A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development
Abstract
:1. Introduction
2. Anatomy of the Canal Cell
3. Development of the Excretory Canals
3.1. Outgrowth
3.2. Cytoskeleton
3.3. Transport
- CRIP1 (EXC-9), for Cysteine-Rich Intestinal Protein [92,93], is common in many vertebrate tissues (not solely the intestine) including embryonic neural tube, pronephros, and cranial ganglia [93]. This cytoplasmic protein consists of a single LIM domain followed by a short (20-amino acid) tail, but the functions of these domains is unknown.
- IRGC (EXC-1) for Immunity-Related GTPase C, is a member of the IRG family of GTPase proteins [94] that includes the mammalian protein IRGM, involved in autophagic membrane formation used for defending against parasite infection. Unlike most vertebrate IRG proteins, mouse IRGC expression is not upregulated by interferon, and is found constitutively only in testes [95]. An implication of these homologies is that EXC-1 and IRGC could be involved in membrane bending, scission, or fusion during vesicle trafficking.
- The FGD (EXC-5) family of six GEF (Guanine Exchange Factor) s in humans [96] activate Rho-GTPases, especially CDC42 [92,97]. Facio-Genital Dysplasia (FGD)1 is the locus of Aarskog–Scott Syndrome [98], in which multiple developmental defects occur, including hypertelorism, short nose, short broad hands, short stature, shawl scrotum, and other genitourinary abnormalities [99]. FGD4 and its rodent homologue Frabin are necessary for the proper development of the insulating Schwann Cells of the peripheral nervous system [100]. Humans with homozygous mutations of this gene suffer from Charcot-Marie-Tooth Syndrome Type 4H, in which the Schwann cells fail to lengthen concomitantly with the nervous system during puberty, resulting in loss of sensation and partial or complete limb paralysis [101]. It is interesting to note that a Schwann cell wrapped around a nerve bundle is topologically a single-cell tube.
4. Mutants Newly Discovered
5. Prospects and Questions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lubarsky, B.; Krasnow, M.A. Tube morphogenesis: Making and shaping biological tubes. Cell 2003, 112, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Plattner, H. The contractile vacuole complex of protists—new cues to function and biogenesis. Crit. Rev. Microbiol. 2015, 41, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, R.; Andrew, D.J. Drosophila as a model for epithelial tube formation. Dev. Dyn. 2012, 241, 119–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, J.B.; Metzstein, M.M.; Ghabrial, A.S. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity. PLoS Genet. 2018, 14, e1007146. [Google Scholar] [CrossRef] [PubMed]
- Samakovlis, C.; Hacohen, N.; Manning, G.; Sutherland, D.C.; Guillemin, K.; Krasnow, M.A. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 1996, 122, 1395–1407. [Google Scholar]
- Geitmann, A. How to shape a cylinder: Pollen tube as a model system for the generation of complex cellular geometry. Sex. Plant Reprod. 2010, 23, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Denker, E.; Bocina, I.; Jiang, D. Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete PAR domains. Development 2013, 140, 2985–2996. [Google Scholar] [CrossRef] [Green Version]
- Lenard, A.; Daetwyler, S.; Betz, C.; Ellertsdottir, E.; Belting, H.G.; Huisken, J.; Affolter, M. Endothelial cell self-fusion during vascular pruning. PLoS Biol. 2015, 13, e1002126. [Google Scholar] [CrossRef]
- Kotini, M.P.; Mäe, M.A.; Belting, H.G.; Betsholtz, C.; Affolter, M. Sprouting and anastomosis in the Drosophila trachea and the vertebrate vasculature: Similarities and differences in cell behaviour. Vascul. Pharmacol. 2019, 112, 8–16. [Google Scholar] [CrossRef]
