Medlar—A Comprehensive and Integrative Review
Abstract
:1. Introduction
2. Morphological Analysis
3. Chemical Composition
4. Storage Conditions for Medlar
5. Molecular Biology Analyses
6. Biological Activities of Mespilus germanica L.
6.1. Antioxidant Properties
6.2. Antimicrobial Activity
7. Usage of Medlar
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; et al. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules 2011, 16, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Solomonova, E.V.; Trusov, N.A.; Nozdrina, T.D.; Meer, T.P.; Sorokopudov, V.N.; Georgescu, C. Food Potential of Alternative Pome Fruit Trees Cultivated in Moscow Region. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2019, 20, 597–607. [Google Scholar]
- Akbulut, M.; Ercisli, S.; Jurikova, T.; Mlcek, J.; Gozlekci, S. Phenotypic and Bioactive Diversity on Medlar Fruits (Mespilus germanica L.). Erwerbs-Obstbau 2016, 3, 185–191. [Google Scholar] [CrossRef]
- Bibalani, G.H.; Mosazadeh-Sayadmahaleh, F. Medicinal benefits and usage of medlar (Mespilus germanica) in Gilan Province (Roudsar District), Iran. J. Med. Plants Res. 2012, 6, 1155–1159. [Google Scholar]
- Baird, J.R.; Thieret, J.W. The Medlar (Mespilus germanica, Rosaceae) from Antiquity to Obscurity. Econ. Bot. 1989, 43, 328–372. [Google Scholar] [CrossRef]
- Šebek, G.; Pavlova, V.; Popović, T. Biochemical and Pomological Characteristics of Fruit of Some Commercial Medlar Cultivars (Mespilus germanica L.) Grown in Bijelo Polje. Food Environ. Saf. J. 2019, 18, 97–104. [Google Scholar]
- FAO. Available online: https://www.fao.org/3/i1687e/i1687e05.pdf (accessed on 17 October 2021).
- Lim, T.K. Fruits. In Edible Medicinal and Non-Medicinal Plants, 1st ed.; Springer: Cham, The Netherlands, 2012; Volume 4, pp. 437–441. [Google Scholar]
- Azizi, S.N.; Azizi, S.N. Determination of Some Important Inorganic Elements and Fatty Acids of Medlar’s Fruit from Mazandaran’s Forest. Iran. J. Energy Environ. 2011, 2, 188–190. [Google Scholar]
- Safari, M.; Ahmady-Asbchin, S. Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves. Biotechnol. Biotechnol. Equip. 2019, 33, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Ierburiuitate.Wordpress.com—Moșmoanele. Available online: https://ierburiuitate.wordpress.com/2013/12/29/mosmoanele/ (accessed on 24 September 2021).
- Lumina—Virtuțile Tămăduitoare ale Frunzelor și Florilor de Moșmon. Available online: https://ziarullumina.ro/societate/sanatate/virtutile-tamaduitoare-ale-frunzelor-si-florilor-de-mosmon-134985.html (accessed on 24 September 2021).
- Sunphoto-Mosmon—Mespilus Germanica—Hascul-Medlar Tree in Romania. Available online: https://www.sunphoto.ro/spawnsfm/1_MOSMON_Mespilus_germanica_Hascul_Medlar_tree_in_Romania (accessed on 24 September 2021).
- Diversificare-Mosmon, Fructul Uitat. Available online: https://diversificare.ro/alimente/2013/01/mosmon-fructul-uitat/ (accessed on 24 September 2021).
- Gradina Istorica-Mosmon. Available online: https://gradinaistorica.ro/mosmon/ (accessed on 24 September 2021).
- Agrodenmar-Mosmon (Mespilus germanica). Available online: https://www.agrodenmar.ro/mosmon-mespilus-germanica?search=mosmon (accessed on 24 September 2021).
- Altuntaş, E.; Gül, E.N.; Bayram, M. The Physical, Chemical and Mechanical Properties of Medlar (Mespilus germanica L.) during Physiological Maturity and Ripening Period. J. Agric. Fac. Gaziosmanpasa Univ. 2013, 30, 33–40. [Google Scholar]
- Cosmulescu, S.; Scrieciu, F. Development of vegetation stages in medlar genotypes (Mespilus germanica L.) coded and described according to the BBCH scale. Biharean Biol. 2020, 14, 116–119. [Google Scholar]
- Grygorieva, O.; Klymenko, S.; Vinogradova, Y.; Vergun, O.; Brindza, J. Variation in Morphometric Traits of Fruits of Mespilus germanica L. Potravin. Slovak J. Food Sci. 2018, 12, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Hacıseferogullari, H.; Ozcan, M.; Sonmete, M.H.; Ozbek, O. Some physical and chemical parameters of wild medlar (Mespilus germanica L.) fruit grown in Turkey. J. Food Eng. 2005, 69, 1–7. [Google Scholar] [CrossRef]
- Koçyiğit, M.; Büyükkılıç, B.; Altınbaşak, O.; Ubul, N. Comparative leaf anatomy of three food plants that are used medically; Mespilus germanica, L., Malus sylvestris (L.) Mill. subsp. orientalis and Cydonia oblonga Mill. (Rosaceae). J. Fac. Pharm. Istanb. 2015, 46, 39–48. [Google Scholar]
- Aygün, A.; Tasçi, A.R. Some Fruit Characteristics of Medlar (Mespilus germanica L.) Genotypes Grown in Ordu, Turkey. Sci. Pap. Ser. B Hortic. 2013, 57, 149–151. [Google Scholar]
- Cosmulescu, S.; Scrieciu, F.; Manda, M. Determination of leaf characteristics in different medlar genotypes using the ImageJ program. Hortic. Sci. 2020, 47, 117–121. [Google Scholar] [CrossRef]
- Kalyoncu, I.H.; Ersoy, N.; Elidemir, A.Y.; Tolay, I. Some Physico-Chemical and Nutritional Properties of ‘Musmula’ Medlar (Mespilus germanica L.) Grown in Northeast Anatolia. Int. J. Agric. Biosyst. Eng. 2013, 7, 434–436. [Google Scholar]
- Khadivi, A.; Rezaei, M.; Heidari, P.; Safari-Khuzani, A.; Sahebi, M. Morphological and fruit characterizations of common medlar (Mespilus germanica L.) germplasm. Sci. Hortic. 2019, 252, 38–47. [Google Scholar] [CrossRef]
- Liu, B.B.; Campbell, L.S.; Honga, D.Y.; Wen, J. Phylogenetic relationships and chloroplast capture in the Amelanchier-Malacomeles-Peraphyllum clade (Maleae, Rosaceae): Evidence from chloroplast genome and nuclear ribosomal DNA data using genome skimming. Mol. Phylogenet. Evol. 2020, 147, 106784. [Google Scholar] [CrossRef]
- Lo, E.Y.Y.; Donoghue, M.J. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Mol. Phylogenet. Evol. 2012, 63, 230–243. [Google Scholar] [CrossRef]
- Lo, E.Y.Y.; Stefanovic, S.; Christensen, K.I.; Dickinson, T.A. Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Mol. Phylogenet. Evol. 2009, 51, 157–168. [Google Scholar] [CrossRef]
- Lo, E.Y.Y.; Stefanovic, S.; Dickinson, T.A. Molecular Reappraisal of Relationships between Crataegus and Mespilus (Rosaceae, Pyreae)—Two Genera or One? Syst. Bot. 2007, 32, 596–616. [Google Scholar]
- Schaefer, K.; Nyberg, A.; Postman, J.; Bassil, N. Genetic Diversity of Medlar (Mespilus germanica) Germplasm Using Microsatellite Markers. In XII International Pear Symposium; Deckers, T., Vercammen, J., Eds.; ISHS: Leuven, Belgium, 2015; pp. 47–56. [Google Scholar]
