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Abstract: In a changing climate where future food security is a growing concern, researchers are
exploring new methods and technologies in the effort to meet ambitious crop yield targets. The
application of Artificial Intelligence (AI) including Machine Learning (ML) methods in this area has
been proposed as a potential mechanism to support this. This review explores current research in
the area to convey the state-of-the-art as to how AI/ML have been used to advance research, gain
insights, and generally enable progress in this area. We address the question—Can AI improve
crops and plant health? We further discriminate the bluster from the lustre by identifying the key
challenges that AI has been shown to address, balanced with the potential issues with its usage, and
the key requisites for its success. Overall, we hope to raise awareness and, as a result, promote usage,
of AI related approaches where they can have appropriate impact to improve practices in agricultural
and plant sciences.
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1. Introduction

Recent estimates predict that an increase of more than 60% in food will be needed by
2050 in order to feed the increasing global population [1]. These gains must be achieved
while climate change threatens to reduce not only crop yields, but also their nutritious
value through a range of mechanisms such as disease [2], drought [3], floods, heat, or low
nutrient availability [4]. To keep up with the increase in the human population and with
environmental changes, it is vital to increase crop yields. However, this goal is hampered
by the limited availability of arable land and by the mounting pressure to reduce the use of
agricultural chemicals such as fertilizers, herbicides, insecticides, and fungicides.

Now, more than ever, it is critical to provide plant/crop breeders with new tools that
will allow them to develop and sustain the next generation of crop varieties. These tools
can come from a range of technologies, including but not limited to; methods to identify
alleles linked to favourable traits, genetic marker combinations via high-throughput geno-
typing or multi-omic sequencing, gene editing, speed breeding strategies, yield prediction,
monitoring and management of pests/disease, fertilization schemes and real-time crop
surveillance e.g., through imaging and remote sensing. These technologies are producing
data at an unprecedented rate and turning plant science into a data intensive discipline.
Efficient computational analysis of these large volume datasets is essential for our under-
standing of crops and generation of new scientific insights to push the field forward. The
application of artificial intelligence (AI) could be a powerful facilitator towards such goals,
particularly when used in combination with the large volume of data collected through the
above technologies. The terms Artificial Intelligence (AI) and Machine learning (ML) are
commonly used interchangeably in the literature. However, AI incorporates the broader
concept of simulating human intelligence by machines, for example, by learning or rea-
soning, while ML is a branch of AI which commonly involves computer learning in an
autonomous fashion (Figure 1). Traditionally, we have witnessed multiple applications of
supervised and unsupervised ML methods in plant science research. In supervised ML,
the provision of labelled data enables the learning; algorithms are used to parse the data,
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learn from it, and then make a prediction about the labelling of new or previously unseen
data. Unsupervised ML, on the other hand, involves discovering patterns in unlabeled
data [5]. More recently, due to the availability of large, heterogenous and complex datasets,
we are witnessing a rise in Deep learning (DL) based methods that use neural networks to
simulate human decision-making [6] and may include supervised, semi-supervised and
unsupervised ML methods. In this review, we will use the umbrella term of AI to cover
both AI and ML for the sake of better readability.
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Figure 1. Summarizing different types of Machine Learning (ML) analyses. Exemplary analyses are broken down into
supervised and unsupervised learning examples and the decision making involved in choosing these approaches.

The aim of this review is to provide the reader an overview of how AI algorithms are
being applied to advance our understanding of plant health, and to highlight how they
could be used to aid food security. In doing so we highlight the challenges in the field that
AI can address. As such we begin with a focus on AI for the usage and interpretation of a
range of high-throughput phenotyping datasets e.g., image-based. Then we investigate
analyses that involve the integration of state-of-the-art, data rich technologies, such as
genotype-to-phenotype analysis using multi-omic sequencing datasets. Throughout we
consider the challenges and problem areas where AI methods can be improved. Finally, we
detail emerging areas of interest in the field which can be led by and the potential issues
with the usage of AI approaches e.g., the need for transparency and interpretability of
approaches. We hope to increase the recognition, as well as the accessibility of AI tools
in agricultural and plant science research more generally. From our investigations we
propose that a significant degree of bluster with regard to the usage of AI may be due to
its increasing usage where the benefits of AI over current practice is not made clear or
not comprehensively tested. We suggest that to discriminate the bluster from the lustre it
is essential to highlight advances that have been made to current practice with adequate
comparisons to existing statistical models, existing approaches, or otherwise.

