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Abstract: Long-read data is a great tool to discover new active transposable elements (TEs). However,
no ready-to-use tools were available to gather this information from low coverage ONT datasets.
Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural
variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion
in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones
for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly
gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana
(TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated
TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified
transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540)
belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG
protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous
LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded
proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant
genomes using low-coverage data from Nanopore genome sequencing.

Keywords: transposon insertions; long read sequencing; structural variants; GAG; ddm1

1. Introduction

Transposable elements (TEs) are a major component of plant genomes, and up to
90% of the genome can be occupied by different TE families [1]. Although the general
impact of TEs on genome functionality is negative, they represent an important force of
plant evolution, creating enormous genome variability [2]. The latest reports based on
pangenome sequencing demonstrated that multiple traits involved in plant adaptation
were tuned by TE insertions (TEIs) [3–6]. In addition, TEs make a significant contribution
to the phenotypic diversification of crop species by creating new alleles, changing the
gene transcription repertoire and triggering structural variations (SVs) [2,7–12]. Moreover,
the inclusion of TEIs in association studies may bring new candidate loci associated with
phenotypic variations, as demonstrated in tomato [9], rice [13] and other plants [11]. In
tomato, for example, TEIs were associated with variation in major agronomic traits [9,12].
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Taking into account the importance of TE transposition for plant genome evolution, local
adaptation and domestication, the ability to trace the newly occurring insertions is crucial.
However, the links between individual TE insertions and changes in different levels of
cell organizations are poorly understood. The main challenge in the establishment of such
connections is the technical difficulties of TE insertion detection and annotations. Most
of the studies in plants have exploited short-reads to find TE insertions [3,5,9,10,14–16].
Next-generation short-read sequencing (NGS) significantly accelerated the discovery of
active TEs and their insertions. NGS and accompanying bioinformatics tools allowed TEI
detection to be performed in a high-throughput manner [10]. However, this approach
is prone to miss multiple TE insertions [15], e.g., the short length of NGS reads makes
TEI identification in repetitive and low complexity regions challenging. Furthermore, TEI
identification based on short-reads has often used clipped reads to map the TE-genome
junctions that further reduced the read length and resulted in poor genome mapability.
Therefore, NGS detection of TEIs resulted in underestimation of TEIs and active TEs. Long-
read sequencing technology, including Oxford Nanopore Technology (ONT) and PacBio
sequencing, is a ‘game-changer’ for mobilome and repeatome investigation [17,18]. Com-
pared to short-read data, long-read sequencing allowed the identification of a significantly
higher number of TEIs in both heterochromatic and euchromatic [19,20]. ONT sequencing
can be performed in a conventional laboratory with minimum investment in equipment
facilitating experiment design and data generation. Even though the error rate of ONT
reads is quite high, they have high mapability and may span an entire TE insertion [21].
Another advantage of ONT sequencing is that raw data can be used for epigenetic profiling
of the genome [22]. Therefore, ONT-based TEI detection is more sensitive and accurate and
requires smaller genome coverage [17,21,23]. Several tools have been developed for TEI
identification in non-plant genomes, including xTEA [24], TLDR [25] and PALMER [26].
These tools were designed to detect insertions of various human TEs, such as L1, Alu, SVA
and HERV, using data from different sequencing platforms. The application of these tools
to detect TEIs in plants is not straightforward and needs additional bioinformatics expertise
to adopt the default setting to plants. In addition, TLDR requires at least one spanning read
per insertion, which requires a higher N50 value. PALMER takes PacBio data, and it was
not tested for ONT reads. Thus, no tools for easy and automatic detection of TEIs and the
corresponding original TEs using low-coverage ONT data have been proposed for plants.

To fill in this gap, we developed a new pipeline called nanotei (https://github.com/
Kirovez/nanotei (accessed on 3 November 2021)) that performed reference-guided iden-
tification of TEIs from low-coverage nanopore data. The application of nanotei allowed
detection of known and novel active TEs in the ddm1 mutant of A. thaliana and unraveled
tens of TEs missed from TAIR10 genome assembly. Thus, nanotei is a robust method for
rapid detection of TEIs and the associated structural variants using low-coverage ONT data.

2. Results
2.1. Nanotei—A New Pipeline for Genome-Wide Transposon Insertion Detection from
Nanopore Data

Although several algorithms have been proposed for transposable element insertion
(TEI) detection using short-read data, no ready-to-use solutions have been described for TEI
detection using the low-coverage ONT reads. Here, we developed a new pipeline called
nanotei for the detection of TEIs and associated structural variants using low genome
coverage Nanopore data. Nanotei requires four input files: bam file with ONT reads
aligned to the reference genome, genome fasta file, fastq file of ONT reads and 4-column
bed file with TEs annotated in the reference genome. The principle of this pipeline is
illustrated in Figure 1.

https://github.com/Kirovez/nanotei
https://github.com/Kirovez/nanotei
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Figure 1. Schematic view of nanotei pipeline. The main steps are enumerated. The red parts of the reads corresponding to
TE-contained sequences. Created with BioRender.com (accessed on 3 November 2021).

First, the bam file is parsed to detect reads with clipped ends (default, >1000 bp clip-
ping size) and full-length in-read insertions and to determine the corresponding positions
on the reference genome. Second, the adjoined reference positions of the clipping and
in-read insertions are merged if the distance between them is small (default, <20 bp). Third,
the read sequences of the clipped ends and in-read insertions are extracted from raw reads
and mapped back to the genome. Fourth, the mapping positions are intersected with TE
annotations, and the best TE matches are collected. Finally, genome coverage by ONT reads
is calculated, and then the number of reads supporting TEIs (clipped reads + reads with in-
read full-length insertions) and the total number of reads in the TEI flanking positions are
tested to fit the genome coverage distribution, followed by outlier filtering. The final table
of nanotei contains the information about TEI position, the number of the corresponding
clipped reads and reads with insertions, the id, and the genomic coordinates of the original
TE copy.