- Yu, J.A.; Castranova, D.; Pham, V.N.; Weinstein, B.M. Single-cell analysis of endothelial morphogenesis in vivo. Development 2015, 142, 2951–2961. [Google Scholar] [CrossRef] [Green Version]
- Bär, T.; Güldner, F.H.; Wolff, J.R. “Seamless” endothelial cells of blood capillaries. Cell Tissue Res. 1984, 235, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.R.; Bär, T. ‘Seamless’ endothelia in brain capillaries during development of the rat’s cerebral cortex. Brain Res. 1972, 41, 17–24. [Google Scholar] [CrossRef]
- Nelson, F.K.; Albert, P.S.; Riddle, D.S. Fine structure of the Caenorhabditis elegans secretory-excretory system. J. Ultrastruct. Res. 1983, 82, 156–171. [Google Scholar] [CrossRef]
- Sundaram, M.V.; Buechner, M. The Caenorhabditis elegans excretory system: A model for tubulogenesis, cell fate specification, and plasticity. Genetics 2016, 203, 35–63. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, M.V.; Cohen, J.D. Time to make the doughnuts: Building and shaping seamless tubes. Semin. Cell Dev. Biol. 2017, 67, 123–131. [Google Scholar] [CrossRef]
- Nelson, F.K.; Riddle, D.L. Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery. J. Exp. Zool. 1984, 231, 45–56. [Google Scholar] [CrossRef]
- Ganner, A.; Neumann-Haefelin, E. Genetic kidney diseases: Caenorhabditis elegans as model system. Cell Tissue Res. 2017, 369, 105–118. [Google Scholar] [CrossRef]
- Zhang, N.; Membreno, E.; Raj, S.; Zhang, H.; Khan, L.A.; Gobel, V. The C. elegans excretory canal as a model for intracellular lumen morphogenesis and in vivo polarized membrane biogenesis in a single cell: Labeling by gfp-fusions, rnai interaction screen and imaging. J. Vis. Exp. 2017. [Google Scholar] [CrossRef]
- Jewett, C.E.; Prekeris, R. Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic 2018, 19, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Al-Hashimi, H.; Chiarelli, T.; Lundquist, E.A.; Buechner, M. Novel exc genes involved in formation of the tubular excretory canals of Caenorhabditis elegans. G3 (Bethesda) 2019, 9, 1339–1353. [Google Scholar] [CrossRef] [Green Version]
- Lant, B.; Pal, S.; Chapman, E.M.; Yu, B.; Witvliet, D.; Choi, S.; Zhao, L.; Albiges-Rizo, C.; Faurobert, E.; Derry, W.B. Interrogating the CCM-3 gene network. Cell Rep. 2018, 24, 2857–2868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, L.A.; Jafari, G.; Zhang, N.; Membreno, E.; Yan, S.; Zhang, H.; Gobel, V. A tensile trilayered cytoskeletal endotube drives capillary-like lumenogenesis. J. Cell Biol. 2019, 218, 2403–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulston, J.E.; Schierenberg, E.; White, J.G.; Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 1983, 100, 64–119. [Google Scholar] [CrossRef]
- Fujita, M.; Hawkinson, D.; King, K.V.; Hall, D.H.; Sakamoto, H.; Buechner, M. The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals. Dev. Biol. 2003, 256, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Sauer, F.C. Some factors in the morphogenesis of vertebrate embryonic epithelia. J. Morphol. 1937, 61, 563–579. [Google Scholar] [CrossRef]
- Göbel, V.; Barrett, P.L.; Hall, D.H.; Fleming, J.T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker ERM-1. Dev. Cell 2004, 6, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Ramalho, J.J.; Sepers, J.J.; Nicolle, O.; Schmidt, R.; Cravo, J.; Michaux, G.; Boxem, M. C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during Caenorhabditis elegans development. Development 2020, 147. [Google Scholar] [CrossRef]
- Al-Hashimi, H.; Hall, D.H.; Ackley, B.D.; Lundquist, E.A.; Buechner, M. Tubular excretory canal structure depends on intermediate filaments EXC-2 and IFA-4 in caenorhabditis elegans. Genetics 2018, 210, 637–652. [Google Scholar]
- Yang, Z.; Mattingly, B.C.; Hall, D.H.; Ackley, B.D.; Buechner, M. Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis. J. Cell Biol. 2020, 219. in press. [Google Scholar] [CrossRef]