2. AI in Plants
2.1. Phenotyping

The collection of plant phenotypic information can be a manual and time-consuming
process, potentially requiring significant domain expertise. This collection process limits
the quantity of available phenotypic data for a given plant species and the purpose of its
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usage, like facilitating genotype-to-phenotype analysis. The quality of phenotypic data
can vary according to the collection methodology and the degree of induced human error.
To accelerate discovery and increase reproducibility in this area, high-throughput plant
phenotyping is an area of active development to automate retrieval of plant phenotypes.
One example of this is the usage of sensors to record environmental (water intake, light,
temperature, humidity) and physical (plant weight, height etc.) measurements of interest
that can be incorporated in ML models, to depict phenotype and phenotype-environmental
interactions [7]. Another example is image-based phenotyping that gives increased power
to evaluate morphological features. As a result, imaging is increasingly being seen as
the gold-standard for plant phenotyping, having the capability to also enable real-time
analytics and monitoring.

Image-based phenotyping, e.g., advanced microscopy and field/plot drone imag-
ing [8], has the caveat that it can generate huge datasets that require time-consuming,
expert, manual interpretation to extract specific phenotypic measurements from. These
extracted phenotypic measurements can then be associated with genotype or otherwise.
In fact, it is proposed that processing and extracting features from images could be the
new phenotyping bottleneck [9], and that this is an area of interest where AI could provide
automated solutions. For example, AI was successfully applied to detect different disease
development stages of powdery mildew in squash using both lab-based, and unmanned
aerial vehicle (UAV) field-based, hyperspectral imaging [10]. We have seen great advance-
ments in deep learning-based methods like convolutional neural networks (CNN), that
have been used with great degree of success in many fields, including plant sciences,
for image-based ML goals. When we focus on pest/disease detection and monitoring,
Kawasaki et al. [11] used a CNN to classify cucumbers as diseased or non-diseased from
leaf imaging, identifying regions of interest for disease diagnosis. Similarly CNNs were
used by Fuentes et al. [12] alongside images detected in-place by camera devices, to allow
real-time detection of diseases and pest in tomato plants. However, CNNs are not the only
means for image analysis, for example, Jeon et al. [13] developed an image processing
algorithm for discriminating individual weed and crop plants from robot captured field
images using an Artificial Neural Network (ANN). Classical ML approaches like Random
Forests were also used by Gao et al. [14] for accurate weed detection in early season maize
fields from UAV imagery.

In line with this work on disease detection, it is acknowledged that great value can be
achieved via the assessment of other stresses beyond diseases. One such widely studied
example is plant water stress estimation. An et al. [15] classified water stress in maize
based on optimum moisture, light drought, and moderate drought stress. To do this they
used the pre-trained CNNs Resnet50 and Resnet120 and digital camera images. Various
studies followed this work, each aiming to improve the demonstrated performance and
accuracy [16,17]. Whereas, Chandel et al. [18] compared three deep learning models
(AlexNet, GoogLeNet and Inception V3) for the identification of water stress in maize, okra
and soybean crops from images. In this analysis GoogLeNet showed superior performance
when accuracy was assessed.

Many of the detailed approaches do not explicitly consider temporal features, for
example those from sequential images or videos. Li et al. [19] tackled this problem using
BiLSTM networks to extract features from sequential digital images of maize and sorghum
and to successfully identify plant water stress, even at an early stage.

The monitoring and detection of disease and plant stress is important not only for the
determination of crop management strategies e.g., pesticide application, but also for yield
prediction. There is a large body of research that focuses on yield prediction and forecasting
directly, and there are a growing number of examples of such predictions from image-based
analysis. You et al. [20] applied CNNs and RNNs for soybean crop yield prediction that
was based on a sequence of remotely sensed multi-spectral satellite images enabling them
to include information on vegetation growth and thus on agricultural outcomes. Garcia-
Martinez et al. [21] analysed different multispectral and red-green-blue (RGB) vegetation
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indices, as well as the digitally estimated canopy cover and plant density, in order to
estimate corn grain yield using a neural network model. Yang et al. [22] investigated
the ability of CNN to estimate rice grain yield using remotely sensed UAV images and
proposed a CNN model that provided robust yield forecast throughout the ripening stage.
Finally, Khaki et al. [23] developed a deep learning framework, comprised of a hybrid
CNN-RNN model, to predict crop yield based on environmental data and management
practices. Such CNNs are capable of processing data with formats such as one-dimensional
data (signals and sequences), two-dimensional data (images), and three-dimensional data
(videos).