- Verbylaitė, R.; Ford-Lloyd, B.; Newbury, J. The phylogeny of woody Maloideae (Rosaceae) using chloroplast trnL-trnF sequence data. Biologija 2006, 1, 60–63. [Google Scholar]
- Yilmaz, A.; Gerçekcioğlu, R.; Öz Atasever, O. Determination of Pomological and Chemical Properties of Some Medlar (Mespilus germanica L.) Genotypes. J. New Res. Sci. 2016, 11, 118–124. [Google Scholar]
- Zarei, A.; Erfani-Moghadam, J.; Mozaffari, M. Phylogenetic analysis among some pome fruit trees of Rosaceae family using RAPD markers. Biotechnol. Biotechnol. Equip. 2017, 31, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, F.A.; Demir, O.; Torun, H.; Kolcuoglu, Y.; Colak, A. Characterization of polyphenoloxidase (PPO) and total phenolic contents in medlar (Mespilus germanica L.) fruit during ripening and over ripening. Food Chem. 2008, 106, 291–298. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Glew, R.H.; Huang, H.S.; Chuang, L.T.; Vanderjagt, D.J.; Strnad, M. Evolution of fatty acids in medlar (Mespilus germanica L.) mesocarp at different stages of ripening. Grasas Aceites 2002, 53, 352–356. [Google Scholar]
- Ayaz, F.A.; Huang, H.S.; Chuang, L.T.; Vanderjagt, D.J.; Glew, R.H. Fatty Acid Composition of Medlar (Mespilus germanica L.) Fruit at Different Stages of Development. Italy J. Food Sci. 2002, 14, 436–446. [Google Scholar]
- Ayaz, F.A.; Torun, H.; Ayaz, S.; Correia, P.J.; Alaiz, M.; Sanz, C.; Grúz, J.; Strnad, M. Determination of Chemical Composition of Anatolian Carob Pod (Ceratonia siliqua L.): Sugars, Amino and Organic Acids, Minerals and Phenolic Compounds. J. Food Qual. 2007, 30, 1040–1055. [Google Scholar] [CrossRef]
- Aydin, N.; Kadioglu, A. Changes in The Chemical Composition, Polyphenol Oxidase and Peroxidase Activities during Development and Ripening of Medlar Fruits (Mespilus germanica L.). Bulg. J. Plant Physiol. 2001, 27, 85–92. [Google Scholar]
- Canbay, H.S.; Atay, E.; Oğüt, S. Determination of fruit characteristics, fatty acid profile and total antioxidant capacity of Mespilus germanica L. fruit. J. Coast. Life Med. 2015, 3, 886–889. [Google Scholar]
- Cosmulescu, S.N.; Trandafir, I.; Scrieciu, F.; Stoenescu, A.M. Content in organic acids of Mespilus spp. and Crataegus spp. Genotypes. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Sengul, M.; Yildiz, H.; Sener, D.; Duralija, B.; Voca, S.; Dujmovic Purgar, D. Phytochemical and antioxidant characteristics of medlar fruits (Mespilus germanica L.). J. Appl. Bot. Food Qual. 2012, 85, 86. [Google Scholar]
- Glew, R.H.; Ayaz, F.A.; Sanz, C.; Vanderjagt, D.J.; Huang, H.S.; Chuang, L.T.; Strnad, M. Effect of postharvest period on sugars, organic acids and fatty acids composition in commercially sold medlar (Mespilus germanica Dutch) fruit. Eur. Food Res. Technol. 2003, 216, 390–394. [Google Scholar] [CrossRef]
- Glew, R.H.; Ayaz, F.A.; Vanderjagt, D.J.; Millson, M.; Dris, R.; Niskanen, R. Mineral Composition of Medlar (Mespilus germanica) Fruit at Different Stages of Maturity. J. Food Qual. 2003, 26, 441–447. [Google Scholar] [CrossRef]
- Gruz, J.; Ayaz, F.A.; Torun, H.; Strnad, M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011, 124, 271–277. [Google Scholar] [CrossRef]
- Gülçin, I.; Topal, F.; Beyza, S.; Sarıkaya, O.; Bursa, E.; Bilsel, G.; Gören, A.C. Polyphenol Contents and Antioxidant Properties of Medlar (Mespilus germanica L.). Rec. Nat. Prod. 2011, 5, 158–175. [Google Scholar]
- Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Asgarirad, H. The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf. Afr. J. Biotechnol. 2011, 10, 283–289. [Google Scholar]
- Olives Barba, A.I.; Camara Hurtado, M.; Sanchez Mata, M.C.; Fernandez Ruiz, V.; Lopez Saenz de Tejada, M. Application of a UV—Vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chem. 2006, 95, 328–336. [Google Scholar] [CrossRef]
- Pourmortazavia, S.M.; Ghadiri, M.; Hajimirsadegh, S.S. Supercritical fluid extraction of volatile components from Bunium persicum Boiss. (black cumin) and Mespilus germanica L. (medlar) seeds. J. Food Compos. Anal. 2005, 18, 439–446. [Google Scholar] [CrossRef]
- Veličković, M.M.; Radivojević, D.D.; Oparnica, C.D.; Nikićević, N.J.; Živković, M.B.; Đorđević, N.O.; Vajs, V.E.; Tešević, V.V. Volatile compounds in Medlar fruit (Mespilus germanica L.) at two ripening stages. Hem. Ind. 2013, 67, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Ahmady-Asbchin, S.; Safari, M.; Moradi, H.; Sayadi, V. Antibacterial effects of methanolic and ethanolic leaf extract of Medlar (Mespilus germanica) against bacteria isolated from hospital environment. J. Arak. Uni. Med. Sci. 2013, 16, 1–13. [Google Scholar]
- Davoodi, A.; Ebrahimzadeh, M.A.; Fathalinezhad, F.; Khoshvishkaie, E. Antibacterial Activity of Mespilus germanica Leaf Extract. Maz. Univ. Med. Sci. 2017, 26, 173–178. [Google Scholar]
- Niu, Y.; Nan, Y.; Yuan, L.; Wang, R. Study on Antibacterial Effect of Medlar and Hawthorn Compound Extract in vitro. Afr. J. Tradit. Complement Altern. Med. 2013, 10, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Sulusoglu Durul, M.; Unver, H. Morphological and Chemical Properties of Medlar (Mespilus germanica L.) Fruits and Changes in Quality during Ripening. Agrofor Int. J. 2016, 1, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Hoseinifar, S.H.; Zou, H.K.; Miandare, H.K.; Van Doan, H.; Romano, N.; Dadar, M. Enrichment of common carp (Cyprinus carpio) diet with medlar (Mespilus germanica) leaf extract: Effects on skin mucosal immunity and growth performance. Fish Shellfish Immun. 2017, 67, 346–352. [Google Scholar] [CrossRef]
- Isbilir, S.S.; Kabala, S.I.; Yagar, H. Assessment of in vitro Antioxidant and Antidiabetic Capacities of Medlar (Mespilus germanica). Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 384–389. [Google Scholar] [CrossRef] [Green Version]
- Sargin, S.A. Potential anti-influenza effective plants used in Turkish folk medicine: A review. J. Ethnopharm. 2021, 265, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Shariatifar, N.; Rahimnia, R.; Jamshidi, A.M.; Pirali Hamedani, M.; Shoeibi, S. Effect of Ethanolic Extract of Mespilus germanica on Cutaneous Leishmaniasis in BALB/c Mice. J. Med. Plants 2011, 10, 76–81. [Google Scholar]
- a1.ro—Fructele Care Distrug Pietrele la Rinichi și Previn Bolile Cardiovasculare. Multă Lume nu Știe Unde se Găsesc. Available online: https://a1.ro/lifestyle/health/fructele-care-distrug-pietrele-la-rinichi-si-previn-bolile-cardiovasculare-id812871.html (accessed on 24 September 2021).
