vulval development in Caenorhabditis elegans. Curr. Biol. 2000, 10, 223–226. [Google Scholar] [CrossRef]
- Unhavaithaya, Y.; Shin, T.H.; Miliaras, N.; Lee, J.; Oyama, T.; Mello, C.C. Mep-1 and a homolog of the nurd complex component mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 2002, 111, 991–1002. [Google Scholar] [CrossRef]
- Dutt, A.; Canevascini, S.; Froehli-Hoier, E.; Hajnal, A. Egf signal propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid. PLoS Biol. 2004, 2, e334. [Google Scholar] [CrossRef]
- Pu, P.; Stone, C.E.; Burdick, J.T.; Murray, J.I.; Sundaram, M.V. The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in Caenorhabditis elegans. Genetics 2017, 205, 1247–1260. [Google Scholar] [CrossRef]
- Van Buskirk, C.; Sternberg, P.W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat. Neurosci. 2007, 10, 1300–1307. [Google Scholar] [CrossRef]
- Beitel, G.J.; Tuck, S.; Greenwald, I.; Horvitz, H.R. The Caenorhabditis elegans gene lin-1 encodes an ets-domain protein and defines a branch of the vulval induction pathway. Genes Dev. 1995, 9, 3149–3162. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.M.; Gallegos, M.E.; Morisseau, B.A.; Kim, S.K. Lin-31, a Caenorhabditis elegans hnf-3/fork head transcription factor homolog, specifies three alternative cell fates in vulval development. Genes Dev. 1993, 7, 933–947. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.H.; Reventar, R.; Bernstein, A. Genetic analysis of ETS genes in C. elegans. Oncogene 2002, 19, 6400–6408. [Google Scholar] [CrossRef] [PubMed]
- Fantz, D.A.; Jacobs, D.; Glossip, D.; Kornfeld, K. Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J. Biological Chem. 2001, 276, 27256–27265. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.; Beitel, G.J.; Clark, S.G.; Horvitz, H.R.; Kornfeld, K. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics 1998, 149, 1809–1822. [Google Scholar] [PubMed]
- Tan, P.B.; Lackner, M.R.; Kim, S.K. Map kinase signaling specificity mediated by the lin-1 ets/lin-31 wh transcription factor complex during C. elegans Vulval Induction. Cell 1998, 93, 569–580. [Google Scholar] [CrossRef]
- Dickinson, D.J.; Ward, J.D.; Reiner, D.J.; Goldstein, B. Engineering the Caenorhabditis elegans genome using cas9-triggered homologous recombination. Nat. Methods 2013, 10, 1028–1034. [Google Scholar] [CrossRef]
- Miller, L.M.; Waring, D.A.; Kim, S.K. Mosaic analysis using a ncl-1 (+) extrachromosomal array reveals that lin-31 acts in the Pn.p cells during Caenorhabditis elegans vulval development. Genetics 1996, 143, 1181–1191. [Google Scholar]
- Nilsson, L.; Li, X.; Tiensuu, T.; Auty, R.; Greenwald, I.; Tuck, S. Caenorhabditis elegans lin-25: Cellular focus, protein expression and requirement for sur-2 during induction of vulval fates. Development 1998, 125, 4809–4819. [Google Scholar]
- Nilsson, L.; Tiensuu, T.; Tuck, S. Caenorhabditis elegans lin-25: A study of its role in multiple cell fate specification events involving Ras and the identification and characterization of evolutionarily conserved domains. Genetics 2000, 156, 1083–1096. [Google Scholar]
- Allen, B.L.; Taatjes, D.J. The Mediator complex: A central integrator of transcription. Nat. Rev. Mol. Cell Biol. 2015, 16, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.L. Transcription control by e1a and map kinase pathway via sur2 mediator subunit. Science 2002, 296, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Grants, J.M.; Ying, L.T.L.; Yoda, A.; You, C.C.; Okano, H.; Sawa, H.; Taubert, S. The mediator kinase module restrains epidermal growth factor receptor signaling and represses vulval cell fate specification in Caenorhabditis elegans. Genetics 2015, 202, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Maloof, J.N.; Kenyon, C. The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development 1998, 125, 181–190. [Google Scholar] [PubMed]