AI has been applied for image-based plant phenotyping to identify more general
developmental plant phenotypes. For example Ubbens et al. [24] used CNNs for plant leaf
counting and age regression for images on plant rosettes. While Pound et al. [25] used
CNNs to count spike and spikelets in wheat images in order to study plant development.
Falk et al. [26] integrated time series image capture with computer vision and a ML based
segmentation approach to image soybean roots and study traits including shape, length,
number mass and angle. Taghavi Namin et al. [27] proposed the usage of an alternate
deep learning technique—Recurrent Neural networks (RNNs) and in particular Long
Short-Term Memories (LSTMs), to model temporal growth patterns due to their ability to
learn long-range dynamics.

Many of these AI models learn in a supervised fashion from labelled datasets, and are
limited by the availability and quality of training examples. An alternate approach is to
include the usage of semi-supervised or unsupervised methods that are not dependent on
availability of curated labelled datasets. For example, Al-Shakarji et al. [28] developed an
unsupervised learning method for leaf detection, extraction and counting in Arabidopsis.
Semi-supervised approaches such as transfer learning can also be used where a neural
network can be trained on a more general dataset and then later fine-tuned on a specific
dataset of interest. This offers the advantage that the specific dataset of interest can be
much smaller by comparison. Douarre et al. [29] used this technique to transfer learning
from synthetic or simulated data to allow soil-root segmentation in X-Ray Tomography
images.

The examples given here for the usage of AI demonstrate its lustre since they typically
yield a clear advantage over the existing methods or practices for the same task. To highlight
this and instil confidence in their offerings, many studies offer detailed comparisons with
the traditional approaches, and highlight the benefits over what otherwise would have
been an arduous manual task e.g., visually inspecting plants for appearance of disease, or,
to define developmental stages. The examples that we have covered included a range of
both controlled experimental conditions e.g., laboratory or greenhouse-based, and field
applications. One could argue that highly accurate performance of AI in a laboratory
setting, with no demonstratable translation to the field, could contribute to the bluster
surrounding the application of AI for certain tasks. If we take disease detection as an
example, there are certainly additional considerations that the above cited authors have
made when they move from the laboratory to field settings for monitoring of disease,
these include noise introduced by poorer image quality because of the imaging techniques
used (e.g., UAV, satellite, or robot capture images) and weather effects etc. As a result,
many of the field-based solutions we see have been developed specifically with these
considerations in mind. However, for the correct use-case it is important to recognise the
value of laboratory-based approaches e.g., if the disease detection is part of a controlled
laboratory experiment to identify the genes underlying key traits.

2.2. Genotype-to-Phenotype

Linking alleles or genomic regions to traits of interest i.e., genotype-to-phenotype,
is one of the fundamental challenges in biology. This enables the derivation of desirable
genetic markers that underly favorable phenotypes and that are therefore targets to be com-
bined when breeding. To date much work in plants in this area uses traditional statistical
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approaches such as QTL mapping using experimental populations [30] or Genome Wide
Association Studies (GWAS) where diverse panels are available [31]. Although, aligned
to this is the ability to predict complex traits (where typically many small-effect alleles
contribute) using a large selection of genome-wide genetic markers (referred to as Genomic
Prediction [32]), which is a major research goal that has the potential to accelerate crop
breeding and where AI is making an impact. Initial work by Meuwissen et al. [32] proposed
a selection of statistical methods for Genomic Prediction including ridge regression Best
Linear Unbiased Prediction (rrBLUP) and Bayesian approaches. While others have demon-
strated the utility of other approaches e.g., Least Absolute Angle and Selection Operator
(LASSO) based approaches [33–35], genomic BLUP (GBLUP) and elastic nets (EN) [36].
Most of the earlier statistical methods that have been used for Genomic Prediction are
linear in their mapping of genotype-to-phenotype. However, non-linear methods have
been proposed for Genomic Prediction to better represent the biological interactions of
complex traits which may include phenomenon such as epistasis. Such non-linear methods
include ML based methods like decision tree algorithms and deep learning that have the
added advantage of scaling easily to enable analysis of large datasets. We will highlight
some exemplars of the application of ML for Genomic Prediction and comparisons (where
available) with other classical approaches.