- Agroteca—Arbustul Moșmon Sau Mespilus germanica. Available online: https://agroteca.ro/arbustul-mosmon-mespilus-germanica/ (accessed on 24 September 2021).
- Aquiahora-Moşmonul—Pomul Uitat. Available online: https://aquiahora.ro/mosmonul-pomul-uitat/ (accessed on 24 September 2021).
- Šebek, G.; Prenkić, R.; Janković, L. Physiological and Morphological Characteristics of One-Year Old Seedlings of Commercial Medlar Cultivars (Mespilus germanica L.) in the Region of North Montenegro. Agric. For. 2017, 63, 215–225. [Google Scholar]
- Selcuk, N.; Erkan, M. The effects of modified and palliflex controlled atmosphere storage on postharvest quality and composition of ‘Istanbul’ medlar fruit. Postharvest Biol. Technol. 2015, 99, 9–19. [Google Scholar] [CrossRef]
- Ekinci, N.; Gökbayrak, Z.; Çavuşoğlu, S.; Akçay, M.E. Influence of Postharvest Application of 28-Homobrassinolide on Storage Quality of Medlar Fruit. Erwerbs-Obstbau 2019, 61, 113–118. [Google Scholar] [CrossRef]
- Edwards, J.E.; Brown, P.N.; Talent, N.; Dickinson, T.A.; Shipley, P.R. A review of the chemistry of the genus Crataegus. Phytochemistry 2012, 79, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Estrada, B.A.; Gutierrez-Uribe, J.A.; Serna-Saldivar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Selcuk, N.; Erkan, M. The effects of 1-MCP treatment on fruit quality of medlar fruit (Mespilus germanica L. cv. Istanbul) during long term storage in the palliflex storage system. Postharvest Biol. Technol 2015, 100, 81–90. [Google Scholar] [CrossRef]
- Ozturk, A.; Yildiz, K.; Ozturk, B.; Karakaya, O.; Gun, S.; Uzun, S.; Gundogdu, M. Maintaining postharvest quality of medlar (Mespilus germanica) fruit using modified atmosphere packaging and methyl jasmonate. LWT Food Sci Technol. 2019, 111, 117–124. [Google Scholar] [CrossRef]
Country—Language | Name | References |
---|---|---|
Azerbaijan | Ezgil | [6] |
Armenian | Zkereni | [7] |
Chinese | Ou Cha | [8] |
Czech | Mišpule obecná | |
Danish | Mispel | |
Dutch | Mispel; Mispelboom | |
Eastonian | Harilik astelpihlakas | |
Finnish | Mispeli | |
French | Merlier, Néfle Commune (Fruit), Néflier,Néflier Commun (Tree) | |
Georgia | Bushmala | [6] |
Mushmala, Zghmartli | [7] | |
German | Aschperln, Asperl, Deutsche Mispel, Dürgen, Dürrlitzen, Dörrlitzen, Echte Mispel, Hespelein, Hundsärsch, Mispel, Mispelbaum, Mispelche, Nespoli, Nispel | [8] |
Greek | Mespilea E Germaniki | [8] |
Mousmoulo (fruit), Mousmoulia (tree) | [3] | |
Hungarian | Naspolya | [8] |
Iran | Kondos | [8] |
Kounos | [4] | |
Azgil | [9] | |
Conos, Condos | [10] | |
Italian | Nespola, Nespolo, Nespolo volgare | [8] |
Japanese | Seiyou Karin | |
Latin | Mespilum | [11] |
Polish | Nieszpułka zwyczajna | [8] |
Portuguese | Nêsperas, Nespereira, Nespereira (Tree), Nespereira-Da-Europa | |
Romanian | Mașmule, Mișculă, Mostachiu, Născale, Hospurușe, Scoruțe nemțești | [12] |
Hascul | [13] | |
Gorun, Mișcul, Mostoc, Scoruș nemțesc | [14] | |
Moșmon, Măcieș, Moșmol, Mostochin | [15] | |
Nuspui | [16] | |
Russian | Mushmula, Mushmula Obyknovennaia | [8] |
Slovenian | Navadna nešplja | |
Spanish | Níspero (Tree), Níspero Común, Níspero Europeo, Nísperoeuropeo, Níspola (Fruit), Nispolero | |
Swedish | Mispel, Tysk mispel | |
Turkish | Mumula, Mušmula | [3,8] |
Döngel, Beşbıyık | [6] | |
Ukrainian | Mushmula | [8] |
Plant/Genotype | Leaf Length (cm) | Leaf Width (cm) | Leaf Stalk Length (mm) | Leaf Area (cm2) | Reference |
---|---|---|---|---|---|
Healthy mature plants | 6.5–10.0 | 2.9–3.5 | 0.44–0.81 | No data | [53] |
C1 | 9.7 ± 0.3 | 3.96 ± 0.10 | No data | 29.76 ± 1.22 | [23] |
N1 | 12.18 ± 0.26 | 5.60 ± 0.16 | 48.8 ± 1.84 | ||
M1 | 11.24 ± 0.20 | 3.94 ± 0.11 | 32.17± 1.35 | ||
M2 | 10.7 ± 0.32 | 4.9 ± 0.15 | 36.77 ± 2.07 | ||
M3 | 11.02 ± 0.21 | 4.42 ± 0.10 | 35.56 ± 1.21 | ||
T1 | 8.8 ± 0.16 | 3.5 ± 0.08 | 22.95 ± 0.72 | ||
E1 | 9.92 ± 0.24 | 4.13 ± 0.08 | 29.31 ± 1.11 | ||
Cr1 | 9.20 ± 0.15 | 3.89 ± 0.11 | 25.40 ± 0.85 | ||
Cr2 | 9.56 ± 0.21 | 3.97 ± 0.07 | 27.45 ± 1.01 |
Days after Full Bloom (DAFB) | Harvest Date | Fruit Skin and Pulp Color | State of Ripeness | Reference |
---|---|---|---|---|
172 | 26 october 2000 | ripe, skin partly dark brown, fruit table soften, pulp whitish, and partly brownish | Mature, ripe | [35] |
187 | 10 November 2000 | very ripe, skin and pulp fully dark brown, and fruit soften | Ripe | |
191 | 15 November 2003 | skin completely brown, pulp white, and fruit half soft | Ripe | [44] |
206 | 30 November 2003 | skin completely dark brown; pulp whitish–brownish (50%–50%); fruit soft and juicy | Ripe | |
193 | 18 November 2003 | skin brownish, pulp white, and fruit hard | Mature, ripe | [34] |
207 | 2 December 2003 | skin completely brown; pulp white–partly brownish (60%–40%) around core; fruit half soft | Ripe | |
164 | 21 November 2008 | the skin was becoming brown, and the pulp was mostly white; estimated as consumption maturity when fruits become edible | Mature, ripe | [1] |
174 | 1 December 2008 | the skin and the pulp were completely brown and soft | Ripe |
Stage/Year | Fruit Weight (g) | Fruit Diameter (mm) | Fruit Length (mm) | pH | Stone Weight (g) | Stone Width (mm) | Stone Length (mm) | Reference |
---|---|---|---|---|---|---|---|---|
39 DAFB/1999 | 2.9 ± 0.1 | 0.7 ± 0.1 | No data | No data | No data | No data | No data | [36] |