Thus, we developed a pipeline for genome-wide detection of TE-contained structural
variants (SVs), including transposon insertions using Nanopore data and information on
TE annotation in the genome.

2.2. Numerous TE Copies Are Hidden in TAIR10 Genome Assembly Gaps

As a baseline to test nanotei, we used Nanopore reads of wild-type (Col-0) A. thaliana.
We performed sequencing of two Col-0 samples, collected ~60,000 Nanopore reads (~7×
genome coverage, N50 ~12 Kb) and ran nanotei. Unexpectedly, we detected 46 TEIs
(colTEIs) from 43 distinct TEs (Supplementary Table S1). Most of the colTEIs (44) were
common between two Col-0 plants (Figure 2A). To verify that found colTEIs were not
specific for our A. thaliana plants, we used ONT reads from the publicly available dataset
(NCBI accession: ERR5530736) as an additional control. We observed that all colTEIs are
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also detectable in this dataset. As A. thaliana genome assembly (TAIR10) includes at least
100 annotated gaps, we thought that the colTEIs could overlap with these gaps, being a
direct result of incorrect genome assembly. In addition, such cases need to be filtered out
because they will challenge the detection of real TEIs in our further analysis. To detect such
gap-associated colTEIs, we compared the location of colTEIs with TAIR10 genome gaps
(sequences with 3 or more ‘N’s) and found only 10 TEIs (22%) overlapping 10 genome gaps
(Figure 2B). These results suggest that >40 A. thaliana TEIs are located in the annotated
(10 TEIs) and unannotated (36 TEIs) genome assembly gaps. We further analyzed the
classification of the TEs producing the colTEIs and found that both DNA transposons
and retrotransposons contributed to TEIs. Although most of the subfamilies contributed
to a single TEI, TEs from eight subfamilies generated 2–3 TEIs (Supplementary File S1:
Figure S1). One of these subfamilies is ATCOPIA78, possessing the well-known ONSEN
transposons that are involved in two TEIs located on chromosomes 1 and 4. We performed
local assembly of the ONSEN TEI on chr4 (Chr4: 9,318,156..9,326,206) using ONT reads
and compared the assembled contigs with the ONSEN1 transposon (AT1TE12295), which
was assigned to this TEI by nanotei, as well as the border sequences of the TEI. The results
showed 99% similarity of ONSEN1 to the assembled contig, pointing out that this ONSEN
copy was missed in the TAIR10 assembly. Another member of the ATCOPIA78 subfamily
with the newly identified TEI is AT1TE59755. We found that this element has two tandemly
organized copies on chromosome 1, but one of these copies was missed in the TAIR10
assembly (Figure 2C).

Figure 2. (A) Venn diagram showing the number of TEIs common between two Col-0 plants. (B) TEI
on chromosome 4 and the schematic representation of the TE candidate AT1TE12295 proved by
local assembly. (C) Tandemly organized TEIs with two ATCOPIA78 TEs, one of which was missed
in TAIR10.
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Thus, the results of TEI identification by nanotei using Col-0 ONT reads provide
evidence that tens of distinct TEs are missed from the TAIR10 genome sequence because of
gaps and errors in the genome assembly.

2.3. Known and New Active TEs of the ddm1 Mutant

We were interested in exploring the mobilome of TEs with ongoing activity. For this,
we used ddm1 A. thaliana plants carrying mutations in the DDM1 (decreased DNA methy-
lation) gene, causing hypomethylation of cytosine in all contexts in A. thaliana [27–30].
As a result, some TEs are actively proliferating in ddm1 plants [31,32]. We performed
whole-genome Nanopore sequencing of two siblings of the ddm1 mutant that have T-DNA
insertions of the GAG fragment of the EVD retrotransposon (G-ddm1-1 and G-ddm1-2).
We collected 74,792 and 80,260 high-quality reads with N50 ~12Kb corresponding to
~7× genome coverage evaluated after mapping of the reads to the TAIR10 genome. We
ran nanotei with these reads and the TE annotation file [33]. After removing colTEIs, 38
and 33 TEIs were detected in G-ddm1-1 and G-ddm1-2 plants, respectively (Supplementary
Table S2). Of them, 29 TEIs were common between the two plants (Figure 3A). Next,
we analyzed which TE families are contributing to TEIs. Classification analysis showed
that 15 TEs generated the ddm1 TEIs belonging to 13 subfamilies (Figure 3B). Of them,
4 TEs (AT1TE42210, AT2TE20205, AT4TE18510 and AT5TE20395) from two subfamilies
(ATENSPM3 and ATCOPI93) generated 63% (27) TEIs. The most active TEs in ddm1 were
EVD retrotransposon (AT5TE20395, 17 TEIs) and CACTA1 DNA transposon (AT2TE20205,
8 TEIs). EVD and CACTA1, as well as three other TEs (AT2TE42810 (subfamily VAN-
DAL21), AT2TE23855 (subfamily ATCOPIA13), AT5TE65370 (subfamily ATCOPIA21) and
AT1TE45315 (subfamily ATGP3)) were also previously shown to be active in ddm1 by tilling
array, Southern blot and short-read sequencing approaches [3,31,32]. We also identified
non-autonomous TE AT5TE33540 from the ATCOPIA63 subfamily that produced TEI on
Chr2: 19,624,409..19,624,434 (Figure 3C). The insertion from this element has been previ-
ously detected in epiRIL plants [34]. We found that this element possesses two LTRs and
encodes a single ORF for the 562aa GAG protein, suggesting that AT5TE33540 belongs to
the previously characterized Terminal-repeat Retrotransposons with the GAG domain (TR-
GAG [35]). The similarity search between AT5TE33540 and other ATCOPIA63 members
revealed high similarity to potentially autonomous element AT3TE48480 with a long ORF
encoding a full set of TE proteins required for transposition (Figure 3C). Therefore, this
element may provide proteins required for the transposition of AT5TE33540.