Firstly, Holliday et al. [37] used a Random Forest to identify optimized combinations
of SNPs to predict adaptive phenotypes in the widespread conifer Sitka spruce (Picea
sitchensis). They quantified the strength and direction of pairwise interactions between
SNPs to evaluate the role of epistasis in shaping these phenotypes and demonstrate the
power of Random Forest to identify subsets of markers that are most important to climatic
adaptation. Secondly, Long et al. [38] predicted grain yield in wheat from dense molecular
markers. They showed that using support vector regression (SVR) with a Gaussian radial
basis function (RBF) kernel outperformed a linear kernel and Bayesian Lasso, and noted
the benefit of a non-linear kernel when the phenotype to be predicted had a non-linear
dependency on genotypes. Thirdly, González-Camacho et al. [39] compared linear Bayesian
LASSO regression with two non-linear regression models, reproducing kernel Hilbert
spaces (RKHS) regression and RBF neural networks (RBFNN) on maize genotyping data
and evaluated for several trait–environment combinations. They observed a slight and
consistent superiority of RKHS and RBFNN over the additive Bayesian LASSO model
where the RKHS and RBFNN models also captured epistatic effects. Next, González-
Camacho et al. [40] compared the performance of a multi-layer perceptron (MLP) classifier
versus a probabilistic neural network (PNN) using single nucleotide polymorphism (SNP)
information to select maize and wheat individuals of a specific phenotypic class. They
found the PNN to be more accurate than MLP for assigning lines to the correct class for
the analysed complex traits. Ma et al. [41] developed a deep learning method, named
DeepGS, to predict phenotypes from high-dimensional genotypic data using a deep CNN.
They proposed the use of DeepGS as a complementary method to the commonly used
RR-BLUP as an ensemble learning approach for more accurately selecting individuals with
high phenotypic values.

When we next focus on work that has been published more recently, this typically
yields conclusions regarding the utility of AI that are also in line with previous work. For
example, Sousa et al. [42] compare a range of ML, DL and traditional statistical approaches
to predict the genetic resistance of Arabica coffee to orange leaf rust. They input genotypic
markers into their models and used accuracy and apparent error rate (APER) to compare an
ANN, a Decision Tree ML approach with Generalized Bayesian Lasso (GBLASSO). Overall,
the authors found that the ML-based methodologies outperformed GBLASSO showing
higher accuracies. However, when they looked at APER the Decision Tree produced higher
errors (24.9%) than the GBLASSO (22.7%) due to high variance in terms of prediction, this
remained true until they tested usage of ensemble methods such as bagging, random forest
and boosting that combine multiple Decision trees to reduce variability (reducing error to a
minimum of 19.5%). In another example, Zingaretti et al. [43] compared and evaluated the
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predictive accuracy of linear and DL techniques using genotyping data from strawberries
and blueberries to predict agronomic traits including yield, weight and fruit size. In terms
of genomic prediction, linear Bayesian models were better than the DL method that they
used (CNNs) for the full additive architecture, whereas the opposite was observed under
strong epistasis i.e., dependent on the use-case. After extensive testing the authors noted
that by using a parameterization capable of considering these non-linear effects, Bayesian
linear models could match or even exceed the predictive accuracy of DL. Finally, the work
presented by Sandhu et al. [44] evaluated the potential of DL models for the prediction of
traits such as grain yield, grain protein content, heading date, plant height, and test weight
using SNPs from the Washington State University spring wheat breeding program. They
compared the performance of two DL algorithms, namely multilayer perceptron (MLP)
and a CNN, with a more traditional statistic approach in the form of ridge regression best
linear unbiased predictor (rrBLUP). The found that the DL models gave 0 to 5% higher
prediction accuracy than rrBLUP model for all five traits with, MLP producing a 5% higher
prediction accuracy than CNN for grain yield and grain protein content.

We previously proposed that some of the bluster surrounding AI can be attributed to
the assumption of its superiority over current methods without detailed comparisons. It
has been observed in other studies that different algorithms may produce different results,
these studies often highlight the fact that no one single method performs the best in all
cases, even when comparing only amongst AI approaches. Azodi et al. [45] highlighted
the importance of comparing algorithms across a diverse range of datasets. This work
used data of 18 traits across six plant species with different marker densities and training
population sizes, and the authors compared the performance of six linear and six non-linear
algorithms. The authors reported that no one algorithm performed best in all cases, but
that those predictions based on a combination of results from multiple algorithms (i.e.,
ensemble predictions) performed consistently well. Similar comparative studies were
carried out by Spindel et al. [46] for rice, where different methods performed better for
different datasets e.g., to predict plant height, a Random Forest produced the most accurate
models.

