Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture?
Abstract
:1. Introduction
2. Results
2.1. Microtiter Assay
2.2. Leaf Disc Assay
2.3. Seedlings under Semi-Controlled Conditions
2.4. Field Trials
3. Discussion
4. Material and Methods
4.1. Plant Material & Extraction
4.2. Pathogen Cultivation
4.3. In Vitro Bioassays
4.4. In Vivo Bioassays
4.5. Tests under Semi-Controlled Conditions
4.6. Field Trials
4.7. Weather Data
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farlow, W.G. The American grape mildew. Bussy Inst. Bull. 1876, 1, 423. [Google Scholar]
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara viticola: A review of knowledge on Downy Mildew of grapevine and effective disease management. Phytopathol. Mediterr. 2011, 50, 3–44. [Google Scholar]
- Millardet, A. Traitement du mildiou par le mélange de sulphate de cuivre et chaux. J. Agric. Pract. 1885, 49, 707–710. [Google Scholar]
- Richardson, H.W. Handbook of Copper Compounds and Applications: Copper Fungicides/Bactericides; Dekker: New York, NY, USA, 1997; ISBN 9780824789985. [Google Scholar]
- Rusjan, D.; Strlič, M.; Pucko, D.; Korošec-Koruza, Z. Copper accumulation regarding the soil characteristics in Sub-Mediterranean vineyards of Slovenia. Geoderma 2007, 141, 111–118. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar]
- Flamming, C.A.; Trevors, J.T. Copper toxicity and chemistry in the environment: A review. Water Air Soil Pollut. 1989, 44, 143–158. [Google Scholar] [CrossRef]
- Eijsackers, H.; Beneke, P.; Maboeta, M.; Louw, J.P.E.; Reinecke, A.J. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 2005, 62, 99–111. [Google Scholar] [CrossRef]
- Kovačič, G.R.; Lesnik, M.; Vršič, S. An overview of the copper situation and usage in viticulture. Bulg. J. Agric. Sci. 2013, 19, 50–59. [Google Scholar]
- Peña, N.; Antón, A.; Kamilaris, A.; Fantke, P. Modeling ecotoxicity impacts in vineyard production: Addressing spatial differentiation for copper fungicides. Sci. Total Environ. 2018, 616–617, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speiser, B.; Berner, A.; Häseli, A.; Tamm, L. Control of Downy Mildew of grapevine with potassium phosphonate: Effectivity and phosphonate residues in wine. Biol. Agric. Hortic. 2000, 17, 305–312. [Google Scholar] [CrossRef]
- Dagostin, S.; Schärer, H.-J.; Pertot, I.; Tamm, L. Are there alternatives to copper for controlling grapevine Downy Mildew in organic viticulture? Crop Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- Weaver, D.K.; Subramanyam, B. Botanicals. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Springer: Boston, MA, USA, 2000; pp. 303–320. ISBN 978-1-4613-6956-1. [Google Scholar]
- Gurjar, M.S.; Ali, S.; Akhtar, M.; Singh, K.S. Efficacy of plant extracts in plant disease management. Agric. Sci. 2012, 3, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Mathew, L.K. Botanicals as biopesticides: A review. Int. J. Adv. Res. 2016, 4, 1734–1739. [Google Scholar]
- Shuping, D.S.S.; Eloff, J.N. The use of plants to protect plants and food against fungal pathogens: A review. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, D.; Dobhal, P.; Srivastava, S.; Kundu, S. Role of botanical plant extracts to control plant pathogens. Indian J. Agric. Res. 2018, 52, 341–346. [Google Scholar] [CrossRef]
- Prasanna, H.S.; Swami, D.V.; Bhagya, H.P.; Bhavishya; Shivakumar, S.N. Botanicals: Potential plant protection chemicals: A review. Int. J. Chem. Stud. 2018, 6, 217–222. [Google Scholar]
- Yoon, M.-Y.; Cha, B.; Kim, J.-C. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahlai, C.A.; Xue, Y.; McCreary, C.M.; Schaafsma, A.W.; Hallett, R.H. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans. PLoS ONE 2010, 5, e11250. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, H. Pesticides: Environmental impacts and management strategies. In Pesticides—Toxic Aspects; Soloneski, S., Ed.; InTech: London, UK, 2014; ISBN 978-953-51-1217-4. [Google Scholar]