- McKeown, C.; Praitis, V.; Austin, J. Sma-1 encodes a βH-spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 1998, 125, 2087–2098. [Google Scholar]
- Praitis, V.; Ciccone, E.; Austin, J. SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans. Dev. Biol. 2005, 283, 157–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armenti, S.T.; Chan, E.; Nance, J. Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell. Dev. Biol. 2014, 394, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolotuev, I.; Hyenne, V.; Schwab, Y.; Rodriguez, D.; Labouesse, M. A pathway for unicellular tube extension depending on the lymphatic vessel determinant PROX1 and on osmoregulation. Nat. Cell Biol. 2013, 15, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Liegeois, S.; Benedetto, A.; Garnier, J.M.; Schwab, Y.; Labouesse, M. The V0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 2006, 173, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, L.A.; Zhang, H.; Abraham, N.; Sun, L.; Fleming, J.T.; Buechner, M.; Hall, D.H.; Gobel, V. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat. Cell Biol. 2013, 15, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Cotter, K.; Stransky, L.; McGuire, C.; Forgac, M. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem. Sci. 2015, 40, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Berry, K.L.; Bulow, H.E.; Hall, D.H.; Hobert, O. A C. elegans CLIC-like protein required for intracellular tube formation and maintenance. Science 2003, 302, 2134–2137. [Google Scholar] [CrossRef]
- Argenzio, E.; Moolenaar, W.H. Emerging biological roles of Cl- intracellular channel proteins. J. Cell Sci. 2016, 129, 4165–4174. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, B.C.; Buechner, M. The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Dev. Biol. 2011, 359, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Shaye, D.D.; Greenwald, I. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev. Cell 2015, 32, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Buechner, M.; Hall, D.H.; Bhatt, H.; Hedgecock, E.M. Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev. Biol. 1999, 214, 227–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedgecock, E.M.; Culotti, J.G.; Hall, D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990, 4, 61–85. [Google Scholar] [CrossRef]
- Stringham, E.; Pujol, N.; Vandekerckhove, J.; Bogaert, T. UNC-53 controls longitudinal migration in C. eegans. Development 2002, 129, 3367–3379. [Google Scholar] [PubMed]
- Bhat, J.M.; Pan, J.; Hutter, H. Plr-1, a putative E3 ubiquitin ligase, controls cell polarity and axonal extensions in C. elegans. Dev. Biol. 2015, 398, 44–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Chi, Q.; Sherwood, D.R. Mig-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans. Development 2014, 141, 1342–1353. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.Y.; Hsu, K.S.; Otsu, W.; Hsu, Y.C.; Luo, Y.C.; Yeh, C.; Shehab, S.S.; Chen, J.; Shieh, V.; He, G.A.; et al. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking. Nat. Commun. 2016, 7, 10412. [Google Scholar] [CrossRef] [Green Version]
- Berry, K.L.; Hobert, O. Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo. J. Mol. Biol. 2006, 359, 1316–1333. [Google Scholar] [CrossRef]
- Liang, J.; Shaulov, Y.; Savage-Dunn, C.; Boissinot, S.; Hoque, T. Chloride intracellular channel proteins respond to heat stress in Caenorhabditis elegans. PLoS ONE 2017, 12, e0184308. [Google Scholar] [CrossRef] [Green Version]
- Hahn-Windgassen, A.; Van Gilst, M.R. The Caenorhabditis elegans HNF4α homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase. PLoS Genet. 2009, 5, e1000553. [Google Scholar] [CrossRef]
- Dodemont, H.; Riemer, D.; Ledger, N.; Weber, K. Eight genes and alternative RNA processing pathways generate an unexpectedly large diversity of cytoplasmic intermediate filament proteins in the nematode Caenorhabditis elegans. EMBO J. 1994, 13, 2625–2638. [Google Scholar] [CrossRef]