2.3. Omic Data

Many of the highlighted studies that use AI for Genomic Prediction, or to connect
genotype-to-phenotype generally, incorporate genotypic markers as SNPs. In many cases
these have been derived from array-based technologies. SNP arrays are a high-throughput,
relatively cost-efficient genotyping assay that can typically be automated in the labora-
tory (experiment and analyses). They have been widely used to genotype crops (see the
review by You et al. [47] for further details), where even for complex polyploid plants
such as wheat and strawberry there are SNP arrays available holding up to 820 K SNPs.
However, as the cost of sequencing technologies decreases there is an increasing desire to
adopt omic technologies such as genomics (sequencing the DNA of the genome), transcrip-
tomics (sequencing RNA to determine which genes expressed by the organism at any one
time), proteomics (large-scale study of proteins that are produced by an organism) and
the epigenome (chemical modifications to DNA e.g., methylation of cytosines, that can
turn genes on or off). Individually within their respective layers, or more powerfully in
combination (multi-omics), these technologies have the capability to capture more of the
whole picture of what is happening inside the cell rather than, for example, using a subset
of SNPs on an array alone.

AI is playing an increasingly important role for exploration of the genome and its
complexities and to assess the interaction between omic layers. For example, Korani
et al. [48] compared a range of ML algorithms (including a neural network, logistic re-
gression, K-nearest neighbors and Decision trees) to discriminate true positive and false
positive SNPs in polyploid peanut plants. They achieved high accuracy directly from
both peanut RNA-seq and whole-genome shotgun (WGS) resequencing data. The review
by Mochida et al. [49] discusses the large range of ML-based methods derived that typi-
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cally use transcriptome data to construct gene regulatory networks (GRNs). The GRNs
represent gene interactions with each other and with other cell substances to direct the
expression of mRNA and proteins and ultimately determine the function of the cell. For
example, Mochida et al. [49] highlight GENIE3 [50], a tree-based ML algorithm that has
been widely used to infer GRNs from transcriptomic (RNA-seq) data in a range of species.
Furthermore, there is a growing body of research that aims to use deep learning to predict
transcriptomic information directly from DNA sequence or epigenetic marks typically
using representations of transcription factor binding sites (TFBS) [51,52], enhancers [53],
histone modifications [54], open chromatin regions [55], or promoters [56]. Similarly, Gar-
diner et al. [57] incorporated both promoter and transcript sequence as k-mer profiles to
represent de novo identified TF, miRNA and RNA binding sites, to predict complex dynamic
transcriptomic profiles using ML-based models.

2.3.1. Challenges from Omic Data

Omic data generally originates as large volumes of raw sequencing reads that require
downstream processing via bioinformatic workflows to derive high quality features. Ge-
nomic, transcriptomic and epigenomic data can commonly be processed to derive features
such as SNPs, gene expression counts and cytosine methylation (%) respectively. It is
essential that bioinformatics workflows are carefully curated and rigorously tested in order
to process the raw sequencing data into high quality and valid features, and therefore,
bioinformatics acts as a huge foundational research area. Bioinformatically processed
features can have high dimensionality, they can be sparse and can also be inherently
noisy, showing variation between replicates and experimental batch effects. Some of these
shortcomings can be overcome by computationally efficient ML–based algorithms that
make minimal assumptions about the data’s probability distributions and generation and
provide a suitable platform for computational inference.