66 DAFB/1999 | 5.1 ± 0.1 | 1.4 ± 0.2 | No data | No data | No data | No data | No data | |
102 DAFB/1999 | 6.6 ± 0.1 | 2 ± 0.1 | No data | No data | No data | No data | No data | |
131 DAFB/1999 | 8.8 ± 0.1 | 2.5 ± 0.2 | No data | No data | No data | No data | No data | |
154 DAFB/1999 | 7.5 ± 0.2 | 2.9 ± 0.2 | No data | No data | No data | No data | No data | |
Different stages of ripening/1999 | No data | 1.8–2.5 (cm) | No data | No data | No data | No data | No data | [38] |
191 DAFB/2003 | 8.51 ± 0.26 | No data | No data | No data | No data | No data | No data | [44] |
206 DAFB/2003 | 8.62 ± 0.83 | No data | No data | No data | No data | No data | No data | |
Maturity stage/2003 | 12.0 ± 0.2 | 27.7 ± 0.2 | 31.4 ± 0.2 | 4.3 ± 0.2 | No data | No data | No data | [20] |
Harvest stage/2008 | 21.6 | 32.3 | 32.2 | No data | No data | No data | No data | [39] |
Harvest stage/2009 | 18.6 | 31.2 | 31.9 | No data | No data | No data | No data | |
Commercial maturation stage/2011 | 11.21–16.42 | 28.44–36.62 | 27.45–38.88 | No data | No data | No data | No data | [41] |
Harvest stage/2010–2012 | No data | No data | No data | 3.4–3.86 | No data | No data | No data | [6] |
Harvest stage/2010–2012 | 21.4–25.5 | 31.5–36.2 | 34.5–38.4 | No data | No data | No data | No data | |
Maturity stage/2011–2012 | 17.71–32.46 | 21.07–41.05 | 18.25–38.27 | 3.54–3.92 | No data | No data | No data | [32] |
Maturity stage/2011–2012 | 15.99–37.54 | 17.49–43.63 | 14.96–35.68 | 3.54–3.99 | No data | No data | No data | |
Consuming stage/2011–2012 | No data | No data | No data | 3.75–3.98 | No data | No data | No data | |
Consuming stage/2011–2012 | No data | No data | No data | 3.76–4.00 | No data | No data | No data | |
No stage data/2012 | 38.36 | 4.22 (cm) | 4.34 (cm) | 4.26 | 3.21 | 7.9 | 11.43 | [24] |
Physiological maturity/2012 | 20.21 ± 0.13 | 30.37 ± 0.26 | 31.76 ± 0.22 | 4.01 ± 0.035 | No data | No data | No data | [17] |
Ripening period/2012 | 15.48 ± 0.14 | 26.34 ± 0.31 | 28.30 ± 0.18 | 4.70 ± 0.037 | No data | No data | No data | |
Commercial maturation stage/2013 | 12.3–23.6 | No data | No data | No data | No data | No data | No data | [3] |
Harvest time/2013–2014 | 5.2–20.1 | 21.2–33.3 | 21.0–33.6 | 3.68–4.02 | 0.16–0.45 | 6.4–9.0 | 10.4–12.5 | [53] |
Storage conditions/2015 | No data | No data | No data | 3.24–3.70 | No data | No data | No data | [62] |
Maturity stage/2018 | No data | 21.00 ± 9.70 | 27.00 ± 4.50 | No data | No data | 5.80 ± 0.16 | 8.30 ± 0.64 | [2] |
Commercial maturity stage/2018 | 24.14 | 35.11 | 34.30 | No data | No data | No data | No data | [19] |
Storage conditions/2019 | No data | No data | No data | 3.87–4.52 | No data | No data | No data | [63] |
Category | Compound | Reference |
---|---|---|
Acids | Citric acid, Dodecanoic acid, Fumaric Acid, Hexadecanoic acid, Hexanoic acid, Malic acid, Oxalic acid, Quinic acid, Pentadecanoic acid, Succinic acid, Tartaric acid, Tetradecanoic acid | [39,41,48,63,64] |
Aldehyde | Benzaldehyde, Benzene acetaldehyde, (E,Z)-2,4-Decadienal, (E,E)-2,4-Decadienal Hexanal, (E)-2-Decenal, Furfural, (E)-2-Hexenal, n-Nonanal, (Z)-2-Nonen-1-al | [48,49] |
Alcohols | Hexanol, (Z)-3-Hexenol, Phenyl ethyl alcohol | [49] |
Carbohydrates | Fructose,Glucose, Hexose, Pentose, Sucrose | [37,41,63,64] |
Carotenoids | β-carotene, Lycopene | [10,47] |
Esters | Ethyl-hexadecanoate, Ethyl-octadecanoate (18:0), Ethyl-octadecenoate (18:1), Ethyl-oleate | [49] |
Fatty acids | Arachidic acid, Behenic acid, Capric acid, Cerotic acid, cis-11-Eicosenoic acid, cis-11,14-Eicosadienoic acid, Erucic acid, Lauric acid, Lignoceric acid, Linoleic acid, α-Linolenic acid, Linolelaidic acid, Margaric acid, Myristic acid, Myristoleic acid, Oleic acid, Palmitic acid, Palmitoleic acid, Pentadecanoic acid, Phthalic acid, Stearic acid, Tridecanoic acid, Vaccenic acid | [8,34,35,38,41] |
Total flavonoids | Total flavonoids, Quercetin | [9,44,45,54,63,64] |
Minerals | Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, In, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sr, Ti, V, Zn | [1,8,40,19,23,42] |
Proteins | Proteins | [38,41] |
Total phenols | Caffeic acid, p-Coumaric acid, Ellagic acid, Ferulic acid, Pyrogallol, Total phenols | [3,9,31,40,44,45,54,63,64] |
Terpenes | p-Cymen-8-ol, p-Cymene, γ-Eudesmol, α-Murolene, Phellandrene, Terpinen-4-ol, α-Terpinene, γ-Terpinene, Terpinolene, α-Terpineol | [49] |
Vitamins | Vitamin C | [2,3,32,38,40,41,42,62,66] |
α-Tocopherol | [45,55] | |
Others | Pentadecane, Tetradecane | [48] |
Region of Cultivation | Minerals | Observation | Method | Reference |
---|---|---|---|---|
mg kg−1 Dry Matter | ||||
Turkey (Trabzon) | Al = 10.1 ± l.2; Ba = 19.7 ± 0.4; Ca = 1780 ± 3.2; Co < 0.1; Cu = 3.6 ± 0.2; Fe = 13.4 ± 1.2; K = 7370 ± 67; Li = 0.02 ± 0.01; Mg = 66 ± 8.1; Mn = 10.2 ± 0.1; Na = 183 ± 5.4; Ni = 0.3 ± 0.1; P = 1080 ± 12; Sr = 16.3 ± 0.3; Ti = 0.5 ± 0.1; Zn = 7.l ± 0.4 | Ripe stage (October 1999) | ICP-AES | [43] |
Turkey (Egirdir—Isparta) | Al = 44.0 ± 1.3; B = 356.5 ± 17.6; Ca = 883.1 ± 21.5; Cr = 1.4 ± 0.0; Fe = 91.9 ± 1.6; In = 1.6 ± 0.1; K = 8052.9 ± 12.3; P = 344.8 ± 6.4; Pb = 2.2 ± 0.5; S = 3544.8 ± 13.4; Se = 6.6 ± 0.7; Ti = 1.9 ± 0.1; V = 0.6 ± 0.1; Zn = 4.0 ± 0.5 | Ripe stage (November 2003) | ICP-AES | [20] |
Iran (Province of Mazandaran) | Ca = 25,359 ± 0.10; Cr = 1.82 ± 0.14; Fe = 164.53 ± 1.04; K = 7751.63 ± 1.87; Mg = 787.69 ± 0.86; Na = 649 ± 0.54; Zn = 41.13 ± 0.00 | November 2008 | ICP-AES | [9] |