- Karabinos, A. Intermediate filament (IF) proteins IFA-1 and IFB-1 represent a basic heteropolymeric IF cytoskeleton of nematodes: A molecular phylogeny of nematode IFs. Gene 2019, 692, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Coch, R.A.; Leube, R.E. Intermediate filaments and polarization in the intestinal epithelium. Cells 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisler, F.; Coch, R.A.; Richardson, C.; Goldberg, M.; Bevilacqua, C.; Prevedel, R.; Leube, R.E. Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function. Sci. Rep. 2020, 10, 3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüsken, K.; Wiesenfahrt, T.; Abraham, C.; Windoffer, R.; Bossinger, O.; Leube, R.E. Maintenance of the intestinal tube in Caenorhabditis elegans: The role of the intermediate filament protein IFC-2. Differentiation 2008, 76, 881–896. [Google Scholar] [CrossRef]
- Shaye, D.D.; Greenwald, I. A network of conserved formins, regulated by the guanine exchange factor EXC-5 and the GTPase CDC-42, modulates tubulogenesis in vivo. Development 2016, 143, 4173–4181. [Google Scholar] [CrossRef] [Green Version]
- Wirshing, A.C.E.; Cram, E.J. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol. Biol. Cell 2010, 29, 2433–2449. [Google Scholar] [CrossRef]
- Van Furden, D.; Johnson, K.; Segbert, C.; Bossinger, O. The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev. Biol. 2004, 272, 262–276. [Google Scholar] [CrossRef] [Green Version]
- Fehon, R.G.; McClatchey, A.I.; Bretscher, A. Organizing the cell cortex: The role of ERM proteins. Nat. Rev. Mol. Cell Biol. 2010, 11, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Phang, J.M.; Yu, J.; Harrop, S.J.; Sokolova, A.V.; Duff, A.P.; Wilk, K.E.; Alkhamici, H.; Breit, S.N.; Valenzuela, S.M.; et al. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: A smoking gun? Biochim. Biophys. Acta 2014, 1838, 643–657. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, H.; Aebi, U. Intermediate filaments: Structure and assembly. Cold Spring Harb. Perspect. Biol. 2016, 8, a018242. [Google Scholar] [CrossRef]
- Zuela, N.; Gruenbaum, Y. Intermediate filaments in Caenorhabditis elegans. Methods Enzymol. 2016, 568, 661–679. [Google Scholar] [PubMed]
- Gruenbaum, Y.; Aebi, U. Intermediate filaments: A dynamic network that controls cell mechanics. F1000Prime Rep. 2014, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, T.; Dehghani, F. The cytoskeleton-a complex interacting meshwork. Cells 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Leeuw, R.; Gruenbaum, Y.; Medalia, O. Nuclear lamins: Thin filaments with major functions. Trends Cell Biol. 2017, 28, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, Y.; Foisner, R. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 2015, 84, 131–164. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, W. The exocyst complex in exocytosis and cell migration. Protoplasma 2012, 249, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Hyenne, V.; Apaydin, A.; Rodriguez, D.; Spiegelhalter, C.; Hoff-Yoessle, S.; Diem, M.; Tak, S.; Lefebvre, O.; Schwab, Y.; Goetz, J.G.; et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J. Cell Biol. 2015, 211, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Zago, G.; Biondini, M.; Camonis, J.; Parrini, M.C. A family affair: A Ral-exocyst-centered network links Ras, Rac, Rho signaling to control cell migration. Small GTPases 2019, 10, 323–330. [Google Scholar] [CrossRef]
- Lepore, D.M.; Martínez-Núñez, L.; Munson, M. Exposing the elusive exocyst structure. Trends Biochem. Sci. 2018, 43, 714–725. [Google Scholar] [CrossRef]