The high dimensionality of omic datasets means that for the features derived from the
raw data, there are typically more of them (or a large number) compared to the available
number of samples. In fact, omic studies can generate huge numbers of input features for
ML models and therefore feature selection and bioinformatic filtering approaches can be
used to reduce these numbers to select the most relevant features for downstream analysis.
For example, cases of high dimensionality are highlighted by studies in wheat, generating
evidence of gene expression for >83 K genes from 209 RNA-seq samples [58], while in
another study there were >716 K SNPs and methylation information for >850 K cytosines
per sample across 104 samples from genomic and epigenomic sequencing [59,60]. These
examples also highlight data sparsity where, for example, for the >716 K SNPs only 53 K
were observed with what the authors deemed a sufficient depth of sequencing coverage
(5X) in more than 1 sample i.e., many identified features could be unique to one sample or
to small sample subsets. Filtering features that show such sparsity (and filtering generally),
could risk losing some information from downstream models that may be important
when models are applied to new independent datasets. But feature filtering, with strict
bioinformatic processing, can reduce not only dimensionality issues but also reduce noise
in the omic datasets as it is possible that features unique to e.g., a single sample, could be
errors or else largely uninformative for modelling global trends. Figure 2 uses genomic
data as an exemplar to summarize the processing of omic data, its features and suggested
potential solutions to reduce dimension and complexity of these feature sets prior to ML
analyses.
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to reduce the dimensionality of the resultant feature sets and finally a range of possible AI/ML
methods.

The removal of low quality or sparse features addresses some of the issues common to
omic data. However, even in a high quality, validated feature set e.g., a set of validated SNPs,
there could be both relevant as well as redundant features present in the data. Therefore,
feature selection can be employed (Figure 2) where, for example, a univariate filtering
approach can be used to rank features and filter out the least promising before downstream
modelling, this can not only reduce the dimensionality of the datasets to improve the
performance of the ML model (reducing CPU-time memory and likelihood of overfitting),
but can also provide insight into the underlying biological processes represented by the
data i.e., answering the question-are there features that are irrelevant and/or redundant
for the biological study being conducted? Common feature selection methods (that are
independent of the final learning model) include association tests (e.g., chi-squared) or
correlation-based filters. These have the caveat that they could remove relevant features
that are meaningless when considered in isolation but that can be useful in combination.
This affect can be mitigated using algorithms such as Principal Component Analysis
(PCA) where new smaller sets of orthogonal features (principal components) are obtained
by maximizing the variation of the original features, to visualize the data in a lower-
dimensional space. Though further processing is required for a domain specialist to
interpret these new features. The work by Perez-Riverol et al. [61] compares feature
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selection approaches, deriving a feature selection workflow for high-dimensional omic
data.

In addition to the more commonly used feature selection methods in Figure 2, ML-
based methods have been employed directly to prioritize features that can be used as input
into GP analyses. For example, Li et al. [62] used Random Forests, Gradient Boosting
Machine (GBM) and XgBoost to identify the top ranked SNPs to construct genomic rela-
tionship matrices for the estimation of genomic breeding values (GEBVs). They found
that the performance of the SNP subsets selected by RF and GBM was better than that
of other sampling strategies and comparable to using the whole SNP panel, and they
identified SNPs with direct links to candidate genes affecting growth. In contrast, the work
by Degenhardt et al. [63] investigated downstream methods that were entwined with the
final learning model and looked to define a minimal set of variables needed for the best
predictions. They compared a range of methods that perform recursive feature elimination
(RFE) where prediction error after removal of a feature was used to determine its predictive
value (permutation importance). In the case of the availability of enough data samples, one
may also use deep learning-based methods, opposed to classical methods explained above,
in order to let the algorithm automatically curate features from the data, and thus, remove
the need for an explicit feature curation and selection stage. These deep learning methods
also do not need to hold all the data in memory, like many of the classical algorithms,
making them more computationally efficient, and they have a different way of handling
the problem caused by the dimensionality of the data.

2.3.2. Omic Data Integration

As researchers strive to gain a fuller picture of a biological system by integrating mul-
tiple omic layers (multi-omic), it will become critical to represent the complex interactions,
not only within but between these layers, to derive meaningful insights. Methods have
been proposed for this including using multi-layer networks and Graph Convolutional
Networks (GCN). The work by Haas et al. [64] discusses the usage of multi-layer networks
to represent all the functional interactions within and across all the omic layers of the cell
for a given organism. However, they suggest that this is currently limited by incomplete
omic data and propose the usage of ML algorithms to fill the gaps in our knowledge of
how the information flows across the omic layers e.g., as described by Vert et al. in [65].
Alternatively, the work by Wang et al. [66] proposed the usage of Multi-Omics gRaph cOn-
volutional NETworks (MORONET) for biomedical classification. MORONET incorporates
mRNA expression data, DNA methylation data, and miRNA expression data to firstly
employ omics-specific learning and then cross-omics correlation learning for multi-omics data
classification. Specifically, MORONET utilizes Graph Convolutional Networks (GCNs) that
can take advantage of both the omics features and the correlations among patients described
by the patient similarity networks. Such work has largely been reported in the domain of
biomedical research, and extensive translation of the learning into plants currently does
not appear to be widespread.