Czech Republic | Ca = 2754 ± 86; Fe = 27.52 ± 2.20; K = 8725 ± 92; Mg = 913 ± 50; Na = 124 ± 12; P = 961 ± 41; Zn = 5.90 ± 0.39 | 164 DAFB (21.11.2008) | atomic absorption spectrometry | [1] |
Czech Republic | Ca = 2695 ± 115; Fe = 27.60 ± 1.45; K = 8320 ± 93; Mg = 842 ± 41; Na = 121 ± 16; P = 938 ± 32; Zn = 6.10 ± 0.50 | 174 DAFB (1.12.2008) | atomic absorption spectrometry | [1] |
Turkey (Anatolia) | Al = 4.515; As = 0.068; B = 7.959; Ca = 1186.378; Cd = 0.018; Cr = 0.241; Cu = 0.496; K = 6962.6441; Fe = 5.983; Li = 0.301; Mg = 1070.08; Na = 82.800; Ni = 0.593; P = 763.425; Pb = 0.133; S = 131.238; Sr = 5.802; V = 3.200; Zn = 1.087 | Ripe stage (2012) | ICP-AES | [24] |
mg/100g Fresh Mass | ||||
Turkey (Coruh valley) | Ca = 73; Fe = 7.2; K = 792; Mg = 55; P = 39; Mn = 0.5; Zn = 0.5 | Commercial maturity stage | atomic absorption spectrometry | [41] |
Fatty Acid | Value | Stage of Ripeness | Method | Reference |
---|---|---|---|---|
Capric acid (C10:0) | n.d. (mg/g dry wt) | Ripe stage * | GC | [42] |
6.7 ± 0.4 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
n.d. (%) | 187 DAFB, ripe stage | GC | [35] | |
n.d. (%) | No data | GC-MS | [39] | |
Lauric acid (C12:0) | 0.37 (%) | Ripe stage | GC-MS | [9] |
2.6 ± 0.1 (mg/g dry wt) | Ripe stage * | GC | [42] | |
6.9 ± 2.9 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
1.4 ± 0.40 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.80 ± 0.11 (%) | No data | GC-MS | [39] | |
Tridecanoic acid (C13:0) | n.d (mg/g dry wt) | Ripe stage * | GC | [42] |
7.7 ± 2.2 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
n.d. (%) | 187 DAFB, ripe stage | GC | [35] | |
n.d. (%) | No data | GC-MS | [39] | |
Myristic acid (C14:0) | 0.38 (%) | Ripe stage | GC-MS | [9] |
2.3 ± 0.3 (mg/g dry wt) | Ripe stage * | GC | [42] | |
9.6 ± 0.4 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
1.1 ± 0.17 (%) | 187 DAFB, ripe stage | GC | [35] | |
1.50 ± 0.02 (%) | No data | GC-MS | [39] | |
Myristoleic acid (C14:1) | 2.4 ± 0.3 (mg/g dry wt) | Ripe stage * | GC | [42] |
7.4 ± 1.9 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
n.d. (%) | 187 DAFB, ripe stage | GC | [35] | |
0.30 ± 0.09 (%) | No data | GC-MS | [39] | |
Pentadecanoic acid (C15:0) | 1.6 ± 0.1 (mg/g dry wt) | Ripe stage * | GC | [42] |
3.6 ± 0.1 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
0.9 ± 0.11 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.10 ± 0.01 (%) | No data | GC-MS | [39] | |
Palmitic acid (C16:0) | 6.97 (%) | Ripe stage | GC-MS | [9] |
70.4 ± 0.8 (mg/g dry wt) | Ripe stage * | GC | [42] | |
420 ± 9.6 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
36.9 ± 1.13 (%) | 187 DAFB, ripe stage | GC | [35] | |
35.35 ± 1.20 (%) | No data | GC-MS | [39] | |
Palmitoleic acid (C16:1) | 0.49 (%) | Ripe stage | GC-MS | [9] |
1.4 ± 0.3 (mg/g dry wt) | Ripe stage * | GC | [42] | |
8.9 ± 0.2 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
0.6 ± 0.03 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.30 ± 0.03 (%) | No data | GC-MS | [39] | |
Stearic acid (C18:0) | 1.78 (%) | Ripe stage | GC-MS | [9] |
15.7 ± 0.7 (mg/g dry wt) | Ripe stage * | GC | [42] | |
68.0 ± 3.1 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
7.9 ± 1.19 (%) | 187 DAFB, ripe stage | GC | [35] | |
8.53 ± 0.25 (%) | No data | GC-MS | [39] | |
Oleic acid (C18:1n-9) | 11.45 (%) | Ripe stage | GC-MS | [9] |
6.7 ± 0.2 (mg/g dry wt) | Ripe stage * | GC | [42] | |
250.6 ± 1.7 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
3.5 ± 0.03 (%) | 187 DAFB, ripe stage | GC | [35] | |
4.35 ± 0.37 (%) | No data | GC-MS | [39] | |
Vaccenic acid (C18:1n-7) | 2.9 ± 0.2 (mg/g dry wt) | Ripe stage * | GC | [42] |
24.1 ± 0.6 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
1.5 ± 0.01 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.85 ± 0.11 (%) | No data | GC-MS | [39] | |
Linoleic acid (C18:2n-6) | 0.22 (%) | Ripe stage | GC-MS | [9] |
55 ± 1.5 (mg/g dry wt) | Ripe stage * | GC | [42] | |
1291.7 ± 7.7 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
28.7 ± 1.65 (%) | 187 DAFB, ripe stage | GC | [35] | |
29.10 ± 1.70 (%) | No data | GC-MS | [39] | |
α-Linolenic acid (C18:3n-3) | 10.8 ± 0.4 (mg/g dry wt) | Ripe stage * | GC | [42] |
359.9 ± 3.2 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
5.6 ± 0.38 (%) | 187 DAFB, ripe stage | GC | [35] | |
4.93 ± 0.79 (%) | No data | GC-MS | [39] | |
Arachidic acid (C20:0) | 2.99 (%) | Ripe stage | GC-MS | [9] |
8 ± 0.3 (mg/g dry wt) | Ripe stage * | GC | [42] | |
36.6 ± 1.05 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
4.2 ± 0.23 (%) | 187 DAFB, ripe stage | GC | [35] | |
3.20 ± 0.85 (%) | No data | GC-MS | [39] | |
cis-11-Eicosenoic acid (C20:1n-9) | 0.4 ± 0.1 (mg/g dry wt) | Ripe stage * | GC | [42] |
4.2 ± 0.2 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
0.2 ± 0.11 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.12 ± 0.08 (%) | No data | GC-MS | [39] | |
cis-11,14-Eicosadienoic acid (C20:2n-6) | 0.4 ± 0.0 (mg/g dry wt) | Ripe stage * | GC | [42] |
0.2 ± 0.15 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.11 ± 0.01 (%) | No data | GC-MS | [39] | |
Behenic acid (C22:0) | 2.45 (%) | Ripe stage | GC-MS | [9] |
8.3 ± 0.4 (mg/g dry wt) | Ripe stage * | GC | [42] | |