- Lipschutz, J.H. The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development. Kidney Res. Clin. Pract. 2019, 38, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Perens, E.A.; Shaham, S.C. C. elegans daf-6 encodes a patched-related protein required for lumen formation. Dev. Cell 2005, 8, 893–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, H.K.; Cohen, J.D.; Ayala-Figueroa, J.; Forman-Rubinsky, R.; Poggioli, C.; Bickard, K.; Parry, J.M.; Pu, P.; Hall, D.H.; Sundaram, M.V. Integrity of narrow epithelial tubes in the C. elegans excretory system requires a transient luminal matrix. PLoS Genet. 2016, 12, e1006205. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Futai, M. Requirement of V-ATPase for ovulation and embryogenesis in Caenorhabditis elegans. J. Biol. Chem. 2000, 275, 29556–29561. [Google Scholar] [CrossRef] [Green Version]
- Liegeois, S.; Benedetto, A.; Michaux, G.; Belliard, G.; Labouesse, M. Genes required for osmoregulation and apical secretion in Caenorhabditis elegans. Genetics 2007, 175, 709–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Norris, A.; Sato, M.; Grant, B.D. C. elegans as a model for membrane traffic. In WormBook: The Online Review of C. elegans Biology [Internet]; The C. elegans. Research Community, WormBook: Pasadena, CA, USA, 2014. [Google Scholar] [CrossRef]
- Abdelilah-Seyfried, S.; Tournier-Lasserve, E.; Derry, W.B. Blocking signalopathic events to treat cerebral cavernous malformations. Trends Mol. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Pallas, D.C. STRIPAK complexes: Structure, biological function, and involvement in human diseases. Int. J. Biochem. Cell Biol. 2014, 47, 118–148. [Google Scholar] [CrossRef] [Green Version]
- Kim, J. Introduction to cerebral cavernous malformation: A brief review. BMB Rep. 2016, 49, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Kück, U.; Radchenko, D.; Teichert, I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol. Chem. 2019, 400, 1005–1022. [Google Scholar] [CrossRef]
- Popiel, E.; Derry, W.B. Generation and analysis of CCM phenotypes in C. elegans. Methods Mol. Biol. 2020, 2152, 191–205. [Google Scholar]
- Lant, B.; Yu, B.; Goudreault, M.; Holmyard, D.; Knight, J.D.; Xu, P.; Zhao, L.; Chin, K.; Wallace, E.; Zhen, M.; et al. CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat. Commun. 2015, 6, 6449. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Lant, B.; Yu, B.; Tian, R.; Tong, J.; Krieger, J.R.; Moran, M.F.; Gingras, A.C.; Derry, W.B. CCM-3 promotes C. elegans germline development by regulating vesicle trafficking cytokinesis and polarity. Curr. Biol. 2017, 27, 868–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prekeris, R.; Klumperman, J.; Scheller, R.H. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol. Cell 2000, 6, 1437–1448. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, X.; Gobel, V.; Zhang, X. The galectin LEC-5 is a novel binding partner for RAB-11. Biochem. Biophys. Res. Commun. 2018, 505, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Kage-Nakadai, E.; Sun, S.; Iwata, S.; Yoshina, S.; Nishikawa, Y.; Mitani, S. The small GTPase ARF-1.2 is a regulator of unicellular tube formation in Caenorhabditis elegans. J. Physiol. Sci. 2019, 69, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichaud, F.; Walther, R.F.; Nunes de Almeida, F. Regulation of CDC42 and its effectors in epitheliamorphogenesis. J. Cell Sci. 2019, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Estrada, L.; Cho, S.; Ellis, R.E.; Gorski, J.L. The Caenorhabditis elegans homolog of FGD1, the human CDC42 gef gene responsible for faciogenital dysplasia, is critical for excretory cell morphogenesis. Hum. Mol. Genet. 2001, 10, 3049–3062. [Google Scholar] [CrossRef] [Green Version]
- Grussendorf, K.A.; Trezza, C.J.; Salem, A.T.; Al-Hashimi, H.; Mattingly, B.C.; Kampmeyer, D.E.; Khan, L.A.; Hall, D.H.; Gobel, V.; Ackley, B.D.; et al. Facilitation of endosomal recycling by an IRG protein homolog maintains apical tubule structure in Caenorhabditis elegans. Genetics 2016, 203, 1789–1806. [Google Scholar] [CrossRef]