- Wagmaister, J.A.; Gleason, J.E.; Eisenmann, D.M. Transcriptional upregulation of the C. elegans Hox gene lin-39 during vulval cell fate specification. Mech. Dev. 2006, 123, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.T.; Gao, D.; Lambie, E.J.; Kimble, J. lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 1994, 120, 2913–2924. [Google Scholar] [PubMed]
- Tax, F.E.; Yeargers, J.J.; Thomas, J.H. Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature 1994, 368, 150–154. [Google Scholar] [CrossRef]
- Underwood, R.S.; Deng, Y.; Greenwald, I. Integration of EGFR and LIN-12/Notch Signaling by LIN-1/Elk1, the Cdk8 Kinase Module, and SUR-2/Med23 in Vulval Precursor Cell Fate Patterning in Caenorhabditis elegans. Genetics 2017, 207, 1473–1488. [Google Scholar] [CrossRef]
- Howard, R.M. C. elegans eor-1/plzf and eor-2 positively regulate ras and wnt signaling and function redundantly with lin-25 and the sur-2 mediator component. Genes Dev. 2002, 16, 1815–1827. [Google Scholar] [CrossRef]
- Fitzgerald, K.; Wilkinson, H.A.; Greenwald, I. glp-1 can substitute for lin-12 in specifying cell fate decisions in Caenorhabditis elegans. Development 1993, 119, 1019–1027. [Google Scholar]
- Lambie, E.J.; Kimble, J. Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 1991, 112, 231–240. [Google Scholar] [PubMed]
- Christensen, S.; Kodoyianni, V.; Bosenberg, M.; Friedman, L.; Kimble, J. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 1996, 122, 1373–1383. [Google Scholar] [PubMed]
- Roehl, H.; Bosenberg, M.; Blelloch, R.; Kimble, J. Roles of the RAM and ANK domains in signaling by the C. elegans GLP-1 receptor. EMBO J. 1996, 15, 7002–7012. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.G.; Wen, C.; Greenwald, I. Sel-8, a nuclear protein required for lin-12 and glp-1 signaling in Caenorhabditis elegans. Proc. Natl. Acad. Sci. 2000, 97, 7877–7881. [Google Scholar] [CrossRef] [PubMed]
- Petcherski, A.G.; Kimble, J. LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 2000, 405, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N.R.; Dickinson, D.J.; Reiner, D.J. Ras-Dependent Cell Fate Decisions Are Reinforced by the RAP-1 Small GTPase in Caenorhabditis elegans. Genetics 2018, 210, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Burdine, R.D.; Chen, E.B.; Kwok, S.F.; Stern, M.J. Egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1997, 94, 2433–2437. [Google Scholar] [CrossRef]
- Sterken, M.G. Ras/MAPK Modifier Loci Revealed by eQTL in Caenorhabditis elegans. G3 (Bethesda) 2017, 7, 3185–3193. [Google Scholar] [CrossRef]
- Barkoulas, M.; van Zon, J.S.; Milloz, J.; van Oudenaarden, A.; Félix, M.-A. Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation. Dev. Cell 2013, 24, 64–75. [Google Scholar] [CrossRef]
- Braendle, C.; Baer, C.F.; Félix, M.-A. Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet. 2010, 6, e1000877. [Google Scholar] [CrossRef]
- Duveau, F.; Félix, M.-A. Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. PLoS Biol. 2012, 10, e1001230. [Google Scholar] [CrossRef] [PubMed]
- Milloz, J.; Duveau, F.; Nuez, I.; Felix, M.A. Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes Dev. 2008, 22, 3064–3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Reiner, D.J. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J. Dev. Biol. 2018, 6, 30. https://doi.org/10.3390/jdb6040030
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. Journal of Developmental Biology. 2018; 6(4):30. https://doi.org/10.3390/jdb6040030
Chicago/Turabian StyleShin, Hanna, and David J. Reiner. 2018. "The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning" Journal of Developmental Biology 6, no. 4: 30. https://doi.org/10.3390/jdb6040030
APA StyleShin, H., & Reiner, D. J. (2018). The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. Journal of Developmental Biology, 6(4), 30. https://doi.org/10.3390/jdb6040030