The adoption of multi-omic data in plant science research has resulted in availability
of a large volume of curated and non-curated datasets. As such, we are witnessing a
rise in the development and usage of Knowledge Base technologies, in particular Graph
Databases [67,68], for organizing the knowledge captured by the scientific community.
Graph databases capture the interconnected nature of the biology and are proving to be
a valuable technology for organizing omic data and applying graph-theoretic and NLP
based AI techniques to answer questions such as “what-if”, to identify causal relationships,
and to perform gap analysis. Dai et al. proposed HRGRN [69], which is an example of
Graph powered database for Arabidopsis signaling transduction, metabolism and gene
regulatory networks. While Venkatesan et al. [70] developed Agronomic Linked Data
(AgroLD), a knowledge-based system that uses Semantic Web technologies and standard
ontologies to integrate and query data for various plant species, including corn, rice and
wheat. KnetMiner [71] represents another plant specific and extensive knowledge base



Plants 2021, 10, 2707 10 of 14

that was developed with the aim to accelerate the gene-trait discovery process. Graph
databases are emerging as an important technical area in the plant science domain, and we
expect the adoption of such databases within the plant science community to continue to
grow.

3. Emerging Areas of Interest in the Field
Explainability and Interpretability

AI models can sometimes be referred to as ‘black boxes’, this phrasing is used because
in many cases the inner logic of the model cannot be easily understood by humans. Such
a scenario is thought to be a potential barrier to the uptake of AI in practical applica-
tions, adding to the bluster behind such approaches, where the user could feel unsure or
doubtful about acting on a model’s prediction if they cannot see the reasoning behind it.
Graph databases attempt to answer such questions to an extent. Parallelly, Explainable
AI algorithms are proposed as methods to illuminate what is inside the ‘black box’ i.e.,
they help us to understand and interpret why predictions have been made. Clarity as to
how a prediction was derived, for example identifying important patterns and/or fea-
tures that underly an AI model, could increase the level of trust from the end-user e.g.,
a breeder, as described by Harfouche et al. [72]. Additionally, model explanation was
proposed by Gardiner et al. [57] as a method for hypothesis generation to identify, rank and
therefore prioritize features that could drive the phenotype being predicted. The authors
suggest that this could allow a user to streamline the features selected for downstream
experimental investigation and validation. The study by Ghosal et al. [73] in soybean
used explainable deep machine learning to automate plant stress identification, delivering
trained pathologist-level performance and using explanation to identify which visual plant
stress symptoms are important to make predictions. Finally, Newman et al. [74] trained
an ensemble of ML models combining crop weather, ground-sensor, soil, chemical and
fertiliser dosage, management, and satellite data, to produce robust cross-continent yield
models. They provided explanation of these models to reveal fundamental drivers of crop
behaviour and complex interactions predicting yield and agronomic traits.

4. Discussion

In this review we have explored the usage and potential advantages of AI across a
variety of applications relevant to the agricultural and plant sciences. Firstly, we looked at
the lucrative potential for AI to overcome a phenotyping bottleneck (manual curation or
human-led visual inspection of phenotypes) by automating the processing and extraction
of features from phenotyping analyses e.g., via imaging or videos. Secondly, we reviewed
current work on Genomic Prediction where the consensus was that no one algorithm
performed best in all cases, but that those predictions based on a combination of results
from multiple algorithms typically performed best. Here, we noted the importance of
detailed comparisons between AI approaches and existing classic statistical methods
to prove an advantage can be gained—and thus, not amplify the bluster surrounding
AI, which we propose can partly be attributed to the assumption of AI’s superiority
over existing methods without detailed comparisons. Next, we highlight the challenges
encountered with multi-omic datasets e.g., high-dimensionality, followed by discussing
the benefits of graph-based data integration and interpretable predictions, all of which are
beginning to be addressed in the AI domain and are the subject of active development in
the field. We conclude that, dependent on the question being asked and the availability
of suitable data, AI has great potential to improve crops and plant health. The biggest
advantages of AI could be yet to come as we continue to develop AI-based approaches
that more fully capture the biological complexity of the systems under analysis e.g., via
graph-based methods, and open the door for the next level of research advancement,
insight generation and progress that we must harness to develop the next generation of
crops.
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