39.7 ± 1 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
4.4 ± 0.83 (%) | 187 DAFB, ripe stage | GC | [35] | |
4.00 ± 0.75 (%) | No data | GC-MS | [39] | |
Erucic acid (C22:1n-9) | 1.3 ± 0.1 (mg/g dry wt) | Ripe stage * | GC | [42] |
3.3 ± 0.0 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
0.7 ± 0.18 (%) | 187 DAFB, ripe stage | GC | [35] | |
0.50 ± 0.03 (%) | No data | GC-MS | [39] | |
Lignoceric acid (C24:0) | 2.47 (%) | Ripe stage | GC-MS | [9] |
3.3 ± 0.5 (mg/g dry wt) | Ripe stage * | GC | [42] | |
24.6 ± 0.6 (µg/g dry wt) | 154 DAFB, ripe stage | GC | [36] | |
2.1 ± 0.23 (%) | 187 DAFB, ripe stage | GC | [35] | |
2.50 ± 0.25 (%) | No data | GC-MS | [39] | |
Margaric acid (C17:0) | 0.21 (%) | No data | GC-MS | [39] |
Linolelaidic acid (C18:2, n-6,9) | 24.01 (%) | No data | GC-MS | [39] |
Cerotic acid (C26:0) | 0.26 (%) | No data | GC-MS | [39] |
Compound | Values | Ripe Stage/Plant Part | Method | Reference |
---|---|---|---|---|
Carbohydrates | ||||
Fructose | mg 100 g−1 fw | |||
2153.1 ± 4.7 | 1 WAH | ethanolic extract | [42] | |
2230.8 ± 0.4 | 2WAH | |||
117.5 ± 1.7 | 3WAH | |||
22.7 ± 1.3 | 4WAH | |||
7948–8033 | Commercial maturity stage | No data | [66] | |
7336–7851 | Commercial maturity stage | No data | [62] | |
Glucose | mg g−1 dry wt | |||
0.55–9.99 | Different stages of fruit ripening | phenol-sulphuric acid method | [38] | |
mg 100 g−1 fw | ||||
734.8 ± 3.6 | 1 WAH | ethanolic extract | [42] | |
845.2 ± 1.9 | 2 WAH | |||
548.3 ± 0.6 | 3 WAH | |||
16.9 ± 1.4 | 4 WAH | |||
6095–6891 | Commercial maturity stage | No data | [66] | |
5669–6137 | Commercial maturity stage | No data | [62] | |
Hexose | mg g−1 dry wt 143.1–510.9 | Different stages of fuit ripening | phenol-sulphuric acid method | [38] |
Pentose | mg g−1 dry wt 189.6–662.1 | Different stages of fuit ripening | phenol-sulphuric acid method | [38] |
Sucrose | mg 100 g−1 fw | [42] | ||
228.4 ± 4.4 | 1 WAH | ethanolic extract | ||
145.3 ± 2.3 | 2WAH | |||
18.6 ± 1.1 | 3WAH | |||
1.4 ± 0.1 | 4WAH | |||
Acids | ||||
Ascorbic acid | mg g−1 dry wt | |||
3.3–6.7 | Different stages of fuit ripening | procedure of Shieh and Sweet | [38] | |
mg 100 g−1 fw | ||||
9.0 ± 0.8 | 1 WAH | ethanolic extract | [42] | |
5.6 ± 0.5 | 2WAH | |||
2.8 ± 0.2 | 3WAH | |||
No data | 4WAH | |||
0.7 | Ripened fruits | HPLC | [40] | |
59 ± 2 17 ± 1 | 134 DAFB 174 DAFB | HPLC-ED | [1] | |
8.00–30.00 | Maturity stage | No data | [32] | |
6.40–36.67 | Consuming stage | No data | [32] | |
11.3–14.4 | Commercial maturity stage | reflectometry | [41] | |
0.78–12.1 | Commercial maturity stage | No data | [66] | |
1.37–12.10 | Commercial maturity stage | No data | [62] | |
mg % dry matter 90.30 ± 0.73 | Fruit | No data | [2] | |
mg/100 g fw 13–24 | Commercial maturity stage | No data | [3] | |
Citric acid | mg 100 g−1 fw | |||
420.2 ± 1.0 | 1 WAH | ethanolic extract | [42] | |
250.8 ± 1.3 | 2WAH | |||
71.4 ± 1.5 | 3WAH | |||
0.3 ± 0.0 | 4WAH | |||
16.41 | Ripened fruits | HPLC | [40] | |
3.6–22.96 | Commercial maturity stage | No data | [66] | |
2.94–21.71 | Commercial maturity stage | No data | [62] | |
Malic acid | mg 100 g−1 fw | |||
434 ± 1.3 | 1 WAH | ethanolic extract | [42] | |
572.9 ± 0.9 | 2WAH | |||
307.5 ± 0.8 | 3WAH | |||
1 ± 0.1 | 4WAH | |||
415.08 | Ripened fruits | HPLC | [40] | |
1273–1919 | Commercial maturity stage | No data | [66] | |
1185–1733 | Commercial maturity stage | No data | [62] | |
Oxalic acid | mg 100 g−1 fw | |||
54.73 | Ripened fruits | HPLC | [40] | |
25.29–45.62 | Commercial maturity stage | No data | [66] | |
26.37–35.29 | Commercial maturity stage | No data | [62] | |
Tartaric acid | mg 100 g−1 111.57 | Ripened fruits | HPLC | [40] |
Fumaric acid | mg 100 g−1 0.79 | Ripened fruits | HPLC | [40] |
Succinic acid | mg 100 g−1 fw | |||
452.9–596.9 | Commercial maturity stage | No data | [66] | |
424.5–570.0 | Commercial maturity stage | No data | [62] | |
Quinic acid | mg 100 g−1 fw | |||
573.7–789.86 | Commercial maturity stage | No data | [66] | |
337.94–534.65 | Commercial maturity stage | No data | [62] | |
% | Medlar fruits, unripe | GC-MS | [49] | |
Hexanoic acid | tr. | |||
Dodecanoic acid | tr. | |||
Tetradecanoic acid | tr. | |||
Pentadecanoic acid | tr. | |||
Hexadecanoic acid | 6.13 | |||
% | Medlar fruits, ripe | GC-MS | [49] | |
Hexanoic acid | 5.44 | |||
Dodecanoic acid | tr. | |||
Tetradecanoic acid | 0.09 | |||
Pentadecanoic acid | 0.12 | |||
Hexadecanoic acid | 8.87 | |||
Proteins | ||||
Soluble protein | mg g−1 dry wt 0.17–0.61 | Different stages of fuit ripening | method of Bradford | [38] |
Crude protein | % 3.3–4.3 | Commercial maturity stage | Kjeldahl method | [41] |
Aldehydes | ||||
% | Medlar seeds | SFE | [48] | |
Benzaldehyde | 98.49 | |||
Pentadecane | 1.08 | |||
Tetradecane | 0.43 | |||
% | Medlar fruits, unripe | GC-MS | [49] | |
Hexanal | 32.81 | |||
Furfural (E)-2-Hexenal | 0.12 | |||
Benzaldehyde | 43.47 | |||
Benzene acetaldehyde | tr. | |||
n-Nonanal | tr. | |||
(Z)-2-Nonen-1-al | tr. | |||
(E)-2-Decenal | tr. | |||
(E,Z)-2,4-Decadienal | tr. | |||
(E,E)-2,4-Decadienal | tr. | |||
% | Medlar fruits, ripe | GC-MS | [49] | |
Hexanal | 6.53 | |||
Furfural | 2.12 | |||
(E)-2-Hexenal | tr. | |||
Benzaldehyde | 0.40 | |||
Benzene acetaldehyde | 0.28 | |||
n-Nonanal | 0.27 | |||
(Z)-2-Nonen-1-al | 0.99 | |||
(E)-2-Decenal | 0.20 | |||
(E,Z)-2,4-Decadienal | 0.10 | |||