Using nanotei, we also found TEIs involving TEs that were not shown to be active
in ddm1 before. Manual curation of these TEIs showed that most of these TEIs are large
structural rearrangements rather than TE insertions per se. However, we found one TEI at
Chr4 (3,464,984..3,465,035) detected in both ddm1 plants and fully covered by ONT reads
(Supplementary File S1: Figure S2). Using the ONT reads from both ddm1 plants, we
performed local assembly of this region and obtained a 13,887 bp contig (Supplementary
File S2). This TEI resulted from the transposition of a ~2 Kb length TE (AT2TE84980) from
ATCOPIA57 (Figure S2). This non-autonomous TE contains two LTRs and no intact ORFs.
The absence of any protein-coding capacity of this element suggested that its transposition
may occur via the activity of proteins of other elements from the same family. However,
ATCOPIA57 contains 48 elements in the TAIR10 genome [33] assembly with the longest TE
of 2694 bp length and no autonomous TEs. Based on this, the mechanism of AT2TE84980
transposition is not clear.

Taken together, our mobilome analysis using nanotei and ONT reads from the ddm1
genome allowed simultaneous detection of all TEs active in ddm1 and revealed the transpo-
sition of two non-autonomous retrotransposons with one of them encoding the full-length
GAG protein. Here, we provide the first direct evidence that TR-GAG elements are capable
of transposition in plants.
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Figure 3. (A) Venn diagram showing the number of TEIs common between two ddm1 plants. (B) Number of TEIs in
ddm1 generated by different TE subfamilies. (C) Read alignment and TEI site of AT5TE33540 and dot plot showing the
sequence similarity with full-length TE AT3TE48480. The blue box in the dot plot shows the ORF encoding GAG and
POL polyproteins.

3. Discussion

Many TEs are expressed in plants and have ongoing transposition activity, playing a
major role in genome evolution, adaptation and plant breeding [2,18,31,36–38]. Detection of
new TEIs is essential for a deeper understanding of TE biology and their multisided impact
on genome architecture and plant diversity. Long-read data is a great tool to discover new
TEIs and associated structural variants in plants [17,39,40]. However, no straightforward
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tools have been developed to gather this information from low-coverage ONT datasets.
Here, we present nanotei, a pipeline that allows the detection of TE insertions and TE-
contained structural variants using a reference-guided approach. To show the robustness
of nanotei, we generated ONT genomic data for the Col-0 wild type and ddm1 mutant of
A. thaliana. Surprisingly, using nanotei, we identified tens of TE copies hidden in genome
assembly gaps. Furthermore, one of the TEIs belonged to the ONSEN family, which has
been investigated for a long time [41–44]. Eight copies of ONSEN have been previously
described [41], with four copies making 90% of all insertions after activation by heat
stress [45]. Our analysis revealed that an additional copy of ONSEN1, one of the most
active ONSEN copies, is present in a genome assembly gap located on chromosome 4.
Whether this newly identified copy has transposition activity and how it contributes to the
heat-activated mobilome remains to be investigated in the future. Our results also indicate
that current A. thaliana genome assembly requires revision, and new emerging technologies
(ONT and HiFi long-reads, optical mapping, Hi-C scaffolding, etc.) may successfully assist
this process [23,46,47].

We also traced the ongoing TE transpositions using the ddm1 mutant as a model.
Previous analysis [31,34] of the ddm1 mobilome using tilling array, short-read sequencing
and Southern-blot approaches found four TEs (AT2TE42810 (VANDAL21), At2g13940
(ATCOPIA13), At5g44925 (ATCOPIA21) and At5g17125 (EVD, ATCOPIA93)) from distinct
subfamilies having higher copy numbers in ddm1 compared to wt plants. Additionally,
three TEs (At1g35370 (ATGP3), At2g12210 (CACTA1, ATENSPM3), At4g08680/At1g78095
(AtMu1)) exhibited higher copy numbers in ddm1 based only on the tilling array. We
checked whether the transposition activity of these TEs was detected in our ddm1 plants
and found that all these TEs were indeed captured by nanotei, implying that nanotei is a
robust method to detect TE insertions and associated structural variants from ONT data.
Taking into account that nanotei can identify TEIs from low-genome coverage ONT data
(~7× in our analysis), TEIs of few A. thaliana plants can be easily captured by even a single
MinION flow cell. For example, here, using barcodes, we sequenced 4 plants in parallel
on a single flow cell and generated enough data for TEI detection. Therefore, ONT-based
TEI detection captured with nanotei allows rapid mobilome characterization with a short
turnaround time. It is worth noting that most of the TEIs identified by nanotei in this study
were located in pericentromeric regions (Supplementary File S1: Figure S3) of A. thaliana
chromosomes. These regions are enriched by different classes of TEs and other repeats
that can hamper TEI locations by short-read data. A high mappability of long reads to
the genome reference allows the identification of TEIs even in repeat-rich regions. We
believe that nanotei will further facilitate the progress of comprehensive evaluation of
TE activity and its contribution to plant genome, transcriptome and phenotypic diversity
and evolution.