- Zaker, M. Natural plant products as eco-friendly fungicides for plant diseases control—A review. Agriculturists 2016, 14, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Moshi, A.P.; Matoju, I. The status of research on and application of biopesticides in Tanzania. Review. Crop Prot. 2017, 92, 16–28. [Google Scholar] [CrossRef]
- Dagostin, S.; Formolo, T.; Giovannini, O.; Pertot, I.; Schmitt, A. Salvia officinalis extract can protect grapevine against Plasmopara viticola. Plant Dis. 2010, 94, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Schnee, S.; Queiroz, E.F.; Voinesco, F.; Marcourt, L.; Dubuis, P.-H.; Wolfender, J.-L.; Gindro, K. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. J. Agric. Food Chem. 2013, 61, 5459–5467. [Google Scholar] [CrossRef]
- Thuerig, B.; Ramseyer, J.; Hamburger, M.; Oberhänsli, T.; Potterat, O.; Schärer, H.-J.; Tamm, L. Efficacy of a Juncus effusus extract on grapevine and apple plants against Plasmopara viticola and Venturia inaequalis, and identification of the major active constituent. Pest Manag. Sci. 2016, 72, 1718–1726. [Google Scholar] [CrossRef]
- Thuerig, B.; James, E.E.; Schärer, H.-J.; Langat, M.K.; Mulholland, D.A.; Treutwein, J.; Kleeberg, I.; Ludwig, M.; Jayarajah, P.; Giovannini, O.; et al. Reducing copper use in the environment: The use of larixol and larixyl acetate to treat Downy Mildew caused by Plasmopara viticola in viticulture. Pest Manag. Sci. 2018, 74, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Ramseyer, J.; Thuerig, B.; de Mieri, M.; Schärer, H.J.; Oberhänsli, T.; Gupta, M.P.; Tamm, L.; Potterat, O.; Hamburger, M. Eudesmane sesquiterpenes from Verbesina lanata with inhibitory activity against major agricultural pathogen. In GA 2017—Book of Abstracts, Proceedings of the 65th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA 2017), Basel, Switzerland, 3–7 September 2017; Georg Thieme Verlag KG: Stuttgart, Germany, 2017. [Google Scholar]
- Thuerig, B.; Ramseyer, J.; Hamburger, M.; Ludwig, M.; Oberhänsli, T.; Potterat, O.; Schärer, H.-J.; Tamm, L. Efficacy of a Magnolia officinalis bark extract against grapevine Downy Mildew and apple scab under controlled and field conditions. Crop Prot. 2018, 114, 97–105. [Google Scholar] [CrossRef]
- La Torre, A.; Righi, L.; Iovino, V.; Battaglia, V. Evaluation of copper alternative products to control grape downy mildew in organic farming. J. Plant Pathol. 2019, 101, 1005–1012. [Google Scholar] [CrossRef]
- Leonard, C.M.; Viljoen, A.M. Warburgia: A comprehensive review of the botany, traditional uses and phytochemistry. J. Ethnopharmacol. 2015, 165, 260–285. [Google Scholar] [CrossRef]
- Müller, S.; Salomo, K.; Salazar, J.; Naumann, J.; Jaramillo, M.A.; Neinhuis, C.; Feild, T.S.; Wanke, S. Intercontinental long-distance dispersal of Canellaceae from the New to the Old World revealed by a nuclear single copy gene and chloroplast loci. Mol. Phylogenet. Evol. 2015, 84, 205–219. [Google Scholar] [CrossRef]
- Okello, D.; Komakech, R.; Matsabisa, G.M.; Kang, Y. A review on the botanical aspects, phytochemical contents and pharmacological activities of Warburgia ugandensis. J. Med. Plants Res. 2018, 12, 448–455. [Google Scholar] [CrossRef]
- Olila, D.; Olwa-Odyek; Opuda-Asibo, J. Antibacterial and antifungal activities of extracts of Zanthoxylum chalybeum and Warburgia ugandensis, Ugandan medicinal plants. Afr. Health Sci. 2001, 1, 66–72. [Google Scholar]
- Olila, D.; Opuda-Asibo, J.; Olwa-Odyek. Bioassay-guided studies on the cytotoxic and in vitro trypanocidal activities of a sesquiterpene (Muzigadial) derived from a Ugandan medicinal plant (Warburgia ugandensis). Afr. Health Sci. 2001, 1, 12–15. [Google Scholar] [PubMed]
- Okello, D.; Kang, Y. Exploring antimalarial herbal plants across communities in Uganda based on electronic data. Evid. Based Complement. Altern. Med. 2019, 2019, 3057180. [Google Scholar] [CrossRef]