(E,E)-2,4-Decadienal | 0.63 | |||
Alcohols | ||||
% | Medlar fruits, unripe | GC-MS | [49] | |
(Z)-3-Hexenol | 2.27 | |||
Hexanol | 12.12 | |||
Phenyl ethyl alcohol | tr. | |||
% | Medlar fruits, ripe | GC-MS | [49] | |
(Z)-3-Hexenol | 9.47 | |||
Hexanol | 42.57 | |||
Phenyl ethyl alcohol | 0.45 | |||
Esters | ||||
% | Medlar fruits, unripe | GC-MS | [49] | |
Ethyl-hexadecanoate | tr. | |||
Ethyl-oleate | tr. | |||
Ethyl-octadecenoate (18:1) | tr. | |||
Ethyl-octadecanoate (18:0) | tr. | |||
% | Medlar fruits, ripe | GC-MS | [49] | |
Ethyl-hexadecanoate | 0.35 | |||
Ethyl-oleate | 0.11 | |||
Ethyl-octadecenoate (18:1) | tr. | |||
Ethyl-octadecanoate (18:0) | tr. | |||
Terpenes | ||||
% | Medlar fruits, unripe | GC-MS | [49] | |
α-Terpinene | tr. | |||
p-Cymene | 0.11 | |||
Phellandrene | 0.37 | |||
γ-Terpinene | tr. | |||
Terpinen-4-ol | 0.18 | |||
γ-Eudesmol | 0.11 | |||
Terpinolene | tr. | |||
p-Cymen-8-ol | tr. | |||
α-Terpineol | tr. | |||
α-Murolene | tr. | |||
% | Medlar fruits, ripe | GC-MS | [49] | |
α-Terpinene | 2.86 | |||
p-Cymene | tr. | |||
Phellandrene | ||||
γ-Terpinene | 1.02 | |||
Terpinen-4-ol | 12.56 | |||
γ-Eudesmol | 0.15 | |||
Terpinolene | tr. | |||
p-Cymen-8-ol | tr. | |||
α-Terpineol | tr. | |||
α-Murolene | tr. |
Responsible Compound | Value | Ripening Stage | Reference |
---|---|---|---|
Phenols (Total) | |||
Total phenolics as GAE | mg 100 g−1 fm | ||
117 ± 1 | 164 DAFB | [1] | |
920.51 ± 51.59 | Maximum in maturity stage | [32] | |
453.09 ± 23.33 | Maximum in consuming stage | ||
122.55–985.03 | Commercial maturity stage | [66] | |
86.4–763.03 | [62] | ||
157–227 | [3] | ||
114–244 | [41] | ||
mg g−1 | |||
25.08 | No data | [45] | |
7.26 ± 0.4 | Commercial maturity stage | [41] | |
16.5 ± 3.53 | Fresh | [55] | |
Flavonoids | |||
Total flavonoids as QE | mg g−1 | ||
14.08 ± 1.1 Water extract | No data | [46] | |
14.88 ± 1.2 Methanol extract | No data | ||
1.99 ± 0.02 | Fresh | [55] | |
µg/g | |||
2.39 | [45] | ||
mg 100 g−1 fw | Commercial maturity stage | [66] | |
73.32–1085.65 | |||
43.98–630.98 | Commercial maturity stage | [62] | |
Other antioxidants | |||
mg/kg | No data | [45] | |
Caffeic acid | 4.9 | ||
Ferulic acid | 2.4 | ||
Ellagic acid | 0.2 | ||
Quercetin | 2.4 | ||
a-Tocopherol | 13.4 | ||
Pyrogallol | 3.6 | ||
p-Coumaric acid | 2.4 | ||
Ascorbic acid | 184.6 | ||
mg/100 g | No data | ||
Lycopene | nd | [47] | |
β-carotene | 0.9 ± 0.0 | ||
Lycopene | nd | ||
β-carotene | 1.0 ± 0.0 |
Responsible Compound | Value | Ripening Stage | Reference |
---|---|---|---|
Phenols | |||
Total phenolics as GAE | mg g−1 | ||
60.3 ± 1.69 | Fresh | [55] | |
380.58 ± 0.73 Methanolic extracts | No data | [10] | |
Flavonoids | |||
Total flavonoids as QE | mg/g 14.77 ± 1.15 | Fresh | [55] |
mg/g dray wt 75.169 ± 0.04 | No data | [10] | |
Other antioxidants | |||
Carotenoids | µg/mL 3.43 ± 0.13 | No data | [10] |
Responsible Compound | Value | Ripening Stage | Reference |
---|---|---|---|
Phenols | |||
Total phenolics as GAE | mg g−1 50.3 ± 0.51 | Fresh | [55] |
Flavonoids | |||
Total flavonoids as QE | mg/g 6.54 ± 0.08 | Fresh | [55] |
Plant Part | Extraction Method | Antioxidant Assay | Antioxidant Potential | Responsible Compounds | Reference |
---|---|---|---|---|---|
Fruits | |||||
LEM fruits | Water extraction followed by lyophilization | DPPH, DMPD+ and O2—radical scavenging, Fe2+ chelating, Fe3+-Fe2+ reducing ability, Cu2+-Cu+ reducing ability, FRAP reducing ability | DPPH· scavenging: 0.62 μg TE | Total phenolics and flavonoids | [45] |
DMPD+ scavenging: 0.81 μg TE | |||||
O2-scavenging: 1.41 μg TE | |||||
Fe2+ chelating: 2.76 μg TE | |||||
Fe3+-Fe2+ reducing: 0.69 μg TE | |||||
Cu2+-Cu+ reducing: 0.43 μg TE | |||||
FRAP: 0.36 μg TE | |||||
Fruits | hydrochloric acid:methanol:ACS water, in the ratio 2:80:18 (v/v) | inactivation of the cation ABTS+ | 100–180 mg AAE/100 g FM (different ripening stages) | Total phenolics | [1] |
n.m. | inactivation of the cation ABTS+ | 1.1 ± 0.2 mmol Trolox equivalents/L | n.m. | [39] | |
80% ethanol | modified DPPH scavenging assay | 15–95% (different ripening stages) | Total phenolics | [44] | |
Methanol or water room temperature extraction | DPPH; Fe3+ reduction; Fe2+ chelating; nitric oxide-scavenging activity; scavenging of hydrogen peroxide | IC50 μg/ml | Total phenolics and flavonoids | [46] | |
DPPH—419 ± 3.2/492 ± 33.1 | |||||
Nitric oxide scavenging—247 ± 12.2/1328 ± 57.4 | |||||
H2O2 scavenging activity—1138 ± 77.1/2333 ± 87.9 | |||||
Fe2+ chelating ability—23.0/31.7 (methanol/water) | |||||
Methanol extraction | β-carotene bleaching; DPPH | IC50 μg/mL fresh weight | Total phenolics | [41] | |
DPPH—46.6 (average) | |||||
β-carotene bleaching—80.8% | |||||
hydrochloric acid:methanol:ACS water, in the ratio 2:80:18 (v/v) | inactivation of the cation ABTS+ | mg AAE/100 g fresh fruit 124–187 | Total phenolics | [3] | |
Ethanol extraction | DPPH; β-carotene bleaching | IC50 μg/mL DPPH—695 β-carotene bleaching—n.m. | Total phenolics and flavonoids | [55] | |
Leaves | |||||
Leaves | Methanol or water room temperature extraction | DPPH; Fe3+ reduction; Fe2+ chelating; nitric oxide-scavenging activity; scavenging of hydrogen peroxide | IC50 μg/ml | Total phenolics and flavonoids | [46] |
DPPH—19.4 ± 1.3/19.8 ± 1.3 | |||||
Nitric oxide scavenging—1129 ± 78.6/280.3 ± 16.8 | |||||