An important advantage of the approach described in this study is the ability to
reconstruct sequences of full-length copies. This allows the identification of donor TEs.
Moreover, with sufficient sequencing depth, the sequences of reconstructed TEs from
insertion sites can provide valuable information for the study of the molecular evolution
of TEs. This may include the diversity of protein coding capacity of new TE copies,
accumulation of single-nucleotide mutations and structural variants, and distribution
of methylation of individual TE copies [25]. For example, an intriguing finding of our
investigation is the insertion of two non-autonomous LTR retrotransposons in the ddm1
genome. Namely, we detected insertions of AT2TE84980 from ATCOPIA57 (Figure S2)
and AT5TE33540 from the ATCOPIA63 subfamily (Figure 3C). This finding suggests that
non-autonomous LTR retrotransposons can be a parasite of other LTR TE members to
perform their transposition, such as BARE1/BARE2 elements [48]. However, AT2TE84980
belongs to the family with no members carrying ORFs for all TE proteins. Therefore, the
transposition of this TE is probably assisted by TEs from another family. This implies low
specificity of TE proteins to their original copies, but this is a poorly understood topic for
retrotransposons. It is worth noting that these TEs are different in their protein-coding
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capacity. While AT2TE84980 has no long ORFs, AT5TE33540 has the entire ORF for GAG
protein translation. This suggests that this TE belongs to TR-GAG retrotransposons with a
single ORF encoding GAG. TR-GAGs were found in many plant species [35]. Our recent
transcriptome survey in sunflower [36] and triticale [18] using ONT RNA sequencing found
that these elements are transcribed. However, whether these elements are transpositionally
active or only serve as a source of GAG proteins for other TEs have not been known so
far. The detection of new insertions in the ddm1 genome by our current analysis provides
the first evidence that TR-GAGs can transpose, albeit in the absence of most TE proteins.
This also highlights that TE evolution should be investigated as a network of functionally
connected autonomous and non-autonomous elements [48].

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of ddm1 mutants (ddm1-2, F7 generation) were kindly provided by Vincent Colot
(Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Paris, France). Arabidopsis
thaliana Col-0 plants (wild type and ddm1 mutants) were grown in a light chamber for a
month under 22 ◦C and long-day conditions (16h light/8h dark).

4.2. HMW DNA Isolation and Size Selection

High molecular weight DNA was isolated from 200–500 mg of fresh and young leaves
that were homogenized in liquid nitrogen. DNA isolation was carried out according to
the previously published protocol (https://www.protocols.io/view/plant-dna-extraction-
and-preparation-for-ont-seque-bcvyiw7w (accessed on 3 November 2021)).

4.3. Nanopore Sequencing and Basecalling

Library preparation was carried out from 1 µg of DNA using the Native Barcoding
Expansion 1–12 (Oxford Nanopore Technologies (Oxford, UK), catalog no. EXP-NBD104)
and the Ligation Sequencing Kit SQK-LSK109 (Oxford Nanopore Technologies). Sequenc-
ing was performed by MinION equipped with a R10.3 flow cell. The sequencing pro-
cess was operated by MinKNOW software (v.19.12.5). Basecalling was performed by
Guppy (Version 3.2.10). Read mapping was carried out by minimap2 [49] to TAIR10.1
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4/ (accessed on 3 November
2021)) genome assembly.

4.4. Nanotei Pipeline

Nanotei is written in python3 and can be run in Linux systems. The principle of
nanotei is illustrated in Figure 1. In the first step, a bam file with mapped ONT reads
is parsed, and the mapping positions of the following categories are extracted using the
pysam package (https://github.com/pysam-developers/pysam (accessed on 3 November
2021)): reads with clipped starts and ends (S in CIGAR string) and reads with a detected
insertion (I in CIGAR string). The unmapped sequences of clipped parts and insertions of
the reads are extracted with the assistance of the biopython package [50] and mapped to
the genome using minimap2 [49]. Then, the mapping positions are intersected with the
bed file of TE annotation using bedtools intersect [51], followed by results aggregation
using pandas package. Next, the initial bam file is used to estimate genome coverage by
ONT reads using random sampling of genomic intervals and their coverage estimation
by pysam. The obtained distribution is used to filter out TEIs with coverage that is too
low and TEIs from regions with coverage that is too high. After this step, the final table
with TEI coordinates and associated TEs is obtained. We tested this pipeline on a local
server equipped with 500Gb RAM and 128 CPU cores. On this server, nanotei takes from 2
(low-coverage ONT data generated in this work) to 10 (ERR5530736 reads, ~40× TAIR10
genome coverage) minutes for the analysis of one sample.

https://www.protocols.io/view/plant-dna-extraction-and-preparation-for-ont-seque-bcvyiw7w
https://www.protocols.io/view/plant-dna-extraction-and-preparation-for-ont-seque-bcvyiw7w
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4/
https://github.com/pysam-developers/pysam
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4.5. Manual Curation of TEIs

To prove the presence of TEIs and corresponding TE, we collected the reads from
the TEI region using the pysam.fetch() function from the pysam package. The reads were
assembled by Flye assembler with the following settings: –genome-size 100K –threads
100 -m 1000. The assembled contigs were then blasted versus the TE candidate and TEI
borders. When the assembly was not possible, the distinct raw reads from TEI sites were
blasted vs the TE candidate. BLAST search was performed using Sequenceserver [52].