- Okello, D.; Kang, Y. Ethnopharmacological potentials of Warburgia ugandensis on antimicrobial activities. Chin. J. Integr. Med. 2021, 27, 633–640. [Google Scholar] [CrossRef]
- Frum, Y.; Viljoen, A.M.; Drewes, S.E.; Houghton, P.J. In vitro 5-lipoxygenase and anti-oxidant activities of Warburgia salutaris and drimane sesquiterpenoids. S. Afr. J. Bot. 2005, 71, 447–449. [Google Scholar] [CrossRef]
- Frum, Y.; Viljoen, A.M. In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases. Skin Pharmacol. Physiol. 2006, 19, 329–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, I. Antifungal sesquiterpene dialdehydes from the Warburgia plants and their synergists. In Structure and Chemistry (Part D); Elsevier: Amsterdam, The Netherlands, 1995; pp. 233–249. ISBN 9780444822659. [Google Scholar]
- Kuglerova, M.; Tesarova, H.; Grade, J.T.; Halamova, K.; Wanyana-Maganyi, O.; van Damme, P.; Kokoska, L. Antimicrobial and antioxidative effects of Ugandan medicinal barks. Afr. J. Biotechnol. 2011, 10, 3628–3632. [Google Scholar]
- Rugutt, J.K.; Ngigi, A.N.; Rugutt, K.J.; Ndalut, P.K. Native Kenyan plants as possible alternatives to methyl bromide in soil fumigation. Phytomedicine 2006, 13, 576–583. [Google Scholar] [CrossRef]
- Taniguchi, M.; Chapya, A.; Kubo, I.; Nakanishi, K. Screening of east African plants for antimicrobial activity. Chem. Pharm. Bull. 1978, 26, 2910–2913. [Google Scholar] [CrossRef] [Green Version]
- Wube, A.A.; Bucar, F.; Gibbons, S.; Asres, K. Sesquiterpenes from Warburgia ugandensis and their antimycobacterial activity. Phytochemistry 2005, 66, 2309–2315. [Google Scholar] [CrossRef]
- Abuto, J.O.; Muchugi, A.; Mburu, D.; Machocho, A.K.; Karau, G.M. Variation in antimicrobial activity of Warburgia ugandensis extracts from different populations across the Kenyan Rift Valley. J. Micobiol. Res. 2016, 6, 55–64. [Google Scholar]
- Kipanga, P.N.; Liu, M.; Panda, S.K.; Mai, A.H.; Veryser, C.; van Puyvelde, L.; de Borggraeve, W.M.; van Dijck, P.; Matasyoh, J.; Luyten, W. Biofilm inhibiting properties of compounds from the leaves of Warburgia ugandensis Sprague subsp ugandensis against Candida and staphylococcal biofilms. J. Ethnopharmacol. 2020, 248, 112352. [Google Scholar] [CrossRef]
- Karani, L.W.; Tolo, F.M.; Karanja, S.M.; Khayeka-Wandabwa, C. Safety of Prunus africana and Warburgia ugandensis in asthma treatment. S. Afr. J. Bot. 2013, 88, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Madikane, V.E.; Bhakta, S.; Russell, A.J.; Campbell, W.E.; Claridge, T.D.W.; Elisha, B.G.; Davies, S.G.; Smith, P.; Sim, E. Inhibition of mycobacterial arylamine N-acetyltransferase contributes to anti-mycobacterial activity of Warburgia salutaris. Bioorg. Med. Chem. 2007, 15, 3579–3586. [Google Scholar] [CrossRef]
- Githinji, E.K.; Irungu, L.W.; Tonui, W.K.; Rukunga, G.M.; Mutai, C.; Muthaura, C.N.; Lugalia, R.; Gikandi, G.; Wainaina, C.W.; Ingonga, J.M.; et al. In vitro effects of Warburgia ugandensis, Psiadia punctulata and Chasmanthera dependens on Leishmania major promastigotes. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Kubo, I.; Taniguchi, M. Polygodial, an antifungal potentiator. J. Nat. Prod. 1988, 51, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Rabe, T.; van Staden, J. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef]
- Geyid, A.; Abebe, D.; Debella, A.; Makonnen, Z.; Aberra, F.; Teka, F.; Kebede, T.; Urga, K.; Yersaw, K.; Biza, T.; et al. Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J. Ethnopharmacol. 2005, 97, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Saronjic, N. Biotransformation and Utilization of Drimane Sesquiterpenes by Endophytic Microorganisms. Master’s Thesis, University of Vienna, Vienna, Austria, 2012. [Google Scholar]
- Yibeltal, M.; Samuel, S.; Feleke, M.; Azamal, H. Antimicrobial activity of crude and semi-purified fractions of Warburgia ugandensis against some pathogens. J. Coast. Life Med. 2013, 1, 184–191. [Google Scholar] [CrossRef]