- Suzuki, N.; Buechner, M.; Nishiwaki, K.; Hall, D.H.; Nakanishi, H.; Takai, Y.; Hisamoto, N.; Matsumoto, K. A putative GDP-GTP exchange factor is required for development of the excretory cell in Caenorhabditis elegans. EMBO Rep. 2001, 2, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Buechner, M. CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans. Dev. Biol. 2008, 317, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Shi, A.; Grant, B.D. In vivo analysis of recycling endosomes in Caenorhabditis elegans. Methods Cell Biol. 2015, 130, 181–198. [Google Scholar]
- Cousins, R.J.; Lanningham-Foster, L. Regulation of cysteine-rich intestinal protein, a zinc finger protein, by mediators of the immune response. J. Infect. Dis. 2000, 182 (Suppl. 1), S81–S84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hempel, A.; Kühl, S.J. Comparative expression analysis of cysteine-rich intestinal protein family members CRIP1, 2 and 3 during Xenopus laevis embryogenesis. Int. J. Dev. Biol. 2014, 58, 841–849. [Google Scholar] [CrossRef]
- Pilla-Moffett, D.; Barber, M.F.; Taylor, G.A.; Coers, J. Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 2016, 428, 3495–3513. [Google Scholar] [CrossRef] [Green Version]
- Bekpen, C.; Hunn, J.P.; Rohde, C.; Parvanova, I.; Guethlein, L.; Dunn, D.M.; Glowalla, E.; Leptin, M.; Howard, J.C. The interferon-inducible p47 (IRG) gtpases in vertebrates: Loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 2005, 6, R92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eitzen, G.; Smithers, C.C.; Murray, A.G.; Overduin, M. Structure and function of the FGD family of divergent FYVE domain proteins. Biochem. Cell Biol. 2019, 97, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Fischer, D.J.; Santos, M.F.; Tigyi, G.; Pasteris, N.G.; Gorski, J.L.; Xu, Y. The faciogenital dysplasia gene product FGD1 functions as a CDC42hs- specific guanine-nucleotide exchange factor. J. Biol. Chem. 1996, 271, 33169–33172. [Google Scholar] [CrossRef] [Green Version]
- Pasteris, N.G.; Cadle, A.; Logie, L.J.; Porteous, M.E.; Schwartz, C.E.; Stevenson, R.E.; Glover, T.W.; Wilroy, R.S.; Gorski, J.L. Isolation and characterization of the faciogenital dysplasia (Aarskog- Scott syndrome) gene: A putative Rho/Rac guanine nucleotide exchange factor. Cell 1994, 79, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Orrico, A.; Galli, L.; Falciani, M.; Bracci, M.; Cavaliere, M.L.; Rinaldi, M.M.; Musacchio, A.; Sorrentino, V. A mutation in the pleckstrin homology (PH) domain of the FGD1 gene in an Italian family with faciogenital dysplasia (Aarskog-Scott syndrome). FEBS Lett. 2000, 478, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Delague, V.; Jacquier, A.; Hamadouche, T.; Poitelon, Y.; Baudot, C.; Boccaccio, I.; Chouery, E.; Chaouch, M.; Kassouri, N.; Jabbour, R.; et al. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor Frabin cause autosomal recessive Charcot-Marie-Tooth type 4H. Am. J. Hum. Genet. 2007, 81, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vallat, J.M.; Mathis, S.; Funalot, B. The various Charcot-Marie-Tooth diseases. Curr. Opin. Neurol. 2013, 26, 473–480. [Google Scholar] [CrossRef]
- Hedgecock, E.M.; Culotti, J.G.; Hall, D.H.; Stern, B.D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development 1987, 100, 365–382. [Google Scholar] [PubMed]
- Kim, W.; Underwood, R.S.; Greenwald, I.; Shaye, D.D. Ortholist 2: A new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics 2018, 210, 445–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaye, D.D.; Greenwald, I. Ortholist: A compendium of C. elegans genes with human orthologs. PLoS ONE 2011, 6, e20085. [Google Scholar] [CrossRef] [PubMed]
- Shaye, D.D.; University of Illinois at Chicago, Chicago, IL, USA. Personal communication, 2020.