4.6. Statistics and Data Visualization

Statistical analysis was carried out in Rstudio Version 1.2.1335 (http://www.rstudio.
com/ (accessed on 3 November 2021)) with R version 3.6.0. Visualization was carried out by
ggplot2 [53] and ggvenn (https://github.com/yanlinlin82/ggvenn (accessed on 3 Novem-
ber 2021)) R packages. Read alignment visualization was performed in jbrowse2 [54].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10122681/s1, Figure S1: Number of colTEIs per TE subfamily; Figure S2: Read alignment
and TEI site of AT2TE84980 and dot plot showing sequence similarity with full-length TE; Figure S3:
Circos plot showing the distribution of all ddm1 TEIs, annotated TEs and genes of A. thaliana;
Supplementary File S2: Sequence of contigs assembled from ONT reads aligned to the TEI region on
Chr 4 (3,464,984..3,465,035); Table S1: TE insertions identified by nanotei in Col-0 assembly using
low-coverage Nanopore reads of two plants; Table S2: TE insertions identified by nanotei in ddm1
using low-coverage Nanopore reads of two ddm1 plants.

Author Contributions: Conceptualization, I.K.; methodology, I.K.; software, I.K.; validation, P.M.,
M.D., S.G. and E.P.; formal analysis, I.K., M.G.D., R.A.K., A.E. and N.K.; investigation, I.K., P.M.,
M.D., S.G., Z.K., M.G., R.A.K., A.E. and N.K.; resources, G.I.K., M.D. and A.S.; data curation, P.M.;
writing—original draft preparation, I.K.; writing—review and editing, I.K.; visualization, M.D.;
supervision, I.K.; project administration, A.S.; funding acquisition, I.K., G.I.K., A.S. and M.G.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Foundation for Basic Research (grant № 20-34-
70032).

Data Availability Statement: Oxford Nanopore reads generated in this study are available at NCB,
project accession number PRJNA736208.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.;

et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet.
2021, 53, 564–573. [CrossRef] [PubMed]

2. Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 2013, 14, 49–61. [CrossRef] [PubMed]
3. Quadrana, L.; Bortolini Silveira, A.; Mayhew, G.F.; LeBlanc, C.; Martienssen, R.A.; Jeddeloh, J.A.; Colot, V. The Arabidopsis

thaliana mobilome and its impact at the species level. eLife 2016, 5, e15716. [CrossRef]
4. Song, X.; Cao, X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation

in rice. Curr. Opin. Plant Biol. 2017, 36, 111–118. [CrossRef]
5. Baduel, P.; Quadrana, L.; Hunter, B.; Bomblies, K.; Colot, V. Relaxed purifying selection in autopolyploids drives transposable

element over-accumulation which provides variants for local adaptation. Nat. Commun. 2019, 10, 5818. [CrossRef] [PubMed]
6. Baduel, P.; Quadrana, L. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes.

Curr. Opin. Plant Biol. 2021, 61, 102043. [CrossRef] [PubMed]
7. Vitte, C.; Fustier, M.-A.; Alix, K.; Tenaillon, M.I. The bright side of transposons in crop evolution. Brief. Funct. Genom. 2014, 13,

276–295. [CrossRef] [PubMed]
8. Morgante, M.; Brunner, S.; Pea, G.; Fengler, K.; Zuccolo, A.; Rafalski, A. Gene duplication and exon shuffling by helitron-like

transposons generate intraspecies diversity in maize. Nat. Genet. 2005, 37, 997–1002. [CrossRef]
9. Domínguez, M.; Dugas, E.; Benchouaia, M.; Leduque, B.; Jiménez-Gómez, J.M.; Colot, V.; Quadrana, L. The impact of transposable

elements on tomato diversity. Nat. Commun. 2020, 11, 4058. [CrossRef]
10. Carpentier, M.C.; Manfroi, E.; Wei, F.J.; Wu, H.P.; Lasserre, E.; Llauro, C.; Debladis, E.; Akakpo, R.; Hsing, Y.I.; Panaud, O.

Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat. Commun. 2019, 10, 24. [CrossRef] [PubMed]

http://www.rstudio.com/
http://www.rstudio.com/
https://github.com/yanlinlin82/ggvenn
https://www.mdpi.com/article/10.3390/plants10122681/s1
https://www.mdpi.com/article/10.3390/plants10122681/s1
http://doi.org/10.1038/s41588-021-00807-0
http://www.ncbi.nlm.nih.gov/pubmed/33737754
http://doi.org/10.1038/nrg3374
http://www.ncbi.nlm.nih.gov/pubmed/23247435
http://doi.org/10.7554/eLife.15716
http://doi.org/10.1016/j.pbi.2017.02.004
http://doi.org/10.1038/s41467-019-13730-0
http://www.ncbi.nlm.nih.gov/pubmed/31862875
http://doi.org/10.1016/j.pbi.2021.102043
http://www.ncbi.nlm.nih.gov/pubmed/33932785
http://doi.org/10.1093/bfgp/elu002
http://www.ncbi.nlm.nih.gov/pubmed/24681749
http://doi.org/10.1038/ng1615
http://doi.org/10.1038/s41467-020-17874-2
http://doi.org/10.1038/s41467-018-07974-5
http://www.ncbi.nlm.nih.gov/pubmed/30604755


Plants 2021, 10, 2681 10 of 11

11. Lye, Z.N.; Purugganan, M.D. Copy Number Variation in Domestication. Trends Plant Sci. 2019, 24, 352–365. [CrossRef] [PubMed]
12. Alonge, M.; Wang, X.; Benoit, M.; Soyk, S.; Pereira, L.; Zhang, L.; Suresh, H.; Ramakrishnan, S.; Maumus, F.; Ciren, D.; et al. Major

Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato. Cell 2020, 182, 145–161.e23.
[CrossRef]

13. Akakpo, R.; Carpentier, M.-C.; Ie Hsing, Y.; Panaud, O. The impact of transposable elements on the structure, evolution and
function of the rice genome. New Phytol. 2020, 226, 44–49. [CrossRef] [PubMed]

14. Makałowski, W.; Pande, A.; Gotea, V.; Makałowska, I. Transposable Elements and Their Identification. In Evolutionary Genomics:
Statistical and Computational Methods; Anisimova, M., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 1, pp. 337–359.
[CrossRef]

15. Ewing, A.D. Transposable element detection from whole genome sequence data. Mob. DNA 2015, 6, 24. [CrossRef] [PubMed]
16. Sabot, F.; Picault, N.; El-Baidouri, M.; Llauro, C.; Chaparro, C.; Piegu, B.; Roulin, A.; Guiderdoni, E.; Delabastide, M.; McCombie,

R.; et al. Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data.
Plant J. 2011, 66, 241–246. [CrossRef] [PubMed]

17. Shahid, S.; Slotkin, R.K. The current revolution in transposable element biology enabled by long reads. Curr. Opin. Plant Biol.
2020, 54, 49–56. [CrossRef] [PubMed]

18. Kirov, I.; Dudnikov, M.; Merkulov, P.; Shingaliev, A.; Omarov, M.; Kolganova, E.; Sigaeva, A.; Karlov, G.; Soloviev, A. Nanopore
RNA Sequencing Revealed Long Non-Coding and LTR Retrotransposon-Related RNAs Expressed at Early Stages of Triticale
SEED Development. Plants 2020, 9, 1794. [CrossRef] [PubMed]

19. Chakraborty, M.; VanKuren, N.W.; Zhao, R.; Zhang, X.; Kalsow, S.; Emerson, J.J. Hidden genetic variation shapes the structure of
functional elements in Drosophila. Nat. Genet. 2018, 50, 20–25. [CrossRef]

20. Rech, G.E.; Radío, S.; Guirao-Rico, S.; Aguilera, L.; Horvath, V.; Green, L.; Lindstadt, H.; Jamilloux, V.; Quesneville, H.; González, J.
Population-scale long-read sequencing uncovers transposable elements contributing to gene expression variation and associated
with adaptive signatures in Drosophila melanogaster. bioRxiv 2021. [CrossRef]

21. Debladis, E.; Llauro, C.; Carpentier, M.-C.; Mirouze, M.; Panaud, O. Detection of active transposable elements in Arabidopsis
thaliana using Oxford Nanopore Sequencing technology. BMC Genom. 2017, 18, 537. [CrossRef] [PubMed]

22. Ni, P.; Huang, N.; Nie, F.; Zhang, J.; Zhang, Z.; Wu, B.; Bai, L.; Liu, W.; Xiao, C.-L.; Luo, F.; et al. Genome-wide detection of
cytosine methylations in plant from Nanopore data using deep learning. Nat. Commun. 2021, 12, 5976. [CrossRef] [PubMed]

23. Belser, C.; Istace, B.; Denis, E.; Dubarry, M.; Baurens, F.-C.; Falentin, C.; Genete, M.; Berrabah, W.; Chèvre, A.-M.; Delourme, R.;
et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 2018, 4, 879–887.
[CrossRef] [PubMed]

24. Chu, C.; Borges-Monroy, R.; Viswanadham, V.V.; Lee, S.; Li, H.; Lee, E.A.; Park, P.J. Comprehensive identification of transposable
element insertions using multiple sequencing technologies. Nat. Commun. 2021, 12, 3836. [CrossRef] [PubMed]

25. Ewing, A.D.; Smits, N.; Sanchez-Luque, F.J.; Faivre, J.; Brennan, P.M.; Richardson, S.R.; Cheetham, S.W.; Faulkner, G.J. Nanopore
Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Mol. Cell 2020, 80, 915–928.e915. [CrossRef]
[PubMed]

26. Zhou, W.; Emery, S.B.; Flasch, D.A.; Wang, Y.; Kwan, K.Y.; Kidd, J.M.; Moran, J.V.; Mills, R.E. Identification and characterization
of occult human-specific LINE-1 insertions using long-read sequencing technology. Nucleic Acids Res. 2019, 48, 1146–1163.
[CrossRef]

27. Jeddeloh, J.A.; Bender, J.; Richards, E.J. The DNA methylation locus DDM1 is required for maintenance of gene silencing in
Arabidopsis. Genes Dev. 1998, 12, 1714–1725. [CrossRef] [PubMed]

28. Miura, A.; Yonebayashi, S.; Watanabe, K.; Toyama, T.; Shimada, H.; Kakutani, T. Mobilization of transposons by a mutation
abolishing full DNA methylation in Arabidopsis. Nature 2001, 411, 212–214. [CrossRef] [PubMed]

29. Saze, H.; Kakutani, T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-
remodeling factor DDM1. EMBO J. 2007, 26, 3641–3652. [CrossRef] [PubMed]

30. Vongs, A.; Kakutani, T.; Martienssen, R.A.; Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 1993, 260,
1926–1928. [CrossRef]

31. Tsukahara, S.; Kobayashi, A.; Kawabe, A.; Mathieu, O.; Miura, A.; Kakutani, T. Bursts of retrotransposition reproduced in
Arabidopsis. Nature 2009, 461, 423–426. [CrossRef] [PubMed]