- Gabaston, J.; Richard, T.; Cluzet, S.; Palos Pinto, A.; Dufour, M.-C.; Corio-Costet, M.-F.; Mérillon, J.-M. Pinus pinaster Knot: A Source of Polyphenols against Plasmopara viticola. J. Agric. Food Chem. 2017, 65, 8884–8891. [Google Scholar] [CrossRef]
- Mulholland, D.A.; Thuerig, B.; Langat, M.K.; Tamm, L.; Nawrot, D.A.; James, E.E.; Qayyum, M.; Shen, D.; Ennis, K.; Jones, A.; et al. Efficacy of extracts from eight economically important forestry species against grapevine Downy Mildew (Plasmopara viticola) and identification of active constituents. Crop Prot. 2017, 102, 104–109. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Borges, D.F.; Lopes, E.A.; Moraes, A.R.F.; Soares, M.S.; Visôtto, L.E.; Oliveira, C.R.; Valente, V.M.M. Formulation of botanicals for the control of plant-pathogens: A review. Crop Prot. 2018, 110, 135–140. [Google Scholar] [CrossRef]
- Gent, D.H.; Schwartz, H.F.; Nissen, S.J. Effect of commercial adjuvants on vegetable crop fungicide coverage, absorption, and efficacy. Plant Dis. 2003, 87, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Beestman, G.B. Recently patented and commercialized formulation and adjuvant technology. Crop Prot. 2007, 26, 320–327. [Google Scholar] [CrossRef]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019, 39, 37. [Google Scholar] [CrossRef] [Green Version]
- Bagetta, G.; Cosentino, M.; Corasaniti, M.T.; Sakurada, S. Herbal Medicines: Development and Validation of Plant-Derived Medicines for Human Health; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439837696. [Google Scholar]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Kloukina, C.; Vassiliou, R.; Tomou, E.-M.; Skaltsa, H.; Tzortzakis, N. Cultivation strategy to improve chemical profile and anti-oxidant activity of Sideritis perfoliata L. subsp. perfoliata. Ind. Crops Prod. 2019, 140, 111694. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
Leaf | Inflorescences | ||||||
---|---|---|---|---|---|---|---|
n | BBCH 65 | BBCH73 | BBCH 79 | BBCH 73 | BBCH 79 | ||
Organic | ‘Dornfelder’ | 5 | 40.0 ± 54.8 | 36.3 ± 12.5 | 71.7 ± 11.4 | −33.7 ± 102.5 | 45.2 ± 2.2 |
‘Riesling’ | 4 | 0.0 ± 0.0 | 33.3 ± 10.1 | 57.2 ± 8.4 | 20.0 ± 17.4 | 20.6 ± 6.5 | |
WLD 1000 µg/mL | ‘Dornfelder’ | 5 | 16.0 ± 47.7 | 26.6 ± 4.3 | 18.0 ± 16.8 | 18.1 ± 34.0 | 7.0 ± 7.8 |
‘Riesling’ | 4 | −10.0 ± 11.5 | 6.8 ± 34.2 | 14.2 ± 9.4 | 2.3 ± 11.9 | 2.8 ± 0.5 | |
WLD 1500 µg/mL | ‘Dornfelder’ | 5 | 40.0 ± 54.8 | 21.9 ± 14.9 | 30.3 ± 14.4 | −3.4 ± 65.2 | 8.4 ± 8.1 |
‘Riesling’ | 4 | −10.0 ± 11.5 | −1.0 ± 28.0 | 13.8 ± 9.4 | 4.6 ± 11.6 | 4.4 ± 2.0 | |
WBD 400 µg/mL | ‘Dornfelder’ | 5 | 3.3 ± 7.5 | 9.6 ± 33.9 | 19.1 ± 22.1 | −23.8 ± 66.4 | 7.6 ± 7.7 |
‘Riesling’ | 4 | 0.0 ± 0.0 | 8.2 ± 35.9 | 16.7 ± 13.1 | 4.2 ± 14.6 | 3.6 ± 1.0 | |
WBD 800 µg/mL | ‘Dornfelder’ | 5 | 3.3 ± 7.5 | 21.9 ± 20.9 | 25.2± 18.3 | −3.1 ± 29.1 | 9.0 ± 5.2 |
‘Riesling’ | 4 | 0.0 ± 0.0 | 17.9 ± 28.0 | 26.5 ± 7.0 | 5.5 ± 10.1 | 6.4 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraus, C.; Abou-Ammar, R.; Schubert, A.; Fischer, M. Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture? Plants 2021, 10, 2765. https://doi.org/10.3390/plants10122765
Kraus C, Abou-Ammar R, Schubert A, Fischer M. Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture? Plants. 2021; 10(12):2765. https://doi.org/10.3390/plants10122765
Chicago/Turabian StyleKraus, Christian, Rada Abou-Ammar, Andreas Schubert, and Michael Fischer. 2021. "Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture?" Plants 10, no. 12: 2765. https://doi.org/10.3390/plants10122765
APA StyleKraus, C., Abou-Ammar, R., Schubert, A., & Fischer, M. (2021). Warburgia ugandensis Leaf and Bark Extracts: An Alternative to Copper as Fungicide against Downy Mildew in Organic Viticulture? Plants, 10(12), 2765. https://doi.org/10.3390/plants10122765