- O’Rourke, S.M.; Dorfman, M.D.; Carter, J.C.; Bowerman, B. Dynein modifiers in C. elegans: Light chains suppress conditional heavy chain mutants. PLoS Genet. 2007, 3, e128. [Google Scholar] [CrossRef] [Green Version]
- Spencer, W.C.; Zeller, G.; Watson, J.D.; Henz, S.R.; Watkins, K.L.; McWhirter, R.D.; Petersen, S.; Sreedharan, V.T.; Widmer, C.; Jo, J.; et al. A spatial and temporal map of C. elegans gene expression. Genome Res. 2011, 21, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Kamath, R.S.; Fraser, A.G.; Dong, Y.; Poulin, G.; Durbin, R.; Gotta, M.; Kanapin, A.; Le Bot, N.; Moreno, S.; Sohrmann, M.; et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231–237. [Google Scholar] [CrossRef]
- Hench, J.; Henriksson, J.; Abou-Zied, A.M.; Luppert, M.; Dethlefsen, J.; Mukherjee, K.; Tong, Y.G.; Tang, L.; Gangishetti, U.; Baillie, D.L.; et al. The homeobox genes of Caenorhabditis elegans and insights into their spatio-temporal expression dynamics during embryogenesis. PLoS ONE 2015, 10, e0126947. [Google Scholar] [CrossRef]
- Armstrong, K.R.; Chamberlin, H.M. Coordinate regulation of gene expression in the C. elegans excretory cell by the POU domain protein CEH-6. Mol. Genet. Genomics 2010, 283, 73–87. [Google Scholar] [CrossRef]
- Burglin, T.R.; Ruvkun, G. Regulation of ectodermal and excretory function by the C. elegans POU homeobox gene ceh-6. Development 2001, 128, 779–790. [Google Scholar]
- Hall, D.H. Gap junctions in C. elegans: Their roles in behavior and development. Dev. Neurobiol. 2017, 77, 587–596. [Google Scholar] [CrossRef]
- Peter, D.; Weber, R.; Kone, C.; Chung, M.Y.; Ebertsch, L.; Truffault, V.; Weichenrieder, O.; Igreja, C.; Izaurralde, E. Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation. Genes Dev. 2015, 29, 1835–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, M.; Iwase, I.; Yamasaki, Y.; Takai, T.; Wu, Y.; Kanemoto, S.; Matsuhisa, K.; Asada, R.; Okuma, Y.; Watanabe, T.; et al. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation. Sci. Rep. 2016, 6, 30955. [Google Scholar] [CrossRef] [PubMed]
- Kipreos, E.T.; Pagano, M. The F-box protein family. Genome Biol. 2000, 1, REVIEWS3002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridolfsson, H.N.; Ly, N.; Meyerzon, M.; Starr, D.A. UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev. Biol. 2010, 338, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Fuster, D.G.; Alexander, R.T. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch. 2014, 466, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Strauß, O.; Müller, C.; Reichhart, N.; Tamm, E.R.; Gomez, N.M. The role of bestrophin-1 in intracellular Ca(2+) signaling. Adv. Exp. Med. Biol. 2014, 801, 113–119. [Google Scholar]
- Liu, H.; Wang, S.; Hang, W.; Gao, J.; Zhang, W.; Cheng, Z.; Yang, C.; He, J.; Zhou, J.; Chen, J.; et al. LET-413/Erbin acts as a Rab-5 effector to promote Rab-10 activation during endocytic recycling. J. Cell. Biol. 2018, 217, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Law, F.; Seo, J.H.; Wang, Z.; DeLeon, J.L.; Bolis, Y.; Brown, A.; Zong, W.X.; Du, G.; Rocheleau, C.E. The VPS34 PI3K negatively regulates RAB-5 during endosome maturation. J. Cell Sci. 2017, 130, 2007–2017. [Google Scholar] [CrossRef] [Green Version]
- Liu, O.; Grant, B.D. Basolateral endocytic recycling requires RAB-10 and AMPH-1 mediated recruitment of RAB-5 GAP TBC-2 to endosomes. PLoS Genet. 2015, 11, e1005514. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Wang, Y.; Xu, L.; Chen, L.; Cheng, M.; Shi, W.; Xiong, H.; Zalli, D.; Luo, S. GLI2 promotes cell proliferation and migration through transcriptional activation of ARHGEF16 in human glioma cells. J. Exp. Clin. Cancer Res. 2018, 37, 247. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buechner, M.; Yang, Z.; Al-Hashimi, H. A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. J. Dev. Biol. 2020, 8, 17. https://doi.org/10.3390/jdb8030017
Buechner M, Yang Z, Al-Hashimi H. A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. Journal of Developmental Biology. 2020; 8(3):17. https://doi.org/10.3390/jdb8030017
Chicago/Turabian StyleBuechner, Matthew, Zhe Yang, and Hikmat Al-Hashimi. 2020. "A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development" Journal of Developmental Biology 8, no. 3: 17. https://doi.org/10.3390/jdb8030017
APA StyleBuechner, M., Yang, Z., & Al-Hashimi, H. (2020). A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. Journal of Developmental Biology, 8(3), 17. https://doi.org/10.3390/jdb8030017