32. Fu, Y.; Kawabe, A.; Etcheverry, M.; Ito, T.; Toyoda, A.; Fujiyama, A.; Colot, V.; Tarutani, Y.; Kakutani, T. Mobilization of a plant
transposon by expression of the transposon-encoded anti-silencing factor. EMBO J. 2013, 32, 2407–2417. [CrossRef] [PubMed]

33. Panda, K.; Slotkin, R.K. Long-Read cDNA Sequencing Enables a “Gene-Like” Transcript Annotation of Transposable Elements.
Plant Cell 2020, 32, 2687–2698. [CrossRef] [PubMed]

34. Quadrana, L.; Etcheverry, M.; Gilly, A.; Caillieux, E.; Madoui, M.-A.; Guy, J.; Bortolini Silveira, A.; Engelen, S.; Baillet, V.; Wincker,
P.; et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 2019, 10,
3421. [CrossRef]

35. Chaparro, C.; Gayraud, T.; de Souza, R.F.; Domingues, D.S.; Akaffou, S.; Laforga Vanzela, A.L.; Kochko, A.d.; Rigoreau, M.;
Crouzillat, D.; Hamon, S.; et al. Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on
the Complex World of Transposable Elements. Genome Biol. Evol. 2015, 7, 493–504. [CrossRef] [PubMed]

http://doi.org/10.1016/j.tplants.2019.01.003
http://www.ncbi.nlm.nih.gov/pubmed/30745056
http://doi.org/10.1016/j.cell.2020.05.021
http://doi.org/10.1111/nph.16356
http://www.ncbi.nlm.nih.gov/pubmed/31797393
http://doi.org/10.1007/978-1-61779-582-4_12
http://doi.org/10.1186/s13100-015-0055-3
http://www.ncbi.nlm.nih.gov/pubmed/26719777
http://doi.org/10.1111/j.1365-313X.2011.04492.x
http://www.ncbi.nlm.nih.gov/pubmed/21219509
http://doi.org/10.1016/j.pbi.2019.12.012
http://www.ncbi.nlm.nih.gov/pubmed/32007731
http://doi.org/10.3390/plants9121794
http://www.ncbi.nlm.nih.gov/pubmed/33348863
http://doi.org/10.1038/s41588-017-0010-y
http://doi.org/10.1101/2021.10.08.463646
http://doi.org/10.1186/s12864-017-3753-z
http://www.ncbi.nlm.nih.gov/pubmed/28715998
http://doi.org/10.1038/s41467-021-26278-9
http://www.ncbi.nlm.nih.gov/pubmed/34645826
http://doi.org/10.1038/s41477-018-0289-4
http://www.ncbi.nlm.nih.gov/pubmed/30390080
http://doi.org/10.1038/s41467-021-24041-8
http://www.ncbi.nlm.nih.gov/pubmed/34158502
http://doi.org/10.1016/j.molcel.2020.10.024
http://www.ncbi.nlm.nih.gov/pubmed/33186547
http://doi.org/10.1093/nar/gkz1173
http://doi.org/10.1101/gad.12.11.1714
http://www.ncbi.nlm.nih.gov/pubmed/9620857
http://doi.org/10.1038/35075612
http://www.ncbi.nlm.nih.gov/pubmed/11346800
http://doi.org/10.1038/sj.emboj.7601788
http://www.ncbi.nlm.nih.gov/pubmed/17627280
http://doi.org/10.1126/science.8316832
http://doi.org/10.1038/nature08351
http://www.ncbi.nlm.nih.gov/pubmed/19734880
http://doi.org/10.1038/emboj.2013.169
http://www.ncbi.nlm.nih.gov/pubmed/23900287
http://doi.org/10.1105/tpc.20.00115
http://www.ncbi.nlm.nih.gov/pubmed/32647069
http://doi.org/10.1038/s41467-019-11385-5
http://doi.org/10.1093/gbe/evv001
http://www.ncbi.nlm.nih.gov/pubmed/25573958


Plants 2021, 10, 2681 11 of 11

36. Kirov, I.; Omarov, M.; Merkulov, P.; Dudnikov, M.; Gvaramiya, S.; Kolganova, E.; Komakhin, R.; Karlov, G.; Soloviev, A. Genomic
and Transcriptomic Survey Provides New Insight into the Organization and Transposition Activity of Highly Expressed LTR
Retrotransposons of Sunflower (Helianthus annuus L.). Int. J. Mol. Sci. 2020, 21, 9331. [CrossRef] [PubMed]

37. Mirouze, M.; Reinders, J.; Bucher, E.; Nishimura, T.; Schneeberger, K.; Ossowski, S.; Cao, J.; Weigel, D.; Paszkowski, J.; Mathieu, O.
Selective epigenetic control of retrotransposition in Arabidopsis. Nature 2009, 461, 427–430. [CrossRef] [PubMed]

38. Lanciano, S.; Mirouze, M. Transposable elements: All mobile, all different, some stress responsive, some adaptive? Curr. Opin.
Genet. Dev. 2018, 49, 106–114. [CrossRef] [PubMed]

39. Pucker, B.; Kleinbölting, N.; Weisshaar, B. Large scale genomic rearrangements in selected Arabidopsis thaliana T-DNA lines are
caused by T-DNA insertion mutagenesis. BMC Genom. 2021, 22, 599. [CrossRef] [PubMed]

40. Pucker, B.; Rückert, C.; Stracke, R.; Viehöver, P.; Kalinowski, J.; Weisshaar, B. Twenty-Five Years of Propagation in Suspension Cell
Culture Results in Substantial Alterations of the Arabidopsis Thaliana Genome. Genes 2019, 10, 671. [CrossRef] [PubMed]