H2O2 scavenging activity—58.1 ± 2.3/171 ± 14.1 | |||||
Fe2+ chelating ability—24.6/30.1 (methanol/water) | |||||
Ethanol extraction | DPPH; β-carotene bleaching | IC50 μg/ml | Total phenolics and flavonoids | [55] | |
DPPH—157 | |||||
β-carotene bleaching—400 | |||||
95% Methanol extraction | DPPH | 69.43 ± 0.36% | Total phenolics and flavonoids | [10] | |
Other plant parts | |||||
Stem bark | Methanol or water room temperature extraction | DPPH; Fe3+ reduction; Fe2+ chelating; nitric oxide-scavenging activity; scavenging of hydrogen peroxide | IC50 μg/ml | Total phenolics and flavonoids | [46] |
DPPH—11.4 ± 0.8/10.7 ± 0.6 | |||||
Nitric oxide scavenging—376 ± 16.5/557.7 ± 25.1 | |||||
H2O2 scavenging activity—427 ± 35.1/537 ± 23.6 | |||||
Fe2+ chelating ability—28.4/504 ± 34.5 (methanol/water) | |||||
Bud flowers | Ethanol extraction | DPPH; β-carotene bleaching | IC50 μg/ml | Total phenolics and flavonoids | [55] |
DPPH—260 | |||||
β-carotene bleaching—960 |
Plant Part | Extract Type/Bioassay | Test Against | Results | Reference | |
---|---|---|---|---|---|
Leaves | methanolic extract/ agar disc diffusion method | MIC (mg/mL) | [10] | ||
Staphylococcus aureus | 62.5 | ||||
Staphylococcus epidermidis | 62.5 | ||||
Salmonella typhi | 125 | ||||
Salmonella paratyphi | 62.5 | ||||
Escherichia coli | 125 | ||||
Klebsiella pneumoniae | 125 | ||||
Pseudomonas aeruginosa | 125 | ||||
Streptococcus pyogenes | 62.5 | ||||
Enterococcus faecalis | 125 | ||||
Yersinia enterocolitica | 62.5 | ||||
Serratia marcescens | 125 | ||||
Shigella dysenteriae | 125 | ||||
Citrobacter freundii | 125 | ||||
Leaves | methanolic extract/ agar disc diffusion method | MIC (mg/mL) | [50] | ||
Pseudomonas aeruginosa | 125 | ||||
Staphylococcus aureus | 63–125 | ||||
Escherichia coli | 63–250 | ||||
ethanolic extract/ agar disc diffusion method | MIC (mg/mL) | ||||
Pseudomonas aeruginosa | 0–250 | ||||
Staphylococcus aureus | 0–500 | ||||
Escherichia coli | 0–500 | ||||
Leaves | ethanolic extract/ ethanolic extract in vaseline base rubbed topically | Leishmania major | - lesion diameters were remarkable reduced in treatment with concentrations 40% and 60% ethanolic extract compared to control group; - size of the lesions that received 80% concentration of ethanolic extracts had no statistically significant difference with control group | [57] | |
Leaves | 70% acetone extract/ agar disc diffusion method | MIC (mg/mL) | MBC (mg/mL) | [51] | |
Klebsiella pneumoniae | 3.333 ± 0.0233 | 5.833 ± 0.065 | |||
Vibrio cholera | 6.667 ± 0.048 | lack of data | |||
Escherichia coli | lack of data | 9.167 ± 0.042 | |||
Shigella dysenteriae | lack of data | 9.167 ± 0.042 | |||
Fruits | water extract/ agar disc diffusion method | MIC (mg/mL) | MBC (mg/mL) | [52] | |
Staphylococcus aureus | 5 | 100 | |||
Klebsiella pneumoniae | 2.5 | 50 | |||
50% ethanol extract/ agar disc diffusion method | MIC (mg/mL) | MBC (mg/mL) | |||
Staphylococcus aureus | 2.5 | 50 | |||
Klebsiella pneumoniae | 0.625 | 2.5 |
Usage Area | Usage | Plant Part | Reference |
---|---|---|---|
Traditional medicine “Folk medicine” | Hematopoietic | Leaves, fruits, bark | [4,57] |
Large intestine infection | Leaves, fruits, bark | ||
Diarrhea | Leaves, fruits, bark | ||
Internal hemorrhage | Leaves, fruits, bark | ||
Cutaneous leishmaniasis -Sodden -Vaseline base applied topically | n.m. Leaves | ||
Strengthen fine skin -Sodden | n.m. | ||
Treatment intestinal inflammation - used in a little milk after removing skin and seeds | Fruits | [4] | |
Elimination of throat abscess Gargle with sodden of leaves | Fruits | [57] | |
Regurgitation disposal cholera - Sodden | Fruits | ||
Stimulation treatment throat Sodden | Fruits | ||
Strengthen nerves | Fruits | ||
Elimination of stomach bloating | Fruits | ||
Fattening | Fruits | ||
Diuretic | Fruits, bark | ||
Treatment of menstrual irregularities | Fruits | ||
Fever disposal -Dry powder in alcohol (as washing the feet) | Bark | ||
Enteritis | Pulp or syrup | [21] | |
Diabetes | Leaves | ||
Leaves decoction | [21] | ||
Leaves infusion | [55] | ||
Tuberculosis boiled and administered orally | Bark of the branches | [21] | |
Abdominal pain | n.m. | ||
Kidney and bladder of stones | n.m. | [1] | |
Anti-influenza -Infusions, raw | Leaves, fruits | [56] | |
Gastronomy | Juice | Fruits | [4] |
Conserve | Fruits | ||
Cooking jams | Fruits | ||
Liqueur | Fruits | [6] | |
Raw | Fruits | [1,4,56] | |
Raw with cheese as a dessert | Fruits | [4] | |
“Medlar cheese” | Fruits | ||
Dessert -browning the fruit slices in butter and sprinkling them with cinnamon | Fruits | [59] | |
Poisson | - | Seed | [4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voaides, C.; Radu, N.; Birza, E.; Babeanu, N. Medlar—A Comprehensive and Integrative Review. Plants 2021, 10, 2344. https://doi.org/10.3390/plants10112344
Voaides C, Radu N, Birza E, Babeanu N. Medlar—A Comprehensive and Integrative Review. Plants. 2021; 10(11):2344. https://doi.org/10.3390/plants10112344
Chicago/Turabian StyleVoaides, Catalina, Nicoleta Radu, Elena Birza, and Narcisa Babeanu. 2021. "Medlar—A Comprehensive and Integrative Review" Plants 10, no. 11: 2344. https://doi.org/10.3390/plants10112344
APA StyleVoaides, C., Radu, N., Birza, E., & Babeanu, N. (2021). Medlar—A Comprehensive and Integrative Review. Plants, 10(11), 2344. https://doi.org/10.3390/plants10112344