41. Cavrak, V.V.; Lettner, N.; Jamge, S.; Kosarewicz, A.; Bayer, L.M.; Mittelsten Scheid, O. How a Retrotransposon Exploits the Plant’s
Heat Stress Response for Its Activation. PLoS Genet. 2014, 10, e1004115. [CrossRef] [PubMed]

42. Thieme, M.; Lanciano, S.; Balzergue, S.; Daccord, N.; Mirouze, M.; Bucher, E. Inhibition of RNA polymerase II allows controlled
mobilisation of retrotransposons for plant breeding. Genome Biol. 2017, 18, 134. [CrossRef]

43. Pecinka, A.; Dinh, H.Q.; Baubec, T.; Rosa, M.; Lettner, N.; Scheid, O.M. Epigenetic Regulation of Repetitive Elements Is Attenuated
by Prolonged Heat Stress in Arabidopsis. Plant Cell 2010, 22, 3118–3129. [CrossRef] [PubMed]

44. Tittel-Elmer, M.; Bucher, E.; Broger, L.; Mathieu, O.; Paszkowski, J.; Vaillant, I. Stress-Induced Activation of Heterochromatic
Transcription. PLoS Genet. 2010, 6, e1001175. [CrossRef] [PubMed]

45. Roquis, D.; Robertson, M.; Yu, L.; Thieme, M.; Julkowska, M.; Bucher, E. Genomic impact of stress-induced transposable element
mobility in Arabidopsis. Nucleic Acids Res. 2021, 49, 10431–10447. [CrossRef]

46. Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman,
A.; et al. The complete sequence of a human genome. bioRxiv 2021. [CrossRef]

47. Wang, B.; Yang, X.; Jia, Y.; Xu, Y.; Jia, P.; Dang, N.; Wang, S.; Xu, T.; Zhao, X.; Gao, S.; et al. High-quality Arabidopsis thaliana
Genome Assembly with Nanopore and HiFi Long Reads. Genom. Proteom. Bioinform. 2021. [CrossRef] [PubMed]

48. Tanskanen, J.A.; Sabot, F.; Vicient, C.; Schulman, A.H. Life without GAG: The BARE-2 retrotransposon as a parasite’s parasite.
Gene 2007, 390, 166–174. [CrossRef]

49. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [CrossRef] [PubMed]
50. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.;

et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef]

51. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842.
[CrossRef]

52. Priyam, A.; Woodcroft, B.J.; Rai, V.; Moghul, I.; Munagala, A.; Ter, F.; Chowdhary, H.; Pieniak, I.; Maynard, L.J.; Gibbins, M.A.;
et al. Sequenceserver: A Modern Graphical User Interface for Custom BLAST Databases. Mol. Biol. Evol. 2019, 36, 2922–2924.
[CrossRef] [PubMed]

53. Wickham, H. ggplot2. WIREs Comp. Stat. 2011, 3, 180–185. [CrossRef]
54. Buels, R.; Yao, E.; Diesh, C.M.; Hayes, R.D.; Munoz-Torres, M.; Helt, G.; Goodstein, D.M.; Elsik, C.G.; Lewis, S.E.; Stein, L.; et al.

JBrowse: A dynamic web platform for genome visualization and analysis. Genome Biol. 2016, 17, 66. [CrossRef] [PubMed]

http://doi.org/10.3390/ijms21239331
http://www.ncbi.nlm.nih.gov/pubmed/33297579
http://doi.org/10.1038/nature08328
http://www.ncbi.nlm.nih.gov/pubmed/19734882
http://doi.org/10.1016/j.gde.2018.04.002
http://www.ncbi.nlm.nih.gov/pubmed/29705597
http://doi.org/10.1186/s12864-021-07877-8
http://www.ncbi.nlm.nih.gov/pubmed/34362298
http://doi.org/10.3390/genes10090671
http://www.ncbi.nlm.nih.gov/pubmed/31480756
http://doi.org/10.1371/journal.pgen.1004115
http://www.ncbi.nlm.nih.gov/pubmed/24497839
http://doi.org/10.1186/s13059-017-1265-4
http://doi.org/10.1105/tpc.110.078493
http://www.ncbi.nlm.nih.gov/pubmed/20876829
http://doi.org/10.1371/journal.pgen.1001175
http://www.ncbi.nlm.nih.gov/pubmed/21060865
http://doi.org/10.1093/nar/gkab828
http://doi.org/10.1101/2021.05.26.445798
http://doi.org/10.1016/j.gpb.2021.08.003
http://www.ncbi.nlm.nih.gov/pubmed/34487862
http://doi.org/10.1016/j.gene.2006.09.009
http://doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pubmed/29750242
http://doi.org/10.1093/bioinformatics/btp163
http://doi.org/10.1093/bioinformatics/btq033
http://doi.org/10.1093/molbev/msz185
http://www.ncbi.nlm.nih.gov/pubmed/31411700
http://doi.org/10.1002/wics.147
http://doi.org/10.1186/s13059-016-0924-1
http://www.ncbi.nlm.nih.gov/pubmed/27072794

	Introduction 
	Results 
	Nanotei—A New Pipeline for Genome-Wide Transposon Insertion Detection from Nanopore Data 
	Numerous TE Copies Are Hidden in TAIR10 Genome Assembly Gaps 
	Known and New Active TEs of the ddm1 Mutant 

	Discussion 
	Materials and Methods 
	Plant Material and Growth Conditions 
	HMW DNA Isolation and Size Selection 
	Nanopore Sequencing and Basecalling 
	Nanotei Pipeline 
	Manual Curation of TEIs 
	Statistics and Data Visualization 

	References

